Skip to main content

Stem Cell Therapy for Spinal Cord Injury

  • Chapter
  • First Online:

Part of the book series: Stem Cells in Clinical Applications ((SCCA))

Abstract

There is an urgent need for the effective treatment of individuals suffering from spinal cord injury (SCI). Advances in the understanding of stem cells have expanded pharmacotherapy to stem cell therapy for SCI. This chapter summarizes pathophysiology of SCI, pharmacological and stem cell therapy in SCI and proposes six-point cyclical schema for effective clinical translation of neural stem cell therapy for SCI. SCI is a complex condition; the numerous pathophysiological mechanisms occurring at varying phases of SCI suggests that a single approach to the treatment of SCI may not be optimal. As the field continues to mature, the hope is that the knowledge gained from laboratory studies will be translated into the development of an effective multi-pronged treatment strategy for SCI.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aftab S, Chimutengwende-Gordon M, Malik A, Lee R (2013) The use of stem cells for the treatment of spinal surgical conditions. Curr Stem Cell Res Ther 8(6):456–463

    Article  CAS  PubMed  Google Scholar 

  • Alper J (2009) Geron gets green light for human trial of ES cell-derived product. Nat Biotechnol 27(3):213–214

    Article  CAS  PubMed  Google Scholar 

  • Anthony DC, Couch Y (2014) The systemic response to CNS injury. Exp Neurol 258:105–111

    Article  CAS  PubMed  Google Scholar 

  • Austin JW, Afshar M, Fehlings MG (2012) The relationship between localized subarachnoid inflammation and parenchymal pathophysiology after spinal cord injury. J Neurotrauma 29(10):1838–1849

    Article  PubMed  PubMed Central  Google Scholar 

  • Baptiste DC, Fehlings MG (2006) Pharmacological approaches to repair the injured spinal cord. J Neurotrauma 23(3-4):318–334

    Article  PubMed  Google Scholar 

  • Barami K, Diaz FG (2000) Cellular transplantation and spinal cord injury. Neurosurgery 47(3):691–700

    CAS  PubMed  Google Scholar 

  • Bastien D, Lacroix S (2014) Cytokine pathways regulating glial and leukocyte function after spinal cord and peripheral nerve injury. Exp Neurol 258:62–77

    Article  CAS  PubMed  Google Scholar 

  • Behrman SW, Kudsk KA, Brown RO, Vehe KL, Wojtysiak SL (1995) The effect of growth hormone on nutritional markers in enterally fed immobilized trauma patients. JPEN J Parent Enteral Nutr 19(1):41–46

    Article  CAS  Google Scholar 

  • Blesch A, Fischer I, Tuszynski MH (2012) Gene therapy, neurotrophic factors and spinal cord regeneration. Handb Clin Neurol 109:563–574

    Article  PubMed  Google Scholar 

  • Boyce VS, Mendell LM (2014) Neurotrophic factors in spinal cord injury. Handb Exp Pharmacol 220:443–460

    Article  CAS  PubMed  Google Scholar 

  • Boyd-Kimball D, Sultana R, Poon HF, Mohmmad-Abdul H, Lynn BC, Klein JB, Butterfield DA (2005) Gamma-glutamylcysteine ethyl ester protection of proteins from Abeta(1-42)-mediated oxidative stress in neuronal cell culture: a proteomics approach. J Neurosci Res 79(5):707–713

    Article  CAS  PubMed  Google Scholar 

  • Brown SEF (2013) BioTime acquires stem cell assets from Geron, raises $10 million. San Francisco Business Times, Jan 7

    Google Scholar 

  • Bydon M, Lin J, Macki M, Gokaslan ZL, Bydon A (2014) The current role of steroids in acute spinal cord injury. World Neurosurg 82(5):848–854

    Article  PubMed  Google Scholar 

  • Cao HQ, Dong ED (2013) An update on spinal cord injury research. Neurosci Bull 29(1):94–102

    Article  PubMed  Google Scholar 

  • Cao QL, Zhang YP, Howard RM, Walters WM, Tsoulfas P, Whittemore SR (2001) Pluripotent stem cells engrafted into the normal or lesioned adult rat spinal cord are restricted to a glial lineage. Exp Neurol 167(1):48–58

