Skip to main content

Conflict Solution According to “Aggressiveness” of Agents in Floor-Field-Based Model

  • Conference paper
  • First Online:
Parallel Processing and Applied Mathematics

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9574))

Abstract

This contribution introduces an element of “aggressiveness” into the Floor-Field based model with adaptive time-span. The aggressiveness is understood as an ability to win conflicts and push through the crowd. From experiments it is observed that this ability is not directly correlated with the desired velocity in the free flow regime. The influence of the aggressiveness is studied by means of the dependence of the travel time on the occupancy of a room. A simulation study shows that the conflict solution based on the aggressiveness parameter can mimic the observations from the experiment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bandini, S., Crociani, L., Vizzari, G.: Heterogeneous pedestrian walking speed in discrete simulation models. In: Chraibi, M., Boltes, M., Schadschneider, A., Seyfried, A. (eds.) Traffic and Granular Flow ’13, pp. 273–279. Springer International Publishing, Cham (2015)

    Google Scholar 

  2. Bukáček, M., Hrabák, P.: Case study of phase transition in cellular models of pedestrian flow. In: Wąs, J., Sirakoulis, G.C., Bandini, S. (eds.) ACRI 2014. LNCS, vol. 8751, pp. 508–517. Springer, Heidelberg (2014)

    Google Scholar 

  3. Bukáček, M., Hrabák, P., Krbálek, M.: Individual microscopic results of bottleneck experiments. In: Traffic and Granular Flow ’15. Springer International Publishing (2015, to appear). arXiv:1603.02019 [physics.soc-ph]

  4. Bukáček, M., Hrabák, P., Krbálek, M.: Experimental analysis of two-dimensional pedestrian flow in front of the bottleneck. In: Chraibi, M., Boltes, M., Schadschneider, A., Seyfried, A. (eds.) Traffic and Granular Flow ’13, pp. 93–101. Springer International Publishing, Cham (2015)

    Google Scholar 

  5. Bukáček, M., Hrabák, P., Krbálek, M.: Cellular model of pedestrian dynamics with adaptive time span. In: Wyrzykowski, R., Dongarra, J., Karczewski, K., Waśniewski, J. (eds.) PPAM 2013, Part II. LNCS, vol. 8385, pp. 669–678. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  6. Bukáček, M., Hrabák, P., Krbálek, M.: Experimental study of phase transition in pedestrian flow. In: Daamen, W., Duives, D.C., Hoogendoorn, S.P. (eds.) Pedestrian and Evacuation Dynamics 2014, Transportation Research Procedia, vol. 2, pp. 105–113. Elsevier Science B.V. (2014)

    Google Scholar 

  7. Burstedde, C., Klauck, K., Schadschneider, A., Zittartz, J.: Simulation of pedestrian dynamics using a two-dimensional cellular automaton. Phys. A 295(3–4), 507–525 (2001)

    Article  MATH  Google Scholar 

  8. Cornforth, D., Green, D.G., Newth, D.: Ordered asynchronous processes in multi-agent systems. Phys. D 204(1–2), 70–82 (2005)

    Article  MathSciNet  Google Scholar 

  9. Ezaki, T., Yanagisawa, D., Nishinari, K.: Analysis on a single segment of evacuation network. J. Cell. Automata 8(5–6), 347–359 (2013)

    MathSciNet  Google Scholar 

  10. Hrabák, P., Bukáček, M., Krbálek, M.: Cellular model of room evacuation based on occupancy and movement prediction: comparison with experimental study. J. Cell. Automata 8(5–6), 383–393 (2013)

    MathSciNet  Google Scholar 

  11. Ji, X., Zhou, X., Ran, B.: A cell-based study on pedestrian acceleration and overtaking in a transfer station corridor. Phys. A 392(8), 1828–1839 (2013)

    Article  MathSciNet  Google Scholar 

  12. Kirchner, A., Schadschneider, A.: Simulation of evacuation processes using a bionics-inspired cellular automaton model for pedestrian dynamics. Phys. A 312(1–2), 260–276 (2002)

    Article  MATH  Google Scholar 

  13. Kłeczek, P., Wąs, J.: Simulation of pedestrians behavior in a shopping mall. In: Wąs, J., Sirakoulis, G.C., Bandini, S. (eds.) ACRI 2014. LNCS, vol. 8751, pp. 650–659. Springer, Heidelberg (2014)

    Google Scholar 

  14. Kretz, T.: Pedestrian traffic, simulation and experiments. Ph.D. thesis, Universität Duisburg-Essen, Germany (2007)

    Google Scholar 

  15. Schadschneider, A., Chowdhury, D., Nishinari, K.: Stochastic Transport in Complex Systems: From Molecules to Vehicles. Elsevier Science B.V., Amsterdam (2010)

    MATH  Google Scholar 

  16. Spartalis, E., Georgoudas, I.G., Sirakoulis, G.C.: CA crowd modeling for a retirement house evacuation with guidance. In: Wąs, J., Sirakoulis, G.C., Bandini, S. (eds.) ACRI 2014. LNCS, vol. 8751, pp. 481–491. Springer, Heidelberg (2014)

    Google Scholar 

  17. Yanagisawa, D., Kimura, A., Tomoeda, A., Nishi, R., Suma, Y., Ohtsuka, K., Nishinari, K.: Introduction of frictional and turning function for pedestrian outflow with an obstacle. Phys. Rev. E 80, 036110 (2009)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Czech Science Foundation under grants GA13-13502S (P. Hrabák) and GA15-15049S (M. Bukáček). Further support was provided by the CTU grant SGS15/214/OHK4/3T/14.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pavel Hrabák .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Hrabák, P., Bukáček, M. (2016). Conflict Solution According to “Aggressiveness” of Agents in Floor-Field-Based Model. In: Wyrzykowski, R., Deelman, E., Dongarra, J., Karczewski, K., Kitowski, J., Wiatr, K. (eds) Parallel Processing and Applied Mathematics. Lecture Notes in Computer Science(), vol 9574. Springer, Cham. https://doi.org/10.1007/978-3-319-32152-3_47

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-32152-3_47

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-32151-6

  • Online ISBN: 978-3-319-32152-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics