Skip to main content

Imprecise Computation Task Mapping on Multi-Core Wireless Sensor Networks

  • Living reference work entry
  • First Online:
  • 67 Accesses

Synonyms

Imprecise computations; Multicore architectures; Task mapping

Definitions

Imprecise Computation (IC) model (Liu et al. 1994) considers that a task can be logically decomposed into a mandatory subtask and an optional subtask. The mandatory subtask should be completed before the task’s deadline in order to generate the minimum acceptable Quality of Service (QoS). The optional subtask is to be executed after the mandatory subtask, and still before the deadline, if there are resources in the system that are free to execute the optional subtask. The longer the optional subtask is executed, the better is the QoS of the obtained result.

Historical Background

Wireless Sensor Networks (WSNs) consist of a large number of wireless sensor nodes that have the capability to take various measurements of their environment. These measurements could be temperature, sound, vibration, pressure, motion, etc. Energy efficiency and real-time executionare critical and challenging issues for the...

This is a preview of subscription content, log in via an institution.

References

  • Aydin H, Melhem R, Mosse D (2000) Tolerating faults while maximizing reward. In: IEEE Euromicro conference on real-time systems (EMRTS), IEEE pp 219–226

    Google Scholar 

  • Aydin H, Melhem R, Mosse D, Mejia-Alvarez P (2001) Optimal reward-based scheduling for periodic real-time tasks. IEEE Trans Comput 50(2):111–130

    Article  MathSciNet  Google Scholar 

  • Chen G, Huang K, Knoll A (2014) Energy optimization for real-time multiprocessor system-on-chip with optimal DVFS and DPM combination. ACM Trans Embed Comput Syst 13(3):1–21

    Google Scholar 

  • Cortes LA, Eles P, Peng Z (2006) Quasi-static assignment of voltages and optional cycles in imprecise computation systems with energy considerations. IEEE Trans Very Large Scale Integr Syst 14(10):1117–1129

    Article  Google Scholar 

  • Dhasian HR, Balasubramanian P (2013) Survey of data aggregation techniques using soft computing in wireless sensor networks. IET Inf Secur 7(4):336–342

    Article  Google Scholar 

  • Esch J (2013) A survey on topology control in wireless sensor networks: taxonomy, comparative study, and open issues. Proc IEEE 101(12):2534–2537

    Article  Google Scholar 

  • Isabel M, Javier O, Rodrigo S, Paula Z (2017) Energy-aware scheduling mandatory/optional tasks in multicore real-time systems. Int Trans Oper Res 24(12):173–198

    MathSciNet  MATH  Google Scholar 

  • Kong F, Yi W, Deng Q (2011) Energy-efficient scheduling of real-time tasks on cluster-based multicores. In: ACM/IEEE design, automation test in Europe (DATE), IEEE pp 1–6

    Google Scholar 

  • Lai X, Ji X, Zhou X, Chen L (2018) Energy efficient link-delay aware routing in wireless sensor networks. IEEE Sensors J 18(2):837–848

    Article  Google Scholar 

  • Leung LF, Tsui CY, Ki WH (2003) Simultaneous task allocation, scheduling and voltage assignment for multiple-processors-core systems using mixed integer nonlinear programming. In: IEEE international symposium on circuits and systems (ISCAS), IEEE pp 309–312

    Google Scholar 

  • Li D, Wu J (2015) Minimizing energy consumption for frame-based tasks on heterogeneous multiprocessor platforms. IEEE Trans Parallel Distrib Syst 26(3):810–823

    Article  Google Scholar 

  • Liu JWS, Shih WK, Lin KJ, Bettati R, Chung JY (1994) Imprecise computations. Proc IEEE 82(1):83–94

    Article  Google Scholar 

  • Liu X, Zhou H, Xiang J, Xiong S, Hou KM, de Vaulx C, Wang H, Shen T, Wang Q (2018) Energy and delay optimization of heterogeneous multicore wireless multimedia sensor nodes by adaptive genetic-simulated annealing algorithm. Wirel Commun Mob Comput 2018:1–13