    Article  CAS  PubMed  Google Scholar 

  • Casha S, Zygun D, McGowan MD, Bains I, Yong VW, Hurlbert RJ (2012) Results of a phase II placebo-controlled randomized trial of minocycline in acute spinal cord injury. Brain 135(Pt 4):1224–1236

    Article  PubMed  Google Scholar 

  • Chew DJ, Carlstedt T, Shortland PJ (2014) The effects of minocycline or riluzole treatment on spinal root avulsion-induced pain in adult rats. J Pain 15(6):664–675

    Article  CAS  PubMed  Google Scholar 

  • Chow SY, Moul J, Tobias CA, Himes BT, Liu Y, Obrocka M, Hodge L, Tessler A, Fischer I (2000) Characterization and intraspinal grafting of EGF/bFGF-dependent neurospheres derived from embryonic rat spinal cord. Brain Res 874(2):87–106

    Article  CAS  PubMed  Google Scholar 

  • Cox A, Varma A, Banik N (2015) Recent advances in the pharmacologic treatment of spinal cord injury. Metab Brain Dis 30(2):473–482. doi:10.1007/s11011-014-9547-y

    Article  CAS  PubMed  Google Scholar 

  • Das AK, Gopurappilly R, Parhar I (2011) Current status and prospective application of stem cell-based therapies for spinal cord injury. Curr Stem Cell Res Ther 6(2):93–104

    Article  CAS  PubMed  Google Scholar 

  • Davies SJ, Shih CH, Noble M, Mayer-Proschel M, Davies JE, Proschel C (2011) Transplantation of specific human astrocytes promotes functional recovery after spinal cord injury. PLoS ONE [Electronic Resource] 6(3), e17328

    Article  CAS  Google Scholar 

  • de Rivero Vaccari JP, Dietrich WD, Keane RW (2014) Activation and regulation of cellular inflammasomes: gaps in our knowledge for central nervous system injury. J Cerebral Blood Flow Metab 34(3):369–375

    Article  Google Scholar 

  • Donnelly EM, Lamanna J, Boulis NM (2012) Stem cell therapy for the spinal cord. Stem Cell Res Ther 3(4):24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eaker S, Armant M, Brandwein H, Burger S, Campbell A, Carpenito C, Clarke D, Fong T, Karnieli O, Niss K, Van’t Hof W, Wagey R (2013) Concise review: guidance in developing commercializable autologous/patient-specific cell therapy manufacturing. Stem Cells Transl Med 2(11):871–883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elkabes S, Nicot AB (2014) Sex steroids and neuroprotection in spinal cord injury: a review of preclinical investigations. Exp Neurol 259:28–37

    Article  CAS  PubMed  Google Scholar 

  • FDA (2014) Guidance for industry: qualification process for drug development tools. Food and Drug Administration. http://www.fda.gov/downloads/drugs/guidancecomplianceregulatoryinformation/guidances/ucm230597.pdf. Accessed 10 May 2015

  • Fehlings MG, Theodore N, Harrop J, Maurais G, Kuntz C, Shaffrey CI, Kwon BK, Chapman J, Yee A, Tighe A, McKerracher L (2011) A phase I/IIa clinical trial of a recombinant Rho protein antagonist in acute spinal cord injury. J Neurotrauma 28(5):787–796

    Article  PubMed  Google Scholar 

  • Gensert JM, Goldman JE (1997) Endogenous progenitors remyelinate demyelinated axons in the adult CNS. Neuron 19(1):197–203

    Article  CAS  PubMed  Google Scholar 

  • Gou Z, Mi Y, Jiang F, Deng B, Yang J, Gou X (2014) PirB is a novel potential therapeutic target for enhancing axonal regeneration and synaptic plasticity following CNS injury in mammals. J Drug Target 22(5):365–371

    Article  CAS  PubMed  Google Scholar 

  • Grossman RG, Fehlings MG, Frankowski RF, Burau KD, Chow DS, Tator C, Teng A, Toups EG, Harrop JS, Aarabi B, Shaffrey CI, Johnson MM, Harkema SJ, Boakye M, Guest JD, Wilson JR (2014) A prospective, multicenter, phase I matched-comparison group trial of safety, pharmacokinetics, and preliminary efficacy of riluzole in patients with traumatic spinal cord injury. J Neurotrauma 31(3):239–255

