Skip to main content

Inertial Microfluidics: Mechanisms and Applications

  • Chapter
  • First Online:
Advanced Mechatronics and MEMS Devices II

Part of the book series: Microsystems and Nanosystems ((MICRONANO))

Abstract

In microfluidics, the typical sample volume is in the order of nL, which is incompatible with the common biosample volume in biochemistry and clinical diagnostics (usually ranging from 1 μL to approximately 1 mL). The recently emerged inertial microfluidic technology offers the possibility to process large volume (∼mL) of biosample by well-defined micro-structures. In contrast to conventional microfluidic technologies, where fluid inertia is negligible and flow remains almost within Stokes flow region with very low Reynolds number \( Re\ll 1 \) (\( Re={\rho}_{\mathrm{f}}{\overline{U}}_{\mathrm{f}}H/\mu \), where ρ f, Ū f and μ are fluid density, average velocity and dynamic viscosity, respectively, and H is channel hydraulic diameter), inertial microfluidic devices work within an intermediate Reynolds number range (∼1 < Re < ∼100) between Stokes and turbulent regimes. In this intermediate range, both inertia and fluid viscosity are finite, and several intriguing effects appear and form the basis of inertial microfluidics, including (i) inertial migration and (ii) secondary flow. Due to the superior features of high-throughput, simplicity, precise manipulation and low-cost, inertial microfluidics has attracted significant attention from the microfluidic community. Meanwhile, a number of channel designs that focus, concentrate and separate particles and fluids have been explored and demonstrated. In this chapter, we discuss this fascinating technology from three crucial aspects: (1) fundamental mechanism, (2) microchannel designs and (3) applications. From this chapter, we hope that readers can have a clear understanding on the concept of inertial microfluidics, its working mechanism and potential applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

a :

Particle diameter

AR:

Aspect ratio of channel (=h/w)

D max :

Rotational diameter of non-spherical particle

De :

Dean number

f drag :

Viscous drag coefficient

f L :

Coefficient of net inertial lift force

F D :

Secondary flow drag or Dean drag

F drag :

Viscous drag force

F L :

Net inertial lift force

F LR :

Magnus force or rotation-induced lift force

F LS :

Shear gradient lift force

F LW :

Wall lift force

F S :

Saffman force or slip-shear-induced lift force

h :

Channel height

H :

Channel hydraulic diameter

L min :

Minimum channel length for particles to migrate to the inertial equilibrium position

R :

Radius of curvature of curving channel

Re :

Reynolds number

Re′:

Particle Reynolds number based on relative velocity of fluid and particle

R f :

Ratio of inertial lift force to Dean drag

R p :

Particle Reynolds number based on the size ratio of particle to channel

S :

Cross-sectional area of particle

U D :

Secondary flow velocity or Dean flow velocity

U f :

Fluid velocity

U p :

Particle velocity

v t :

Relative velocity of fluid to particle

V t :

Relative velocity of particle to fluid (=−v t )

w :

Channel width

x :

Lateral position of particle

γ :

Fluid shear rate

μ :

Dynamic viscosity

ρ f :

Fluid density

υ :

Kinetic viscosity

Ω p :

Angular velocity of particle

References

  1. Segre G (1961) Radial particle displacements in Poiseuille flow of suspensions. Nature 189:209–210

    Article  Google Scholar 

  2. Segre G, Silberberg A (1962) Behaviour of macroscopic rigid spheres in Poiseuille flow. Part 2. Experimental results and interpretation. J Fluid Mech 14:136–157

    Article  MATH  Google Scholar 

  3. McLaughlin JB (1993) The lift on a small sphere in wall-bounded linear shear flows. J Fluid Mech 246:249–265

    Article  MATH  Google Scholar 

  4. Joseph DD, Ocando D (2002) Slip velocity and lift. J Fluid Mech 454:263–286

    Article  MathSciNet  MATH  Google Scholar 

  5. Cherukat P, McLaughlin JB (1994) The inertial lift on a rigid sphere in a linear shear flow field near a flat wall. J Fluid Mech 263:1–18

