Skip to main content

Complexity of Plant Volatile-Mediated Interactions Beyond the Third Trophic Level

  • Chapter
  • First Online:
Deciphering Chemical Language of Plant Communication

Part of the book series: Signaling and Communication in Plants ((SIGCOMM))

Abstract

Food chains of plant-associated communities typically reach beyond three trophic levels. The predators and parasitoids in the third trophic level are under attack by top predators or parasitised by hyperparasitoids. These higher trophic level organisms respond to plant volatiles in search of their prey or host. Thereby, plant volatiles affect community processes such as competition and intraguild predation among predators and parasitoids at the terminal end of the food chain. The response of fourth trophic level organisms to plant volatiles potentially reduces the benefit of these volatiles as indirect defence for the plant. In the application of parasitoids as biological control agents of herbivore pests, hyperparasitoids may diminish the effectiveness of parasitoids. Detailed understanding of the use of plant odours by hyperparasitoids may provide tools to further optimise biological control.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acebes AL, Messing RH (2013) Comparative susceptibility to hyperparasitism of Binodoxys communis and Aphidius colemani, primary aphid parasitoids introduced to Hawaii. Biol Control 65:286–292

    Article  Google Scholar 

  • Amo L, Jansen JJ, van Dam NM, Dicke M, Visser ME (2013) Birds exploit herbivore-induced plant volatiles to locate herbivorous prey. Ecol Lett 16:1348–1355

    Article  PubMed  Google Scholar 

  • Askew AR, Shaw MR (1986) Parasitoid communities: their size, structure and development. In: Waage J, Greathead D (eds) Insect parasitoids. Academic Press, London, pp 225–264

    Google Scholar 

  • Beddington JR, Hammond PS (1977) Dynamics of host–parasite hyperparasite interactions. J Anim Ecol 46:811–821

    Article  Google Scholar 

  • Blande JD, Pickett JA, Poppy GM (2007) A comparison of semiochemically mediated interactions involving specialist and generalist Brassica-feeding aphids and the braconid parasitoid Diaeretiella rapae. J Chem Ecol 33:767–779

    Article  CAS  PubMed  Google Scholar 

  • Bottrell DG, Barbosa P, Gould F (1998) Manipulating natural enemies by plant variety selection and modification: a realistic strategy? Annu Rev Entomol 43:347–367

    Article  CAS  PubMed  Google Scholar 

  • Bradburne RP, Mithen R (2000) Glucosinolate genetics and the attraction of the aphid parasitoid Diaeretiella rapae to Brassica. Proc R Soc Lond B Biol Sci 267:89–95

    Article  CAS  Google Scholar 

  • Brodeur J, Rosenheim JA (2000) Intraguild interactions in aphid parasitoids. Entomol Exp Appl 97:93–108

    Article  Google Scholar 

  • Buitenhuis R, McNeil JN, Boivin G, Brodeur J (2004) The role of honeydew in host searching of aphid hyperparasitoids. J Chem Ecol 30:273–285

    Article  CAS  PubMed  Google Scholar 

  • Buitenhuis R, Vet LEM, Boivin G, Brodeur J (2005) Foraging behaviour at the fourth trophic level: a comparative study of host location in aphid hyperparasitoids. Entomol Exp Appl 114:107–117

    Article  Google Scholar 

  • Colfer RG, Rosenheim JA (2001) Predation on immature parasitoids and its impact on aphid suppression. Oecologia 126:292–304

    Article  Google Scholar 

  • Cook SM, Khan ZR, Pickett JA (2007) The use of push–pull strategies in integrated pest management. Annu Rev Entomol 52:375–400

    Article  CAS  PubMed  Google Scholar 

  • Dicke M (1999) Are herbivore-induced plant volatiles reliable indicators of herbivore identity to foraging carnivorous arthropods? Entomol Exp Appl 91:131–142

    Article  CAS  Google Scholar 

  • Fatouros NE, van Loon JJA, Hordijk KA, Smid HM, Dicke M (2005) Herbivore-induced plant volatiles mediate in-flight host discrimination by parasitoids. J Chem Ecol 31:2033–2047

    Article  CAS  PubMed  Google Scholar 

  • Gols R (2014) Direct and indirect chemical defences against insects in a multitrophic framework. Plant Cell Environ 37:1741–1752

    Article  PubMed  Google Scholar 

  • Gols R, Wagenaar R, Poelman EH, Kruidhof M, van Loon JJA, Harvey JA (2015) Fitness consequences of indirect plant defence in the annual Sinapis arvensis. Funct Ecol 29:1019–1025