    Article  PubMed  PubMed Central  Google Scholar 

  • Hewson SM, Fehlings LN, Messih M, Fehlings MG (2013) The challenges of translating stem cells for spinal cord injury and related disorders: what are the barriers and opportunities? Expert Rev Neurother 13(2):143–150

    Article  CAS  PubMed  Google Scholar 

  • Hu Z, Tu J (2015) The roads to mitochondrial dysfunction in a rat model of posttraumatic syringomyelia. Biomed Res Int. doi:10.1155/2015/831490

    Google Scholar 

  • Iannotti C, Ping Zhang Y, Shields CB, Han Y, Burke DA, Xu XM (2004) A neuroprotective role of glial cell line-derived neurotrophic factor following moderate spinal cord contusion injury. Exp Neurol 189(2):317–332

    Article  CAS  PubMed  Google Scholar 

  • Imitola J, Raddassi K, Park KI, Mueller FJ, Nieto M, Teng YD, Frenkel D, Li J, Sidman RL, Walsh CA, Snyder EY, Khoury SJ (2004) Directed migration of neural stem cells to sites of CNS injury by the stromal cell-derived factor 1alpha/CXC chemokine receptor 4 pathway. Proc Natl Acad Sci U S A 101(52):18117–18122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jendelova P, Herynek V, Urdzikova L, Glogarova K, Kroupova J, Andersson B, Bryja V, Burian M, Hajek M, Sykova E (2004) Magnetic resonance tracking of transplanted bone marrow and embryonic stem cells labeled by iron oxide nanoparticles in rat brain and spinal cord. J Neurosci Res 76(2):232–243

    Article  CAS  PubMed  Google Scholar 

  • Jones TB (2014) Lymphocytes and autoimmunity after spinal cord injury. Exp Neurol 258:78–90

    Article  CAS  PubMed  Google Scholar 

  • Kabatas S, Teng YD (2010) Potential roles of the neural stem cell in the restoration of the injured spinal cord: review of the literature. Turk Neurosurg 20(2):103–110

    PubMed  Google Scholar 

  • Keirstead HS, Nistor G, Bernal G, Totoiu M, Cloutier F, Sharp K, Steward O (2005) Human embryonic stem cell-derived oligodendrocyte progenitor cell transplants remyelinate and restore locomotion after spinal cord injury. J Neurosci 25(19):4694–4705

    Article  CAS  PubMed  Google Scholar 

  • Keramaris NC, Kanakaris NK, Tzioupis C, Kontakis G, Giannoudis PV (2008) Translational research: from benchside to bedside. Injury 39(6):643–650

    Article  CAS  PubMed  Google Scholar 

  • Kojima A, Tator CH (2000) Epidermal growth factor and fibroblast growth factor 2 cause proliferation of ependymal precursor cells in the adult rat spinal cord in vivo. J Neuropathol Exp Neurol 59(8):687–697

    Article  CAS  PubMed  Google Scholar 

  • Kojima A, Tator CH (2002) Intrathecal administration of epidermal growth factor and fibroblast growth factor 2 promotes ependymal proliferation and functional recovery after spinal cord injury in adult rats. J Neurotrauma 19(2):223–238

    Article  PubMed  Google Scholar 

  • Kolar MK, Kingham PJ, Novikova LN, Wiberg M, Novikov LN (2014) The therapeutic effects of human adipose-derived stem cells in a rat cervical spinal cord injury model. Stem Cells Develop 23(14):1659–1674

    Article  CAS  Google Scholar 

  • Kraus KH (1996) The pathophysiology of spinal cord injury and its clinical implications. Semin Veter Med Surg (Small Animal) 11(4):201–207

    Google Scholar 

  • Lang BT, Cregg JM, DePaul MA, Tran AP, Xu K, Dyck SM, Madalena KM, Brown BP, Weng YL, Li S, Karimi-Abdolrezaee S, Busch SA, Shen Y, Silver J (2015) Modulation of the proteoglycan receptor PTPsigma promotes recovery after spinal cord injury. Nature 518(7539):404–408

