Skip to main content

The Response of Chloroplast Proteome to Abiotic Stress

  • Chapter
  • First Online:
Drought Stress Tolerance in Plants, Vol 2

Abstract

The chloroplast is a typical plant organelle in plant cells, which is mainly responsible for photosynthesis as well as other essential functions. The chloroplast has gained considerable attention due to its intricate biochemical pathways for indispensable metabolite functions. New technologies, in combination with increasing amounts of plant genome data, have opened up experimental possibilities to identify a more complete set of chloroplast proteins (the chloroplast proteome), both the whole chloroplast and its main subcellular compartments. A great effort has been made to study chloroplast proteome changes under abiotic stresses for better understanding of photosynthesis and identifying the stress-responsive proteins. Abiotic stress is likely to cause a reduction in CO2 fixation and lead to the forming of excess reactive oxygen species (ROS) that impair the functions of chloroplast proteins involved in photosynthesis. In this chapter, we summarize recent significant achievements in research on chloroplast proteome changes under abiotic stress, hoping to provide insights on the intrinsic mechanism of abiotic stress response in plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bruley C, Dupierris V, Salvi D et al (2012) AT_CHLORO: A chloroplast protein database dedicated to sub-plastidial localization. Front Plant Sci 3(4):279–286

    Google Scholar 

  2. Saravanavel R, Ranganathan R, Anantharaman P (2011) Effect of sodium chloride on photosynthetic pigments and photosynthetic characteristics of Avicennia officinalis seedlings. Recent Res Sci Technol 3(4):177–180

    CAS  Google Scholar 

  3. Uberegui E, Hall M, Lorenzo Ó et al (2015) An Arabidopsis soluble chloroplast proteomic analysis reveals the participation of the Executer pathway in response to increased light conditions. J Exp Bot 66(7):2067–2077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ashraf M, Harris PJC (2013) Photosynthesis under stressful environments: An overview. Photosynthetica 51(2):163–190

    Article  CAS  Google Scholar 

  5. Agrawal GK, Bourguignon J, Rolland N et al (2011) Plant organelle proteomics: collaborating for optimal cell function. Mass Spectrom Rev 30(5):772–853

    CAS  PubMed  Google Scholar 

  6. van Wijk KJ, Baginsky S (2011) Plastid proteomics in higher plants: current state and future goals. Plant Physiol 155(4):1578–1588

    Article  PubMed  PubMed Central  Google Scholar 

  7. Leister D (2003) Chloroplast research in the genomic age. Trends Genet 19(1):47–56

    Article  CAS  PubMed  Google Scholar 

  8. Ferro M, Brugière S, Salvi D et al (2010) AT_CHLORO: A comprehensive chloroplast proteome database with subplastidial localization and curated information on envelope proteins. Mol Cell Proteomics 9(6):1063–1084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zybailov B, Rutschow H, Friso G et al (2008) Sorting signals, N-terminal modifications and abundance of the chloroplast proteome. PLoS ONE 3(4):e1994

    Article  PubMed  PubMed Central  Google Scholar 

  10. Lundquist PK, Poliakov A, Bhuiyan NH et al (2012) The functional network of the Arabidopsis plastoglobule proteome based on quantitative proteomics and genomewide coexpression analysis. Plant Physiol 158(3):1172–1192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Sun QZB, Majeran W, Friso G et al (2009) PPDB, the plant proteomics database at cornell. Nucleic Acids Res 37(Database issue): 969–974

    Google Scholar 

  12. Heazlewood JL, Verboom RE, Tonti-Filippini J et al (2007) SUBA: the Arabidopsis Subcellular Database. Nucleic Acids Res 35(suppl 1):213–218

    Article  Google Scholar 

  13. Kleffmann T, Hirschhoffmann M, Gruissem W et al (2006) Plprot: A comprehensive proteome database for different plastid types. Plant Cell Physiol 47(3):432–436

    Article  CAS  PubMed  Google Scholar 

  14. Joshi HJ, Hirsch-Hoffmann M, Baerenfaller K et al (2011) MASCP Gator: an aggregation portal for the visualization of Arabidopsis proteomics data. Plant Physiol 155(1):259–270

    Article  CAS  PubMed  Google Scholar 

  15. Goksoyr J (1967) Evolution of eucaryotic cells. Nature 214(5093):1161

    Article  CAS  PubMed  Google Scholar 

  16. Jarvis P, Soll J (2001) Toc, Tic, and chloroplast protein import. BBA-MOL Cell Res 1541 (s 1–2): 64–79

    Google Scholar 

  17. Rahnama A, Poustini K, Tavakkol-Afshari R et al (2010) Growth and stomatal responses of bread wheat genotypes in tolerance to salt stress. Int J Biol Life Sci 6(4):216–221

    Google Scholar 

  18. Medici LO, Azevedo RA, Canellas LP et al (2007) Stomatal conductance of maize under water and nitrogen deficits. Pesquisa Agropecuária Brasileira 42(4):599–601

    Article  Google Scholar 

  19. Chaves MM, Flexas J, Pinheiro C (2009) Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Ann Bot-London 103(4):551–560

    Article  CAS  Google Scholar 

  20. Kosmala A, Perlikowski D, Pawłowicz I et al (2012) Changes in the chloroplast proteome following water deficit and subsequent watering in a high- and a low-drought-tolerant genotype of Festuca arundinacea. J Exp Bot 63(17):6161–6172

    Article  CAS  PubMed  Google Scholar 

  21. Galvez-Valdivieso G, Mullineaux PM (2010) The role of reactive oxygen species in signalling from chloroplasts to the nucleus. Physiol Plantarum 138(4):430–439

    Article  CAS  Google Scholar 

  22. Rinalducci S, Murgiano L, Zolla L (2008) Redox proteomics: basic principles and future perspectives for the detection of protein oxidation in plants. J Exp Bot 59(14):3781–3801

    Article  CAS  PubMed  Google Scholar 

  23. Caruso G, Cavaliere C, Guarino C et al (2008) Identification of changes in Triticum durum L. Leaf proteome in response to salt stress by two-dimensional electrophoresis and MALDI-TOF mass spectrome try. Anal Bioanal Chem 391(1):381–390

    Article  CAS  PubMed  Google Scholar 

  24. Zörb C, Herbst R, Forreiter C et al (2009) Short-term effects of salt exposure on the maize chloroplast protein pattern. Proteomics 9(17):4209–4220

    Article  PubMed  Google Scholar 

  25. Aghaei K, Ehsanpour AA, Shah AH et al (2009) Proteome analysis of soybean hypocotyl and root under salt stress. Amino Acids 36(1):91–98

    Article  CAS  PubMed  Google Scholar 

  26. Hu X, Wu X, Li C et al (2012) Abscisic acid refines the synthesis of chloroplast proteins in maize (Zea mays) in response to drought and light. PLoS ONE 7(11):488

    Google Scholar 

  27. Kamal AH, Cho K, Choi JS et al (2013) The wheat chloroplastic proteome. J Proteomics 93(19):326–342

    Article  CAS  PubMed  Google Scholar 

  28. Kamal AH, Cho K, Kim DE et al (2012) Changes in physiology and protein abundance in salt-stressed wheat chloroplasts. Mol Biol Rep 39(9):9059–9074

    Article  CAS  PubMed  Google Scholar 

  29. Wang R, Chen S, Deng L et al (2007) Leaf photosynthesis, luorescence response to salinity and the relevance to chloroplast salt compartmentation and anti-oxidative stress in two poplars. Trees-Struct Func 21(5):581–591

    Article  CAS  Google Scholar 

  30. Kamal AH, Cho K, Choi JS et al (2012) Patterns of protein expression in water-stressed wheat chloroplasts. Biol Plant 57(2):305–312

    Article  Google Scholar 

  31. Wang D, Luthe DS (2003) Heat sensitivity in a bentgrass variant. Failure to accumulate a chloroplast heat shock protein isoform implicated in heat tolerance. Plant Physiol 133(1):319–327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kim KH, Alam I, Kim YG et al (2012) Overexpression of a chloroplast-localized small heat shock protein OsHSP26 confers enhanced tolerance against oxidative and heat stresses in tall fescue. Biotechnol Lett 34(2):371–377

    Article  CAS  PubMed  Google Scholar 

  33. Hu X, Yang Y, Gong F et al (2015) Protein sHSP26 improves chloroplast performance under heat stress by interacting with specific chloroplast proteins in maize (Zea mays). J Proteomics 115:81–92

    Article  CAS  PubMed  Google Scholar 

  34. Schafer G, Kardinahl S (2003) Iron superoxide dismutases: structure and function of an archaic enzyme. Biochem Soc T 31(6):1130–1134

    Article  Google Scholar 

  35. Khanna-Chopra R, Jajoo A, Semwal VK (2012) Chloroplasts and mitochondria have multiple heat tolerant isozymes of SOD and APX in leaf and inflorescence in Chenopodium album. Biochem Bioph Res Co 412(4):522–525