    Article  Google Scholar 

  • Gomez-Marco F, Urbaneja A, Jaques JA, Rugman-Jones PF, Stouthamer R, Tena A (2015) Untangling the aphid–parasitoid food web in citrus: can hyperparasitoids disrupt biological control? Biol Control 81:111–121

    Article  Google Scholar 

  • Gouinguene S, Degen T, Turlings TCJ (2001) Variability in herbivore-induced odour emissions among maize cultivars and their wild ancestors (teosinte). Chemoecology 11:9–16

    Article  CAS  Google Scholar 

  • Harmel N, Almohamad R, Fauconnier ML, Du Jardin P, Verheggen F, Marlier M, Haubruge E, Francis F (2007) Role of terpenes from aphid-infested potato on searching and oviposition behavior of Episyrphus balteatus. Insect Sci 14:57–63

    Article  CAS  Google Scholar 

  • Harvey JA, Gols R, Vet LEM, Kruidhof HM (2012) Development of a hyperparasitoid wasp in different stages of its primary parasitoid and secondary herbivore hosts. J Insect Physiol 58:1463–1468

    Article  CAS  PubMed  Google Scholar 

  • Harvey JA, Poelman EH, Tanaka T (2013) Intrinsic inter- and intra-specific competition in parasitoid wasps. Annu Rev Entomol 58:333–351

    Article  CAS  PubMed  Google Scholar 

  • Hoballah MEF, Tamo C, Turlings TCJ (2002) Differential attractiveness of induced odors emitted by eight maize varieties for the parasitoid Cotesia marginiventris: is quality or quantity important? J Chem Ecol 28:951–968

    Article  CAS  PubMed  Google Scholar 

  • Holler C, Borgemeister C, Haardt H, Powell W (1993) The relationship between primary parasitoids and hyperparasitoids of cereal aphids: an analysis of field data. J Anim Ecol 62:12–21

    Article  Google Scholar 

  • Holler C, Micha SG, Schulz S, Francke W, Pickett JA (1994) Enemy-induced dispersal in a parasitic wasp. Experientia 50:182–185

    Article  Google Scholar 

  • James DG (2005) Further field evaluation of synthetic herbivore-induced plant volatiles as attractants for beneficial insects. J Chem Ecol 31:481–495

    Article  CAS  PubMed  Google Scholar 

  • James DG, Grasswitz TR (2005) Synthetic herbivore-induced plant volatiles increase field captures of parasitic wasps. Biocontrol 50:871–880

    Article  CAS  Google Scholar 

  • James DG, Price TS (2004) Field-testing of methyl salicylate for recruitment and retention of beneficial insects in grapes and hops. J Chem Ecol 30:1613–1628

    Article  CAS  PubMed  Google Scholar 

  • Kaplan I (2012) Attracting carnivorous arthropods with plant volatiles: the future of biocontrol or playing with fire? Biol Control 60:77–89

    Article  Google Scholar 

  • Kessler A, Heil M (2011) The multiple faces of indirect defences and their agents of natural selection. Funct Ecol 25:348–357

    Article  Google Scholar 

  • Kohler GR, Stiefel VL, Wallin KF, Ross DW (2008) Parasitoids reared from predators of Hemlock Woolly Adelgid (Hemiptera: Adelgidae), and the Hymenopterous parasitoid community on Western Hemlock in the Pacific Northwest. Environ Entomol 37:1477–1487

    Article  CAS  PubMed  Google Scholar 

  • Kos M, Houshyani B, Overeem AJ, Bouwmeester HJ, Weldegergis BT, van Loon JJA, Dicke M, Vet LEM (2013) Genetic engineering of plant volatile terpenoids: effects on a herbivore, a predator and a parasitoid. Pest Manag Sci 69:302–311

    Article  CAS  PubMed  Google Scholar 

  • Mackauer M, Volkl W (1993) Regulation of aphid populations by aphidiid wasps: does parasitoid foraging behavior or hyperparasitism limit impact? Oecologia 94:339–350

    Article  Google Scholar 

  • Mäntylä E, Klemola T, Haukioja E (2004) Attraction of willow warblers to sawfly-damaged mountain birches: novel function of inducible plant defences? Ecol Lett 7:915–918

    Article  Google Scholar 

  • Mäntylä E, Blande JD, Klemola T (2014) Does application of methyl jasmonate to birch mimic herbivory and attract insectivorous birds in nature? Arthropod Plant Interact 8:143–153

    Article  Google Scholar 

  • Meyhofer R, Klug T (2002) Intraguild predation on the aphid parasitoid Lysiphlebus fabarum (Marshall) (Hymenoptera: Aphidiidae): mortality risks and behavioral decisions made under the threats of predation. Biol Control 25:239–248