    Article  CAS  PubMed  Google Scholar 

  • Lee YS, Lin CY, Robertson RT, Hsiao I, Lin VW (2004) Motor recovery and anatomical evidence of axonal regrowth in spinal cord-repaired adult rats. J Neuropathol Exp Neurol 63(3):233–245

    Article  PubMed  Google Scholar 

  • Maric O, Zorner B, Dietz V (2008) Levodopa therapy in incomplete spinal cord injury. J Neurotrauma 25(11):1303–1307

    Article  PubMed  Google Scholar 

  • McConeghy KW, Hatton J, Hughes L, Cook AM (2012) A review of neuroprotection pharmacology and therapies in patients with acute traumatic brain injury. CNS Drugs 26(7):613–636

    Article  CAS  PubMed  Google Scholar 

  • McTigue DM, Sahinkaya FR (2011) The fate of proliferating cells in the injured adult spinal cord. Stem Cell Res Ther 2(1):7

    Article  PubMed  PubMed Central  Google Scholar 

  • Monaco EA 3rd, Weiner GM, Friedlander RM (2013) Randomized-controlled trial of minocycline for spinal cord injury shows promise. Neurosurgery 72(2):N17–N19

    Article  PubMed  Google Scholar 

  • Nakamura M, Houghtling RA, MacArthur L, Bayer BM, Bregman BS (2003) Differences in cytokine gene expression profile between acute and secondary injury in adult rat spinal cord. Exp Neurol 184(1):313–325

    Article  CAS  PubMed  Google Scholar 

  • Namiki J, Kojima A, Tator CH (2000) Effect of brain-derived neurotrophic factor, nerve growth factor, and neurotrophin-3 on functional recovery and regeneration after spinal cord injury in adult rats. J Neurotrauma 17(12):1219–1231

    Article  CAS  PubMed  Google Scholar 

  • Ning G, Tang L, Wu Q, Li Y, Li Y, Zhang C, Feng S (2013) Human umbilical cord blood stem cells for spinal cord injury: early transplantation results in better local angiogenesis. Regen Med 8(3):271–281

    Article  CAS  PubMed  Google Scholar 

  • Nishimura S, Sasaki T, Shimizu A, Yoshida K, Iwai H, Koya I, Kobayashi Y, Itakura G, Shibata S, Ebise H, Horiuchi K, Kudoh J, Toyama Y, Anderson AJ, Okano H, Nakamura M (2014) Global gene expression analysis following spinal cord injury in non-human primates. Exp Neurol 261:171–179

    Article  CAS  PubMed  Google Scholar 

  • Niu T, Chen X, Xu X (2002) Angiotensin converting enzyme gene insertion/deletion polymorphism and cardiovascular disease: therapeutic implications. Drugs 62(7):977–993

    Article  CAS  PubMed  Google Scholar 

  • Nogradi A, Pajer K, Marton G (2011) The role of embryonic motoneuron transplants to restore the lost motor function of the injured spinal cord. Ann Anat 193(4):362–370

    Article  PubMed  Google Scholar 

  • Ogawa Y, Sawamoto K, Miyata T, Miyao S, Watanabe M, Nakamura M, Bregman BS, Koike M, Uchiyama Y, Toyama Y, Okano H (2002) Transplantation of in vitro-expanded fetal neural progenitor cells results in neurogenesis and functional recovery after spinal cord contusion injury in adult rats. J Neurosci Res 69(6):925–933

    Article  CAS  PubMed  Google Scholar 

  • Okano H, Ogawa Y, Nakamura M, Kaneko S, Iwanami A, Toyama Y (2003) Transplantation of neural stem cells into the spinal cord after injury. Semin Cell Dev Biol 14(3):191–198

    Article  CAS  PubMed  Google Scholar 

  • Perrin FE, Boniface G, Serguera C, Lonjon N, Serre A, Prieto M, Mallet J, Privat A (2010) Grafted human embryonic progenitors expressing neurogenin-2 stimulate axonal sprouting and improve motor recovery after severe spinal cord injury. PLoS ONE [Electronic Resource] 5(12), e15914