    Article  MATH  Google Scholar 

  6. Asmolov ES (1999) The inertial lift on a spherical particle in a plane Poiseuille flow at large channel Reynolds number. J Fluid Mech 381:63–87

    Article  MATH  Google Scholar 

  7. Chun B, Ladd A (2006) Inertial migration of neutrally buoyant particles in a square duct: an investigation of multiple equilibrium positions. Phys Fluids 18:031704

    Article  Google Scholar 

  8. Tanaka T, Ishikawa T, Numayama-Tsuruta K, Imai Y, Ueno H, Yoshimoto T et al (2012) Inertial migration of cancer cells in blood flow in microchannels. Biomed Microdevices 14:25–33

    Article  Google Scholar 

  9. Yang BH, Wang J, Joseph DD, Hu HH, Pan T-W, Glowinski R (2005) Migration of a sphere in tube flow. J Fluid Mech 540:109–131

    Article  MATH  Google Scholar 

  10. Hood K, Lee S, Roper M (2015) Inertial migration of a rigid sphere in three-dimensional Poiseuille flow. J Fluid Mech 765:452–479

    Article  MathSciNet  MATH  Google Scholar 

  11. Zhou J, Giridhar PV, Kasper S, Papautsky I (2013) Modulation of aspect ratio for complete separation in an inertial microfluidic channel. Lab Chip 13:1919–1929

    Article  Google Scholar 

  12. Zhou J, Papautsky I (2013) Fundamentals of inertial focusing in microchannels. Lab Chip 13:1121–1132

    Article  Google Scholar 

  13. Bhagat AAS, Kuntaegowdanahalli SS, Papautsky I (2008) Enhanced particle filtration in straight microchannels using shear-modulated inertial migration. Phys Fluids 20:101702

    Article  MATH  Google Scholar 

  14. Ciftlik AT, Ettori M, Gijs MA (2013) High throughput-per-footprint inertial focusing. Small 9:2764–2773

    Article  Google Scholar 

  15. Hur SC, Choi S-E, Kwon S, Di Carlo D (2011) Inertial focusing of non-spherical microparticles. Appl Phys Lett 99:044101

    Article  Google Scholar 

  16. Hur SC, Henderson-Maclennan NK, McCabe ER, Di Carlo D (2011) Deformability-based cell classification and enrichment using inertial microfluidics. Lab Chip 11:912–920

    Article  Google Scholar 

  17. Ho BP, Leal LG (1974) Inertial migration of rigid spheres in two-dimensional unidirectional flows. J Fluid Mech 65:365–400

    Article  MATH  Google Scholar 

  18. Amini H, Lee W, Di Carlo D (2014) Inertial microfluidic physics. Lab Chip 14:2739–2761

    Article  Google Scholar 

  19. Di Carlo D, Irimia D, Tompkins RG, Toner M (2007) Continuous inertial focusing, ordering, and separation of particles in microchannels. Proc Natl Acad Sci U S A 104:18892–18897

    Article  Google Scholar 

  20. Di Carlo D (2009) Inertial microfluidics. Lab Chip 9:3038–3046

    Article  Google Scholar 

  21. Wu Z, Willing B, Bjerketorp J, Jansson JK, Hjort K (2009) Soft inertial microfluidics for high throughput separation of bacteria from human blood cells. Lab Chip 9:1193–1199

    Article  Google Scholar 

  22. Bhagat AAS, Kuntaegowdanahalli SS, Papautsky I (2008) Continuous particle separation in spiral microchannels using dean flows and differential migration. Lab Chip 8:1906–1914

    Article  Google Scholar 

  23. Kuntaegowdanahalli SS, Bhagat AAS, Kumar G, Papautsky I (2009) Inertial microfluidics for continuous particle separation in spiral microchannels. Lab Chip 9:2973–2980