    Article  Google Scholar 

  36. Sainz M, Díaz P, Monza J et al (2010) Heat stress results in loss of chloroplast Cu/Zn superoxide diasmutase and increased damage to Photosystem II in combined drought-heat stressed Lotus japonicas. Physiol Plant 140(1):46–56

    Article  CAS  PubMed  Google Scholar 

  37. Ruelland E, Vaultier MN, Zachowski A et al (2009) Cold signalling and cold acclimation in plants. Adv Bot Res 49:35–150

    Article  CAS  Google Scholar 

  38. Goulas E, Schubert M, Kieselbach T et al (2006) The chloroplast lumen and stromal proteomes of Arabidopsis thaliana show differential sensitivity to short-and long-term exposure to low temperature. Plant J 47(5):720–734

    Article  CAS  PubMed  Google Scholar 

  39. Reiland S, Messerli G, Baerenfaller K et al (2009) Large-scale Arabidopsis phosphoproteome profiling reveals novel chloroplast kinase substrates and phosphorylation networks. Plant Physiol 150(2):889–903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kupsch C, Ruwe H, Gusewski S et al (2012) Arabidopsis chloroplast RNA binding proteins CP31A and CP29A associate with large transcript pools and confer cold stress tolerance by influencing multiple chloroplast RNA processing steps. Plant Cell 24(10):4266–4280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kirchhoff H (2014) Structural changes of the thylakoid membrane network induced by high light stress in plant chloroplasts. Philos T Roy Soc 369(1640):1925–1953

    Article  Google Scholar 

  42. Lintala M, Allahverdiyeva Y, Kangasjärvi S (2009) Comparative analysis of leaf-type ferredoxin-NADP+ oxidoreductase isoforms in Arabidopsis thaliana. Plant J 57(6):1103–1115

    Article  CAS  PubMed  Google Scholar 

  43. Buchert F, Forreiter C (2010) Singlet oxygen inhibits ATPase and proton translocation activity of the thylakoid ATP synthase CF1CFo. FEBS Lett 584(1):147–152

    Article  CAS  PubMed  Google Scholar 

  44. Buchert F, Schober Y (2012) Römpp a reactive oxygen species affect ATP hydrolysis by targeting a highly conserved amino acid cluster in the thylakoid ATP synthase γ subunit. BBA-Bioenergetics 1817(1):2038–2048

    Article  CAS  PubMed  Google Scholar 

  45. Kohzuma K, Dal Bosco C, Meurer J (2013) Light- and metabolism-related regulation of the chloroplast ATP synthase has distinct mechanisms and functions. J Biol Chem 288(18):13156–13163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Giacomelli L, Rudella A, van Wijk KJ (2006) High light response of the thylakoid proteome in Arabidopsis wild type and the ascorbate-deficient mutant vtc2-2 A comparative proteomics study. Plant Physiol 141(2):685–701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Dühring U, Irrgang KD, Lunser K et al (2006) Analysis of photosynthetic complexes from a cyanobacterial ycf37 mutant. BBA-Bioenergetics 1757(1):3–11

    Article  PubMed  Google Scholar 

  48. Ranieri A, Giuntini D, Ferraro F et al (2001) Chronic ozone fumigation induces alterations in thylakoid functionality and composition in two poplar clones. Plant Physiol Bioch 39(11):999–1008

    Article  CAS  Google Scholar 

  49. Ahsan N, Nanjo Y, Sawada H et al (2010) Ozone stress-induced proteomic changes in leaf total soluble and chloroplast proteins of soybean reveal that carbon allocation is involved in adaptation in the early developmental stage. Proteomics 10(14):2605–2619

    Article  CAS  PubMed  Google Scholar 

  50. Bohler S, Bagard M, Oufir M et al (2007) A DIGE analysis of developing poplar leaves subjected to ozone reveals major changes in carbon metabolism. Proteomics 7(10):1584–1599

    Article  CAS  PubMed  Google Scholar 

  51. Bohler S, Sergeant K, Hoffmann L et al (2011) A difference gel electrophoresis study on thylakoids isolated from poplar leaves reveals a negative impact of ozone exposure on membrane proteins. J Proteome Res 10(7):3003–3011

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ning, F., Wang, W. (2016). The Response of Chloroplast Proteome to Abiotic Stress. In: Hossain, M., Wani, S., Bhattacharjee, S., Burritt, D., Tran, LS. (eds) Drought Stress Tolerance in Plants, Vol 2. Springer, Cham. https://doi.org/10.1007/978-3-319-32423-4_9

Download citation

Publish with us

Policies and ethics