    Article  CAS  Google Scholar 

  • Rabchevsky AG, Fugaccia I, Turner AF, Blades DA, Mattson MP, Scheff SW (2000) Basic fibroblast growth factor (bFGF) enhances functional recovery following severe spinal cord injury to the rat. Exp Neurol 164(2):280–291

    Article  CAS  PubMed  Google Scholar 

  • Resnick DK, Schmitt C, Miranpuri GS, Dhodda VK, Isaacson J, Vemuganti R (2004) Molecular evidence of repair and plasticity following spinal cord injury. Neuroreport 15(5):837–839

    Article  CAS  PubMed  Google Scholar 

  • Sabelstrom H, Stenudd M, Reu P, Dias DO, Elfineh M, Zdunek S, Damberg P, Goritz C, Frisen J (2013) Resident neural stem cells restrict tissue damage and neuronal loss after spinal cord injury in mice. Science 342(6158):637–640

    Article  PubMed  Google Scholar 

  • Samantaray S, Smith JA, Das A, Matzelle DD, Varma AK, Ray SK, Banik NL (2011) Low dose estrogen prevents neuronal degeneration and microglial reactivity in an acute model of spinal cord injury: effect of dosing, route of administration, and therapy delay. Neurochem Res 36(10):1809–1816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma HS (2003) Neurotrophic factors attenuate microvascular permeability disturbances and axonal injury following trauma to the rat spinal cord. Acta Neurochirurgica – Supplement 86:383–388

    CAS  PubMed  Google Scholar 

  • Stein R (2011) Stem cells were god’s will, says first recipient of treatment. Washington Post, April 15

    Google Scholar 

  • Stenudd M, Sabelstrom H, Frisen J (2015) Role of endogenous neural stem cells in spinal cord injury and repair. JAMA Neurol 72(2):235–237

    Article  PubMed  Google Scholar 

  • Taghipour Z, Karbalaie K, Kiani A, Niapour A, Bahramian H, Nasr-Esfahani MH, Baharvand H (2012) Transplantation of undifferentiated and induced human exfoliated deciduous teeth-derived stem cells promote functional recovery of rat spinal cord contusion injury model. Stem Cells Develop 21(10):1794–1802

    Article  CAS  Google Scholar 

  • Taha MF (2010) Cell based-gene delivery approaches for the treatment of spinal cord injury and neurodegenerative disorders. Curr Stem Cell Res Ther 5(1):23–36

    Article  CAS  PubMed  Google Scholar 

  • Teng YD, Choi H, Onario RC, Zhu S, Desilets FC, Lan S, Woodard EJ, Snyder EY, Eichler ME, Friedlander RM (2004) Minocycline inhibits contusion-triggered mitochondrial cytochrome c release and mitigates functional deficits after spinal cord injury. Proc Natl Acad Sci U S A 101(9):3071–3076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tu J, Liao J, Stoodley MA, Cunningham AM (2010) Differentiation of endogenous progenitors in an animal model of post-traumatic syringomyelia. Spine 35(11):1116–1121

    Article  PubMed  Google Scholar 

  • Tu J, Liao J, Stoodley MA, Cunningham AM (2011) Reaction of endogenous progenitor cells in a rat model of posttraumatic syringomyelia. J Neurosurg Spine 14(5):573–582

    Article  PubMed  Google Scholar 

  • Ugoya SO, Tu J (2012) Bench to bedside of neural stem cell in traumatic brain injury. Stem Cell Int. doi:10.1155/2012/141624

    Google Scholar 

  • van den Maagdenberg AM, Pietrobon D, Pizzorusso T, Kaja S, Broos LA, Cesetti T, van de Ven RC, Tottene A, van der Kaa J, Plomp JJ, Frants RR, Ferrari MD (2004) A Cacna1a knockin migraine mouse model with increased susceptibility to cortical spreading depression. Neuron 41(5):701–710

    Article  PubMed  Google Scholar 

  • Volarevic V, Erceg S, Bhattacharya SS, Stojkovic P, Horner P, Stojkovic M (2013) Stem cell-based therapy for spinal cord injury. Cell Transplant 22(8):1309–1323