    Article  Google Scholar 

  24. Zhang J, Li W, Li M, Alici G, Nguyen N-T (2013) Particle inertial focusing and its mechanism in a serpentine microchannel. Microfluid Nanofluid 17:305–316

    Article  Google Scholar 

  25. Lim DSW, Shelby JP, Kuo JS, Chiu DT (2003) Dynamic formation of ring-shaped patterns of colloidal particles in microfluidic systems. Appl Phys Lett 83:1145–1147

    Article  Google Scholar 

  26. Mach AJ, Kim JH, Arshi A, Hur SC, Di Carlo D (2011) Automated cellular sample preparation using a Centrifuge-on-a-Chip. Lab Chip 11:2827–2834

    Article  Google Scholar 

  27. Zhang J, Yan S, Alici G, Nguyen N-T, Di Carlo D, Li W (2014) Real-time control of inertial focusing in microfluidics using dielectrophoresis (DEP). RSC Adv 4:62076–62085

    Article  Google Scholar 

  28. Russom A, Gupta AK, Nagrath S, Di Carlo D, Edd JF, Toner M (2009) Differential inertial focusing of particles in curved low-aspect-ratio microchannels. New J Phys 11:075025

    Article  Google Scholar 

  29. Berger S, Talbot L, Yao L (1983) Flow in curved pipes. Annu Rev Fluid Mech 15:461–512

    Article  MATH  Google Scholar 

  30. Lee MG, Choi S, Park JK (2009) Rapid laminating mixer using a contraction-expansion array microchannel. Appl Phys Lett 95:051902

    Article  Google Scholar 

  31. Zhang J, Li M, Li W, Alici G (2013) Inertial focusing in a straight channel with asymmetrical expansion–contraction cavity arrays using two secondary flows. J Micromech Microeng 23:085023

    Article  Google Scholar 

  32. Amini H, Sollier E, Masaeli M, Xie Y, Ganapathysubramanian B, Stone HA et al (2013) Engineering fluid flow using sequenced microstructures. Nat Commun 4:1826

    Article  Google Scholar 

  33. Çetin B, Li D (2011) Dielectrophoresis in microfluidics technology. Electrophoresis 32: 2410–2427

    Article  Google Scholar 

  34. Li M, Li S, Li W, Wen W, Alici G (2013) Continuous manipulation and separation of particles using combined obstacle- and curvature-induced direct current dielectrophoresis. Electrophoresis 34:952–960

    Article  Google Scholar 

  35. Forbes TP, Forry SP (2012) Microfluidic magnetophoretic separations of immunomagnetically labeled rare mammalian cells. Lab Chip 12:1471–1479

    Article  Google Scholar 

  36. Shen F, Hwang H, Hahn YK, Park JK (2012) Label-free cell separation using a tunable magnetophoretic repulsion force. Anal Chem 84:3075–3081

    Article  Google Scholar 

  37. Li S, Ding X, Guo F, Chen Y, Lapsley MI, Lin S-CS et al (2013) An on-chip, multichannel droplet sorter using standing surface acoustic waves (SSAW). Anal Chem 85:5468–5474

    Article  Google Scholar 

  38. Destgeer G, Lee KH, Jung JH, Alazzam A, Sung HJ (2013) Continuous separation of particles in a PDMS microfluidic channel via travelling surface acoustic waves (TSAW). Lab Chip 13:4210–4216

    Article  Google Scholar 

  39. MacDonald M, Spalding G, Dholakia K (2003) Microfluidic sorting in an optical lattice. Nature 426:421–424

    Article  Google Scholar 

  40. Jung JH, Lee KH, Lee KS, Ha BH, Oh YS, Sung HJ (2014) Optical separation of droplets on a microfluidic platform. Microfluid Nanofluid 16:635–644

    Article  Google Scholar 

  41. Zhang J, Yan S, Sluyter R, Li W, Alici G, Nguyen N-T (2014) Inertial particle separation by differential equilibrium positions in a symmetrical serpentine micro-channel. Sci Rep 4: Art No. 4527