    Google Scholar 

  • Mahmood A, Khan SA, Albalooshi F, Awwad N (2017) Energy-aware real-time task scheduling in multiprocessor systems using a hybrid genetic algorithm. Electronics 6(2):40

    Article  Google Scholar 

  • Mo L, Kritikakou A, Sentieys O (2017) Decomposed task mapping to maximize QoS in energyconstrained real-time multicores. In: IEEE international conference on computer design (ICCD), IEEE pp 493–500

    Google Scholar 

  • Mo L, Cao X, Song Y, Kritikakou A (2018a) Distributed node coordination for real-time energyconstrained control in wireless sensor and actuator networks. IEEE Internet Things, IEEE J:1–12. https://doi.org/10.1109/JIOT.2018.2839030

  • Mo L, Kritikakou A, Sentieys O (2018b) Controllable QoS for imprecise computation tasks on DVFS multicores with time and energy constraints. IEEE J Emerg Sel Topics Circuits, IEEE Syst:1–14. https://doi.org/10.1109/JETCAS.2018.2852005

  • Munir A, Gordon-Ross A, Ranka S (2014) Multi-core embedded wireless sensor networks: architecture and applications. IEEE Trans Parallel Distrib Syst 25(6):1553–1562

    Article  Google Scholar 

  • Silva R, Silva JS, Boavida F (2014) Mobility in wireless sensor networks: a survey and proposal. Comput Commun 52:1–20

    Article  Google Scholar 

  • Tchamgoue GM, Kim KH, Jun YK, Lee WY (2013) Compositional real-time scheduling framework for periodic reward-based task model. J Syst Softw 86(6):1712–1724

    Article  Google Scholar 

  • Wei T, Zhou J, Cao K, Cong P et al (2017) Cost-constrained QoS optimization for approximate computation real-time tasks in heterogeneous MPSoCs. IEEE Trans Comput-Aided Des Integr Circuits Syst 1(1):1–14

    Google Scholar 

  • Xu H, Kong F, Deng Q (2012) Energy minimizing for parallel real-time tasks based on level-packing. In: IEEE international conference on embedded and real-time computing systems and applications (RTCSA), IEEE pp 98–103

    Google Scholar 

  • Yu H, Veeravalli B, Ha Y (2008) Dynamic scheduling of imprecise-computation tasks in maximizing QoS under energy constraints for embedded systems. In: IEEE Asia and South Pacific design automation conference (ASP-DAC), IEEE pp 452–455

    Google Scholar 

  • Yu H, Ha Y, Veeravalli B (2013a) Quality-driven dynamic scheduling for real-time adaptive applications on multiprocessor systems. IEEE Trans Comput, IEEE 62(10):2026–2040

    Article  MathSciNet  Google Scholar 

  • Yu H, Veeravalli B, Ha Y, Luo S (2013b) Dynamic scheduling of imprecise-computation tasks on real-time embedded multiprocessors. In: IEEE international conference on computational science and engineering (CSE), IEEE pp 770–777

    Google Scholar 

  • Zhou J, Yan J, Wei T, Chen M, Hu XS (2017) Energy-adaptive scheduling of imprecise computation tasks for QoS optimization in real-time MPSoC systems. In: ACM/IEEE design, automation test in Europe (DATE), IEEE pp 1402–1407

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Mo .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Mo, L., Kritikakou, A., Sentieys, O. (2019). Imprecise Computation Task Mapping on Multi-Core Wireless Sensor Networks. In: Shen, X., Lin, X., Zhang, K. (eds) Encyclopedia of Wireless Networks. Springer, Cham. https://doi.org/10.1007/978-3-319-32903-1_261-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-32903-1_261-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-32903-1

  • Online ISBN: 978-3-319-32903-1

  • eBook Packages: Springer Reference Computer SciencesReference Module Computer Science and Engineering

Publish with us

Policies and ethics