    Article  PubMed  Google Scholar 

  • Wang Z, Yao W, Deng Q, Zhang X, Zhang J (2013) Protective effects of BDNF overexpression bone marrow stromal cell transplantation in rat models of traumatic brain injury. J Mol Neurosci 49(2):409–416

    Article  CAS  PubMed  Google Scholar 

  • Wang R, Hong J, Lu M, Neil JE, Vitek MP, Liu X, Warner DS, Li F, Sheng H (2014) ApoE mimetic ameliorates motor deficit and tissue damage in rat spinal cord injury. J Neurosci Res 92(7):884–892

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Reynolds A, Kirry A, Nienhaus C, Blackmore MG (2015) Overexpression of Sox11 promotes corticospinal tract regeneration after spinal injury while interfering with functional recovery. J Neurosci 35(7):3139–3145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wells JE, Hurlbert RJ, Fehlings MG, Yong VW (2003) Neuroprotection by minocycline facilitates significant recovery from spinal cord injury in mice. Brain 126(Pt 7):1628–1637

    Article  PubMed  Google Scholar 

  • WHO (2013a) Spinal cord injury: as many as 500 000 people suffer each year. WHO. http://www.who.int/mediacentre/news/releases/2013/spinal-cord-injury-20131202/en/. Accessed 6 May 2015

  • WHO (2013b) Spinal cord injury. WHO. http://www.who.int/mediacentre/factsheets/fs384/en/. Accessed 10 May 2015

  • Widenfalk J, Lipson A, Jubran M, Hofstetter C, Ebendal T, Cao Y, Olson L (2003) Vascular endothelial growth factor improves functional outcome and decreases secondary degeneration in experimental spinal cord contusion injury. Neuroscience 120(4):951–960

    Article  CAS  PubMed  Google Scholar 

  • Wilson JR, Fehlings MG (2014) Riluzole for acute traumatic spinal cord injury: a promising neuroprotective treatment strategy. World Neurosurg 81(5-6):825–829

    Article  PubMed  Google Scholar 

  • Wilson JR, Forgione N, Fehlings MG (2013) Emerging therapies for acute traumatic spinal cord injury. CMAJ Canad Med Assoc J 185(6):485–492

    Article  Google Scholar 

  • Wu Y, Satkunendrarajah K, Fehlings MG (2014) Riluzole improves outcome following ischemia-reperfusion injury to the spinal cord by preventing delayed paraplegia. Neuroscience 265:302–312

    Article  CAS  PubMed  Google Scholar 

  • Xiao L, Tsutsui T (2013) Human dental mesenchymal stem cells and neural regeneration. Hum Cell 26(3):91–96

    Article  CAS  PubMed  Google Scholar 

  • Xiong Y, Hall ED (2009) Pharmacological evidence for a role of peroxynitrite in the pathophysiology of spinal cord injury. Exp Neurol 216(1):105–114

    Article  CAS  PubMed  Google Scholar 

  • Yamada H, Ito D, Oki Y, Kitagawa M, Matsumoto T, Watari T, Kano K (2014) Transplantation of mature adipocyte-derived dedifferentiated fat cells promotes locomotor functional recovery by remyelination and glial scar reduction after spinal cord injury in mice. Biochem Biophys Res Commun 454(2):341–346

    Article  CAS  PubMed  Google Scholar 

  • Zhao J, Sun W, Cho HM, Ouyang H, Li W, Lin Y, Do J, Zhang L, Ding S, Liu Y, Lu P, Zhang K (2013) Integration and long distance axonal regeneration in the central nervous system from transplanted primitive neural stem cells. J Biol Chem 288(1):164–168

    Article  CAS  PubMed  Google Scholar 

  • Zhu J, Zhou L, XingWu F (2006) Tracking neural stem cells in patients with brain trauma. N Engl J Med 355(22):2376–2378

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

S. Tu was a recipient of National Health and Medical Research Council postgraduate scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Tu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Tu, S., Tu, J. (2017). Stem Cell Therapy for Spinal Cord Injury. In: Pham, P. (eds) Neurological Regeneration. Stem Cells in Clinical Applications. Springer, Cham. https://doi.org/10.1007/978-3-319-33720-3_8

Download citation

Publish with us

Policies and ethics