    Google Scholar 

  42. Michaelides E (2006) Particles, bubbles & drops: their motion, heat and mass transfer. World Scientific, Singapore

    Book  Google Scholar 

  43. Saffman PG (1965) The lift on a small sphere in a slow shear flow. J Fluid Mech 22:385–400

    Article  MATH  Google Scholar 

  44. Martel JM, Toner M (2014) Inertial focusing in microfluidics. Annu Rev Biomed Eng 16:371–396

    Article  Google Scholar 

  45. Di Carlo D, Edd JF, Humphry KJ, Stone HA, Toner M (2009) Particle segregation and dynamics in confined flows. Phys Rev Lett 102:94503

    Article  Google Scholar 

  46. Richardson JF, Coulson JM, Harker J, Backhurst J (2002) Chemical engineering: particle technology and separation processes, vol 2. Butterworth-Heinemann, Oxford

    Google Scholar 

  47. Rubinow S, Keller JB (1961) The transverse force on a spinning sphere moving in a viscous fluid. J Fluid Mech 11:447–459

    Article  MathSciNet  MATH  Google Scholar 

  48. Matas J, Morris J, Guazzelli E (2004) Lateral forces on a sphere. Oil Gas Sci Technol 59: 59–70

    Article  MATH  Google Scholar 

  49. Kim YW, Yoo JY (2009) Axisymmetric flow focusing of particles in a single microchannel. Lab Chip 9:1043–1045

    Article  Google Scholar 

  50. Vasseur P, Cox RG (1977) The lateral migration of spherical particles sedimenting in a stagnant bounded fluid. J Fluid Mech 80:561–591

    Article  MATH  Google Scholar 

  51. Feng J, Hu HH, Joseph DD (1994) Direct simulation of initial value problems for the motion of solid bodies in a Newtonian fluid. Part 2. Couette and Poiseuille flows. J Fluid Mech 277:271–301

    Article  MATH  Google Scholar 

  52. Bhagat AAS, Kuntaegowdanahalli SS, Papautsky I (2009) Inertial microfluidics for continuous particle filtration and extraction. Microfluid Nanofluid 7:217–226

    Article  Google Scholar 

  53. Guan G, Wu L, Bhagat AA, Li Z, Chen PC, Chao S et al (2013) Spiral microchannel with rectangular and trapezoidal cross-sections for size based particle separation. Sci Rep 3: Art No. 1475

    Google Scholar 

  54. Squires TM, Quake SR (2005) Microfluidics: fluid physics at the nanoliter scale. Rev Mod Phys 77:977

    Article  Google Scholar 

  55. Bhagat AAS, Kuntaegowdanahalli SS, Kaval N, Seliskar CJ, Papautsky I (2010) Inertial microfluidics for sheath-less high-throughput flow cytometry. Biomed Microdevices 12: 187–195

    Article  Google Scholar 

  56. Kemna EW, Schoeman RM, Wolbers F, Vermes I, Weitz DA, van den Berg A (2012) High-yield cell ordering and deterministic cell-in-droplet encapsulation using Dean flow in a curved microchannel. Lab Chip 12:2881–2887

    Article  Google Scholar 

  57. Masaeli M, Sollier E, Amini H, Mao W, Camacho K, Doshi N et al (2012) Continuous inertial focusing and separation of particles by shape. Phys Rev X 2:031017

    Google Scholar 

  58. Yang S, Kim JY, Lee SJ, Lee SS, Kim JM (2011) Sheathless elasto-inertial particle focusing and continuous separation in a straight rectangular microchannel. Lab Chip 11:266–273

    Article  Google Scholar 

  59. Seo KW, Kang YJ, Lee SJ (2014) Lateral migration and focusing of microspheres in a microchannel flow of viscoelastic fluids. Phys Fluids 26:063301

    Article  Google Scholar 

  60. Lim EJ, Ober TJ, Edd JF, Desai SP, Neal D, Bong KW et al (2014) Inertio-elastic focusing of bioparticles in microchannels at high throughput. Nat Commun 5: Art No. 4120