    Article  Google Scholar 

  • Müller CB, Brodeur J (2002) Intraguild predation in biological control and conservation biology. Biol Control 25:216–223

    Article  Google Scholar 

  • Nofemela RS (2013) The effect of obligate hyperparasitoids on biological control: differential vulnerability of primary parasitoids to hyperparasitism can mitigate trophic cascades. Biol Control 65:218–224

    Article  Google Scholar 

  • Orre GUS, Wratten SD, Jonsson M, Hale RJ (2010) Effects of an herbivore-induced plant volatile on arthropods from three trophic levels in brassicas. Biol Control 53:62–67

    Article  Google Scholar 

  • Petersen G, Matthiesen C, Francke W, Wyss U (2000) Hyperparasitoid volatiles as possible foraging behaviour determinants in the aphid parasitoid Aphidius uzbekistanicus (Hymenoptera: Aphidiidae). Eur J Entomol 97:545–550

    Article  CAS  Google Scholar 

  • Pineda A, Morales I, Marcos-Garcia MA, Fereres A (2007) Oviposition avoidance of parasitized aphid colonies by the syrphid predator Episyrphus balteatus mediated by different cues. Biol Control 42:274–280

    Article  Google Scholar 

  • Poelman EH (2015) From induced resistance to defence in plant–insect interactions. Entomol Exp Appl 157:11–17

    Article  Google Scholar 

  • Poelman EH, Zheng SJ, Zhang Z, Heemskerk NM, Cortesero A-M, Dicke M (2011) Parasitoid-specific induction of plant responses to parasitized herbivores affects colonization by subsequent herbivores. Proc Natl Acad Sci USA 108:19647–19652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poelman EH, Bruinsma M, Zhu F, Weldegergis BT, Boursault AE, Jongema Y, van Loon JJA, Vet LEM, Harvey JA, Dicke M (2012) Hyperparasitoids use herbivore-induced plant volatiles to locate their parasitoid host. PLoS Biol 10:e1001435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poelman EH, Harvey JA, van Loon JJA, Vet LEM, Dicke M (2013) Variation in herbivore-induced plant volatiles corresponds with spatial heterogeneity in the level of parasitoid competition and parasitoid exposure to hyperparasitism. Funct Ecol 27:1107–1116

    Article  Google Scholar 

  • Powell W, Pickett JA (2003) Manipulation of parasitoids for aphid pest management: progress and prospects. Pest Manag Sci 59:149–155

    Article  CAS  PubMed  Google Scholar 

  • Price PW, Bouton CE, Gross P, Mcpheron BA, Thompson JN, Weis AE (1980) Interactions among 3 trophic levels—influence of plants on interactions between insect herbivores and natural enemies. Annu Rev Ecol Syst 11:41–65

    Article  Google Scholar 

  • Rodriguez-Saona C, Kaplan I, Braasch J, Chinnasamy D, Williams L (2011) Field responses of predaceous arthropods to methyl salicylate: a meta-analysis and case study in cranberries. Biol Control 59:294–303

    Article  CAS  Google Scholar 

  • Rosenheim JA (2005) Intraguild predation of Orius tristicolor by Geocoris spp. and the paradox of irruptive spider mite dynamics in California cotton. Biol Control 32:172–179

    Article  Google Scholar 

  • Rosenheim JA, Kaya HK, Ehler LE, Marois JJ, Jaffee BA (1995) Intraguild predation among biological-control agents: theory and evidence. Biol Control 5:303–335

    Article  Google Scholar 

  • Rotheray GE (1981) Host searching and oviposition behavior of some parasitoids of Aphidophagous syrphidae. Ecol Entomol 6:79–87

    Article  Google Scholar 

  • Schooler SS, De Barro P, Ives AR (2011) The potential for hyperparasitism to compromise biological control: why don’t hyperparasitoids drive their primary parasitoid hosts extinct? Biol Control 58:167–173

    Article  Google Scholar 

  • Schuman MC, Barthel K, Baldwin IT (2012) Herbivory-induced volatiles function as defenses increasing fitness of the native plant Nicotiana attenuata in nature. Elife 1:e00007

    Article  PubMed  PubMed Central  Google Scholar 

  • Singh R, Srivastava PN (1987a) Factors associated with host location by Alloxysta pleuralis (Cameron), a hyperparasitoid of Trioxys indicus Subba Rao and Sharma (Alloxystidae: Hymenoptera/Aphidiidae: Hymenoptera). Entomon 12:325–328