    Google Scholar 

  61. Kang K, Lee SS, Hyun K, Lee SJ, Kim JM (2013) DNA-based highly tunable particle focuser. Nat Commun 4: Art No. 2567

    Google Scholar 

  62. D’Avino G, Romeo G, Villone MM, Greco F, Netti PA, Maffettone PL (2012) Single line particle focusing induced by viscoelasticity of the suspending liquid: theory, experiments and simulations to design a micropipe flow-focuser. Lab Chip 12:1638–1645

    Article  Google Scholar 

  63. Del Giudice F, Romeo G, D’Avino G, Greco F, Netti PA, Maffettone PL (2013) Particle alignment in a viscoelastic liquid flowing in a square-shaped microchannel. Lab Chip 13:4263–4271

    Article  Google Scholar 

  64. Amini H, Sollier E, Weaver WM, Di Carlo D (2012) Intrinsic particle-induced lateral transport in microchannels. Proc Natl Acad Sci U S A 109:11593–11598

    Article  Google Scholar 

  65. Lee W, Amini H, Stone HA, Di Carlo D (2010) Dynamic self-assembly and control of microfluidic particle crystals. Proc Natl Acad Sci U S A 107:22413–22418

    Article  Google Scholar 

  66. Liu C, Hu G, Jiang X, Sun J (2015) Inertial focusing of spherical particles in rectangular microchannels over a wide range of Reynolds numbers. Lab Chip 15:1168–1177

    Article  Google Scholar 

  67. Matas J-P, Morris JF, Guazzelli É (2004) Inertial migration of rigid spherical particles in Poiseuille flow. J Fluid Mech 515:171–195

    Article  MATH  Google Scholar 

  68. Choi Y-S, Seo K-W, Lee S-J (2011) Lateral and cross-lateral focusing of spherical particles in a square microchannel. Lab Chip 11:460–465

    Article  Google Scholar 

  69. Lee MG, Choi S, Park JK (2011) Inertial separation in a contraction–expansion array microchannel. J Chromatogr A 1218:4138–4143

    Article  Google Scholar 

  70. Chung AJ, Gossett DR, Di Carlo D (2013) Three dimensional, sheathless, and high-throughput microparticle inertial focusing through geometry-induced secondary flows. Small 9:685–690

    Article  Google Scholar 

  71. Hur SC, Brinckerhoff TZ, Walthers CM, Dunn JC, Di Carlo D (2012) Label-free enrichment of adrenal cortical progenitor cells using inertial microfluidics. PLoS One 7:e46550

    Article  Google Scholar 

  72. Mach AJ, Di Carlo D (2010) Continuous scalable blood filtration device using inertial microfluidics. Biotechnol Bioeng 107:302–311

    Article  Google Scholar 

  73. Sun J, Li M, Liu C, Zhang Y, Liu D, Liu W et al (2012) Double spiral microchannel for label-free tumor cell separation and enrichment. Lab Chip 12:3952–3960

    Article  Google Scholar 

  74. Sun J, Liu C, Li M, Wang J, Xianyu Y, Hu G et al (2013) Size-based hydrodynamic rare tumor cell separation in curved microfluidic channels. Biomicrofluidics 7:011802

    Article  Google Scholar 

  75. Warkiani ME, Guan G, Luan KB, Lee WC, Bhagat AAS, Chaudhuri PK et al (2014) Slanted spiral microfluidics for the ultra-fast, label-free isolation of circulating tumor cells. Lab Chip 14:128–137

    Article  Google Scholar 

  76. Wu L, Guan G, Hou HW, Bhagat AAS, Han J (2012) Separation of leukocytes from blood using spiral channel with trapezoid cross-section. Anal Chem 84:9324–9331

    Article  Google Scholar 

  77. Lee WC, Bhagat AAS, Huang S, Van Vliet KJ, Han J, Lim CT (2011) High-throughput cell cycle synchronization using inertial forces in spiral microchannels. Lab Chip 11:1359–1367

    Article  Google Scholar 

  78. Sheng W, Chen T, Kamath R, Xiong X, Tan W, Fan ZH (2012) Aptamer-enabled efficient isolation of cancer cells from whole blood using a microfluidic device. Anal Chem 84:4199–4206

    Article  Google Scholar 

  79. Hou HW, Warkiani ME, Khoo BL, Li ZR, Soo RA, Tan DS-W et al (2013) Isolation and retrieval of circulating tumor cells using centrifugal forces. Sci Rep 3: Art No. 1259

    Google Scholar 

  80. Lee MG, Choi S, Park JK (2009) Three-dimensional hydrodynamic focusing with a single sheath flow in a single-layer microfluidic device. Lab Chip 9:3155–3160

    Article  Google Scholar 

  81. Shelby JP, Lim DS, Kuo JS, Chiu DT (2003) Microfluidic systems: high radial acceleration in microvortices. Nature 425:38

    Article  Google Scholar 

  82. Hur SC, Mach AJ, Di Carlo D (2011) High-throughput size-based rare cell enrichment using microscale vortices. Biomicrofluidics 5:022206

    Article  Google Scholar 

  83. Che J, Mach AJ, Go DE, Talati I, Ying Y, Rao J et al (2013) Microfluidic purification and concentration of malignant pleural effusions for improved molecular and cytomorphological diagnostics. PLoS One 8:e78194

    Article  Google Scholar 

  84. Sollier E, Go DE, Che J, Gossett DR, O’Byrne S, Weaver WM et al (2014) Size-selective collection of circulating tumor cells using Vortex technology. Lab Chip 14:63–77

    Article  Google Scholar 

  85. Nunes JK, Wu CY, Amini H, Owsley K, Di Carlo D, Stone HA (2014) Fabricating shaped microfibers with inertial microfluidics. Adv Mater 26:3712–3717

    Article  Google Scholar 

  86. Sollier E, Amini H, Go D, Sandoz P, Owsley K, Di Carlo D (2015) Inertial microfluidic programming of microparticle-laden flows for solution transfer around cells and particles. Microfluid Nanofluid 19:53–65

    Article  Google Scholar 

  87. Chung AJ, Pulido D, Oka JC, Amini H, Masaeli M, Di Carlo D (2013) Microstructure-induced helical vortices allow single-stream and long-term inertial focusing. Lab Chip 13:2942–2949

    Article  Google Scholar 

  88. Zhang J, Yan S, Li W, Alici G, Nguyen N-T (2014) High throughput extraction of plasma using a secondary flow-aided inertial microfluidic device. RSC Adv 4:33149–33159

    Article  Google Scholar 

  89. Mao X, Lin S-CS, Dong C, Huang TJ (2009) Single-layer planar on-chip flow cytometer using microfluidic drifting based three-dimensional (3D) hydrodynamic focusing. Lab Chip 9:1583–1589

    Article  Google Scholar 

  90. Goda K, Ayazi A, Gossett DR, Sadasivam J, Lonappan CK, Sollier E et al (2012) High-throughput single-microparticle imaging flow analyzer. Proc Natl Acad Sci U S A 109:11630–11635

    Article  Google Scholar 

  91. Oakey J, Applegate RW Jr, Arellano E, Carlo DD, Graves SW, Toner M (2010) Particle focusing in staged inertial microfluidic devices for flow cytometry. Anal Chem 82:3862–3867

    Article  Google Scholar 

  92. Hur SC, Tse HTK, Di Carlo D (2010) Sheathless inertial cell ordering for extreme throughput flow cytometry. Lab Chip 10:274–280

    Article  Google Scholar 

  93. Ozkumur E, Shah AM, Ciciliano JC, Emmink BL, Miyamoto DT, Brachtel E et al (2013) Inertial focusing for tumor antigen–dependent and–independent sorting of rare circulating tumor cells. Sci Transl Med 5: 179ra47