    Google Scholar 

  • Singh R, Srivastava PN (1987b) Potential host-habitat location by Alloxysta pleuralis (Cameron) (Alloxystidae: Hymenoptera). Z Angew Zool 74:337–341

    Google Scholar 

  • Smallegange RC, van Loon JJA, Blatt SE, Harvey JA, Dicke M (2008) Parasitoid load affects plant fitness in a tritrophic system. Entomol Exp Appl 128:172–183

    Article  Google Scholar 

  • Steidle JLM, van Loon JJA (2002) Chemoecology of parasitoid and predator oviposition behaviour. In: Hilker M, Meiners T (eds) Chemoecology of insect eggs and egg deposition. Blackwell, Berlin, pp 291–317

    Google Scholar 

  • Stiling P (1993) Why do natural enemies fail in classical biological control programs? Am Entomol 39:31–37

    Article  Google Scholar 

  • Stork WFJ, Weinhold A, Baldwin IT (2011) Trichomes as dangerous lollipops: do lizards also use caterpillar body and frass odor to optimize their foraging? Plant Signal Behav 6:1893–1896

    Article  PubMed  PubMed Central  Google Scholar 

  • Sullivan DJ (1987) Insect hyperparasitism. Annu Rev Entomol 32:49–70

    Article  Google Scholar 

  • Sullivan DJ, Volkl W (1999) Hyperparasitism: multitrophic ecology and behavior. Annu Rev Entomol 44:291–315

    Article  CAS  PubMed  Google Scholar 

  • Takabayashi J, Sabelis MW, Janssen A, Shiojiri K, van Wijk M (2006) Can plants betray the presence of multiple herbivore species to predators and parasitoids? The role of learning in phytochemical information networks. Ecol Res 21:3–8

    Article  Google Scholar 

  • van Lenteren JC (2012) The state of commercial augmentative biological control: plenty of natural enemies, but a frustrating lack of uptake. Biocontrol 57:1–20

    Article  Google Scholar 

  • van Loon JJA, de Boer JG, Dicke M (2000) Parasitoid-plant mutualism: parasitoid attack of herbivore increases plant reproduction. Entomol Exp Appl 97:219–227

    Article  Google Scholar 

  • Vance-Chalcraft HD, Rosenheim JA, Vonesh JR, Osenberg CW, Sih A (2007) The influence of intraguild predation on prey suppression and prey release: a meta-analysis. Ecology 88:2689–2696

    Article  PubMed  Google Scholar 

  • Verheggen FJ, Arnaud L, Bartram S, Gohy M, Haubruge E (2008) Aphid and plant volatiles induce oviposition in an aphidophagous hoverfly. J Chem Ecol 34:301–307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vet LEM, Dicke M (1992) Ecology of infochemical use by natural enemies in a tritrophic context. Annu Rev Entomol 37:141–172

    Article  Google Scholar 

  • Volkl W, Sullivan DJ (2000) Foraging behaviour, host plant and host location in the aphid hyperparasitoid Euneura augarus. Entomol Exp Appl 97:47–56

    Article  Google Scholar 

  • Vos M, Hemerik L (2003) Linking foraging behavior to lifetime reproductive success for an insect parasitoid: adaptation to host distributions. Behav Ecol 14:236–245

    Article  Google Scholar 

  • Zhu JW, Park KC (2005) Methyl salicylate, a soybean aphid-induced plant volatile attractive to the predator Coccinella septempunctata. J Chem Ecol 31:1733–1746

    Article  CAS  PubMed  Google Scholar 

  • Zhu F, Weldegergis BT, Lhie B, Harvey JA, Dicke M, Poelman EH (2014) Body odors of parasitized caterpillars give away the presence of parasitoid larvae to their primary hyperparasitoid enemies. J Chem Ecol 40:986–995

    Article  CAS  PubMed  Google Scholar 

  • Zhu F, Broekgaarden C, Weldegergis BT, Harvey JA, Vosman B, Dicke M, Poelman EH (2015) Parasitism overrides herbivore identity allowing hyperparasitoids to locate their parasitoid host by using herbivore-induced plant volatiles. Mol Ecol 24:2886–2899

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erik H. Poelman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Poelman, E.H., Kos, M. (2016). Complexity of Plant Volatile-Mediated Interactions Beyond the Third Trophic Level. In: Blande, J., Glinwood, R. (eds) Deciphering Chemical Language of Plant Communication. Signaling and Communication in Plants. Springer, Cham. https://doi.org/10.1007/978-3-319-33498-1_9

Download citation

Publish with us

Policies and ethics