    Google Scholar 

  94. Gawad S, Valero A, Braschler T, Holmes D, Renaud P (2012) On-chip flow cytometry. In: Encyclopedia of nanotechnology. Springer, pp 1913–1923

    Google Scholar 

  95. Chen Y, Chung AJ, Wu TH, Teitell MA, Di Carlo D, Chiou PY (2014) Pulsed laser activated cell sorting with three dimensional sheathless inertial focusing. Small 10:1746–1751

    Article  Google Scholar 

  96. Gossett DR, Weaver WM, Mach AJ, Hur SC, Tse HTK, Lee W et al (2010) Label-free cell separation and sorting in microfluidic systems. Anal Bioanal Chem 397:3249–3267

    Article  Google Scholar 

  97. Pamme N (2007) Continuous flow separations in microfluidic devices. Lab Chip 7:1644–1659

    Article  Google Scholar 

  98. PARC. (16 Oct). Low-energy, compact, cost-effective separation for drinking water and wastewater treatment along with precious resource recovery. http://www.parc.com/work/focus-area/clean-water/

  99. Kersaudy-Kerhoas M, Sollier E (2013) Micro-scale blood plasma separation: from acoustophoresis to egg-beaters. Lab Chip 13:3323–3346

    Article  Google Scholar 

  100. Lee MG, Shin JH, Bae CY, Choi S, Park J-K (2013) Label-free cancer cell separation from human whole blood using inertial microfluidics at low shear stress. Anal Chem 85:6213–6218

    Article  Google Scholar 

  101. Moon HS, Kwon K, Kim SI, Han H, Sohn J, Lee S et al (2011) Continuous separation of breast cancer cells from blood samples using multi-orifice flow fractionation (MOFF) and dielectrophoresis (DEP). Lab Chip 11:1118–1125

    Article  Google Scholar 

  102. Khoo BL, Warkiani ME, Tan DS-W, Bhagat AAS, Irwin D, Lau DP et al (2014) Clinical validation of an ultra high-throughput spiral microfluidics for the detection and enrichment of viable circulating tumor cells. PLoS One 9:e99409

    Article  Google Scholar 

  103. Dudani JS, Go DE, Gossett DR, Tan AP, Di Carlo D (2014) Mediating millisecond reaction time around particles and cells. Anal Chem 86:1502–1510

    Article  Google Scholar 

  104. Tan AP, Dudani JS, Arshi A, Lee RJ, Henry T, Gossett DR et al (2014) Continuous-flow cytomorphological staining and analysis. Lab Chip 14:522–531

    Article  Google Scholar 

  105. Jung I, Kim SY, Oh TH (2010) Effects of spinning conditions on shape changes of trilobal-shaped fibers. Text Res J 80:12–18

    Article  Google Scholar 

  106. Stoecklein D, Wu C-Y, Owsley K, Xie Y, Di Carlo D, Ganapathysubramanian B (2014) Micropillar sequence designs for fundamental inertial flow transformations. Lab Chip 14:4197–4204

    Article  Google Scholar 

  107. Suresh S, Spatz J, Mills J, Micoulet A, Dao M, Lim C et al (2005) Connections between single-cell biomechanics and human disease states: gastrointestinal cancer and malaria. Acta Biomater 1:15–30

    Article  Google Scholar 

  108. Théry M, Bornens M (2008) Get round and stiff for mitosis. HFSP J 2:65–71

    Article  Google Scholar 

  109. Chowdhury F, Na S, Li D, Poh Y-C, Tanaka TS, Wang F et al (2010) Material properties of the cell dictate stress-induced spreading and differentiation in embryonic stem cells. Nat Mater 9:82–88

    Article  Google Scholar 

  110. Khismatullin DB (2009) The cytoskeleton and deformability of white blood cells. Curr Top Membr 64:47–111

    Article  Google Scholar 

  111. Gossett DR, Henry T, Lee SA, Ying Y, Lindgren AG, Yang OO et al (2012) Hydrodynamic stretching of single cells for large population mechanical phenotyping. Proc Natl Acad Sci U S A 109:7630–7635

    Article  Google Scholar 

  112. Dudani JS, Gossett DR, Henry T, Di Carlo D (2013) Pinched-flow hydrodynamic stretching of single-cells. Lab Chip 13:3728–3734

    Article  Google Scholar 

  113. Zhang J, Yan S, Yuan D, Alici G, Nguyen N-T, Ebrahimi Warkiani M et al (2016) Fundamentals and applications of inertial microfluidics: a review. Lab Chip 16:10–34

    Article  Google Scholar 

  114. Yoon DH, Ha JB, Bahk YK, Arakawa T, Shoji S, Go JS (2008) Size-selective separation of micro beads by utilizing secondary flow in a curved rectangular microchannel. Lab Chip 9:87–90

    Article  Google Scholar 

  115. Di Carlo D, Jon F, Irimia D, Tompkins RG, Toner M (2008) Equilibrium separation and filtration of particles using differential inertial focusing. Anal Chem 80:2204–2211

    Article  Google Scholar 

  116. Lee MG, Choi S, Kim HJ, Lim HK, Kim JH, Huh N et al (2011) Inertial blood plasma separation in a contraction–expansion array microchannel. Appl Phys Lett 98:253702

    Article  Google Scholar 

  117. Park JS, Song SH, Jung HI (2009) Continuous focusing of microparticles using inertial lift force and vorticity via multi-orifice microfluidic channels. Lab Chip 9:939–948

    Article  Google Scholar 

  118. Park J-S, Jung H-I (2009) Multiorifice flow fractionation: continuous size-based separation of microspheres using a series of contraction/expansion microchannels. Anal Chem 81: 8280–8288

    Article  Google Scholar 

  119. Sim TS, Kwon K, Park JC, Lee J-G, Jung H-I (2011) Multistage-multiorifice flow fractionation (MS-MOFF): continuous size-based separation of microspheres using multiple series of contraction/expansion microchannels. Lab Chip 11:93–99

    Article  Google Scholar 

  120. Seo J, Lean MH, Kole A (2007) Membrane-free microfiltration by asymmetric inertial migration. Appl Phys Lett 91:033901

    Article  Google Scholar 

  121. Seo J, Lean MH, Kole A (2007) Membraneless microseparation by asymmetry in curvilinear laminar flows. J Chromatogr A 1162:126–131

    Article  Google Scholar 

  122. Kim TH, Yoon HJ, Stella P, Nagrath S (2014) Cascaded spiral microfluidic device for deterministic and high purity continuous separation of circulating tumor cells. Biomicrofluidics 8:064117

    Article  Google Scholar 

  123. Warkiani ME, Khoo BL, Tan DS-W, Bhagat AAS, Lim W-T, Yap YS et al (2014) An ultra-high-throughput spiral microfluidic biochip for the enrichment of circulating tumor cells. Analyst 139:3245–3255

    Article  Google Scholar 

  124. Warkiani ME, Tay AKP, Khoo BL, Xiaofeng X, Han J, Lim CT (2015) Malaria detection using inertial microfluidics. Lab Chip 15:1101–1109

    Article  Google Scholar 

  125. Wang X, Zhou J, Papautsky I (2013) Vortex-aided inertial microfluidic device for continuous particle separation with high size-selectivity, efficiency, and purity. Biomicrofluidics 7:044119

    Article  Google Scholar 

  126. Wang X, Papautsky I (2015) Size-based microfluidic multimodal microparticle sorter. Lab Chip 15:1350–1359

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weihua Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Zhang, J., Li, W., Alici, G. (2017). Inertial Microfluidics: Mechanisms and Applications. In: Zhang, D., Wei, B. (eds) Advanced Mechatronics and MEMS Devices II. Microsystems and Nanosystems. Springer, Cham. https://doi.org/10.1007/978-3-319-32180-6_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-32180-6_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-32178-3

  • Online ISBN: 978-3-319-32180-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics