Skip to main content

Carbonate Facies Models and Diagenesis

  • Chapter
  • First Online:
Aquifer Characterization Techniques

Part of the book series: Springer Hydrogeology ((SPRINGERHYDRO))

Abstract

Carbonate aquifers consist of rocks composed mainly of the minerals calcite and dolomite. Carbonate minerals are generally much more chemically reactive under near surface geochemical conditions and thus undergo a much greater degree of chemical and physical alteration (diagenesis) than siliciclastic deposits. The textures and fabrics of carbonate sediments are strongly controlled by physical, chemical, and biological conditions in their depositional environment. The petrophysical properties of relatively young (Cenozoic) carbonates often still reflect depositional heterogeneities. In most older (Mesozoic and Paleozoic) carbonates, much of the depositional porosity and permeability has been lost or profoundly modified by physical and chemical diagenesis. Groundwater flow in older carbonates is largely controlled by secondary porosity, particularly fractures and solution conduits.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bathurst, R. G. C. (1972). Carbonate sediments and their diagenesis: Amsterdam: Elsevier.

    Google Scholar 

  • Budd, D. A. (2001). Permeability loss with depth in the Cenozoic carbonate platform of west-central Florida. American Association Petroleum Geologists Bulletin, 85, 1253–1272.

    Google Scholar 

  • Budd, D. A., & Vacher, H. L. (2004) Matrix permeability of the confined Floridan aquifer, Florida, USA. Hydrogeology Journal, 12, 531–549.

    Google Scholar 

  • Choquette, P. W., & Pray, L. C. (1970) Geologic nomenclature and classification of porosity in sedimentary carbonates. American Association of Petroleum Geologists Bulletin, 54, 207–250.

    Google Scholar 

  • Duerr, A. D. (1995). Types of secondary porosity of carbonate rocks in injection and test wells in southern peninsular Florida. U.S. Geological Survey Water-Resources Investigations Report 94–4013.

    Google Scholar 

  • Dunham, R. J. (1962) Classification of carbonate rocks according to depositional texture. In W. E. Ham (Ed.), Classification of carbonate rocks. Memoir 1 (pp. 108–121); Tulsa: American Association of Petroleum Geologists.

    Google Scholar 

  • Ehrenberg, S. N., & Nadeau, P. H. (2005) Sandstone vs. carbonate petroleum reservoirs: A global perspective on porosity-depth and porosity-permeability relationship. American Association of Petroleum Geologists Bulletin, 89, 435–445.

    Google Scholar 

  • Ehrenberg, S. N., Eberli, G .P., Keramati, M., & Moallemi, S. A. (2006) Porosity-permeability relationships in interlayered limestone-dolostone reservoirs. American Association of Petroleum Geologists Bulletin, 90, 91–114.

    Google Scholar 

  • Enos, P., & Moore, C. H. (1983) Fore-reef slope environment. In P. A. Scholle, D. G. Bebout & C. H. Moore (Eds.) Carbonate depositional environments. Memoir 31 (pp. 508–537). Tulsa: American Association of Petroleum Geologists.

    Google Scholar 

  • Enos, P., & Sawatsky, L. H. (1981) Pore networks in Holocene carbonate sediments. Journal of Sedimentary Petrology, 51, 961–985.

    Google Scholar 

  • Field, M. E., Cochran, S. A., & Evans, K. R. (2002) U.S. reefs – imperiled national treasures. U.S. Geological Survey Fact Sheet 025-02.

    Google Scholar 

  • Fish, J. E., & Stewart, M. (1991) Hydrogeology of the Surficial Aquifer System, Dade County, Florida. U.S. Geological Survey Water-Resources Investigations Report 90-4108.

    Google Scholar 

  • Gaswirth, S. B., Budd, D. A., & Crawford, B. R. (2006) Textural and stratigraphic controls on fractured dolomite in a carbonate aquifer system, Ocala Limestone, west-central Florida. Sedimentary Geology, 184, 241–254.

    Google Scholar 

  • George, P. G., Mace, R. E., & Petrossian, R. (2011) Aquifers of Texas. Texas Water Development Board Report 380.

    Google Scholar 

  • Halley, R. B., & Schmoker, J. W. (1983) High-porosity Cenozoic carbonate rocks of South Florida: Progressive loss of porosity with depth. American Association of Petroleum Geologists Bulletin, 67, 191–200.

    Google Scholar 

  • Halley, R. B., Vacher, H. L., & Shinn, E. A., (1997) Geology and hydro-geology of the Florida Keys. In H. L. Vacher & H. L. Quinn (Eds.), Geology and hydrogeology of carbonate islands. Developments in Sedimentology 54 (pp. 217–248). Amsterdam: Elsevier.

    Google Scholar 

  • Handford, C .R., & Loucks, R. G. (1993) Carbonate depositional sequences and system tracts – Responses of carbonate platforms to relative sea-level changes. In R. G. Loucks & J. F. Sarg (Eds.), Carbonate sequence stratigraphy. Recent developments and applications. Memoir 5 (pp 3–41). Tulsa: American Association of Petroleum Geologists.

    Google Scholar 

  • Hiss, W.L. (1980) Movement of ground water in Permian Guadalupian aquifer systems, southeastern New Mexico and western Texas. In Guidebook, 31st Field Conference, Trans-Pecos Region (pp. 289–294). Socorro: New Mexico Geological Society.

    Google Scholar 

  • Hoffmeister, J. E. (1974) Land from the sea. Coral Gables: University of Miami Press.

    Google Scholar 

  • James, N. P. (1983) Reef Environment. In P. A. Scholle, D. G. Bebout & C. H. Moore (Eds.) Carbonate depositional environments. Memoir No. 31 (pp. 346–440). Tulsa: American Association of Petroleum Geologists.

    Google Scholar 

  • James, N. P. (1984a) Shallowing – upwards sequences in carbonates. In R. G. Walker (Ed.) Facies models (2nd ed.) (pp. 213–228). Toronto: Geological Association of Canada Publications.

    Google Scholar 

  • James, N. P. (1984b) Reefs. In R. G. Walker (Ed.) Facies models (2nd Ed.) (pp. 229–244). Toronto: Geological Association of Canada Publications.

    Google Scholar 

  • Kendall, C. G. S. C., & Schlager, W. (1981) Carbonates and relative changes in sea level. Marine Geology, 44, 181–212.

    Google Scholar 

  • Kerans, C., & Tinker, S. W. (1997) Sequence stratigraphy and characterization of carbonate reservoirs. Short course 40. Tulsa: SEPM (Society for Sedimentary Geology).

    Google Scholar 

  • Lucia, J. F., Kerans, C., & Jennings, J. W., Jr. (2003) Carbonate reservoir characterization. Journal of Petroleum Technology, June 2003, 70–72.

    Google Scholar 

  • Maliva, R. G., Guo, W., & Missimer, T. (2007) Vertical migration of municipal wastewater in deep injection well systems, South Florida, USA. Hydrogeology Journal, 15, 1387–1396.

    Google Scholar 

  • Maliva, R. G., Kennedy, G. P., Martin, W. K., Missimer, T. M., Owosina, E. S., & Dickson, J. A. D. (2002), Dolomitization-induced aquifer heterogeneity: Evidence from the Upper Floridan Aquifer, Southwest Florida. Geological Society of America Bulletin, 114, 419–427.

    Google Scholar 

  • Maliva, R. G., & Walker, C. W. (1998) Hydrogeology of Deep-Well Disposal of Liquid Wastes in Southwestern Florida, U.S.A. Hydrogeology Journal, 6, 538–548.

    Google Scholar 

  • McIlreath, I. A., & James, N. P. (1984) Carbonate slopes. In R. G. Walker (Ed.) Facies models (2nd Ed.) (pp. 245–257). Toronto: Geological Association of Canada Publications.

    Google Scholar 

  • McIlreath, I. A., & Morrow, D. W., (Eds.) (1990) Diagenesis, Geoscience Canada reprint series 4. St Johns Newfoundland: Geological Association of Canada Publications.

    Google Scholar 

  • Moore, C. H. (1989) Carbonate diagenesis and porosity. Developments in Sedimentology 46. Amsterdam: Elsevier.

    Google Scholar 

  • Moore, C. H. (2001) Carbonate reservoirs: porosity evolution and diagenesis in a sequence stratigraphic framework. Developments in Sedimentology 55. Amsterdam: Elsevier.

    Google Scholar 

  • Motts, W. S. (1968) The control of ground-water occurrence by lithofacies in the Guadalupian reef complex near Carlsbad, New Mexico. Geological Society of America Bulletin, 79, 283–298.

    Google Scholar 

  • Parker, G. G., Ferguson, G. E., Love, S. K., and others (1955) Water resources of southeastern Florida. U.S. Geological Survey Water-Supply Paper 1244.

    Google Scholar 

  • Read, J. F. (1985) Carbonate platform facies models. American Association of Petroleum Geologists Bulletin, 69, 1–21.

    Google Scholar 

  • Reese, R. S., & Richardson, E. (2008) Synthesis of the hydrogeologic framework of the Floridan Aquifer System and delineation of a major Avon Park permeable zone in Central and Southern Florida. U.S. Geological Survey Scientific Investigations Report 2007-5207.

    Google Scholar 

  • Safko, P. S., & Hickey, J. J. (1992) A preliminary approach to the use of borehole data, including television surveys, for characterizing secondary porosity of carbonate rocks in the Floridan Aquifer System. U.S. Geological Survey Water-Resources Investigations Report 91-4168.

    Google Scholar 

  • Saller, A. H., Budd, D. A., & Harris, P. M. (1994) Unconformities and porosity development in carbonate strata: Ideas from a Hedberg Conference. American Association of Petroleum Geologists Bulletin, 78, 857–872.

    Google Scholar 

  • Sarg, J. F. (1988) Carbonate sequence stratigraphy. In C. K. Wilgus, C. A. Ross & H. Posamentier (Eds.), Sea-level changes - an integrated approach. Special Publication 42 (pp. 155–181). Tulsa: SEPM (Society for Sedimentary Geology).

    Google Scholar 

  • Schlager, W. (2005). Carbonate sedimentology and sequence stratigraphy. Concepts in sedimentology and paleontology 8. Tulsa: SEPM (Society for Sedimentary Geology).

    Google Scholar 

  • Schmoker, J. W., & Halley, R. B. (1982) Carbonate porosity versus depth: a predictable relation for South Florida. American Association of Petroleum Geologists Bulletin, 66, 2561–2570.

    Google Scholar 

  • Scholle, P. A., Bebout, D. G., & Moore, C. H. (1983) Carbonate depositional environment s. Memoir 31. Tulsa: American Association of Petroleum Geologists.

    Google Scholar 

  • Scholle, P. A., & Halley, R. B. (1985) Burial diagenesis: Out of sight, out of mind. In N. Schineidermann & P. M. Harris, (Eds.) Carbonate cements. Special Publication 36 (pp. 309–334). Tulsa: Society of Economic Paleontologists and Mineralogists.

    Google Scholar 

  • Selley, R. C. (1985) Ancient sedimentary environments and their subsurface diagenesis (3rd ed.). Ithaca: Cornell University Press.

    Google Scholar 

  • Tucker, M. E. (1985) Shallow marine carbonate facies and facies models. In P. J. Brenchley & B. P. J. (Eds.). Sedimentology, recent development and applied aspects. Special Publication 18 (pp. 147–169). London: Geological Society.

    Google Scholar 

  • Tucker, M. E., & Bathurst, R. G. C. (Eds.) (1990) Carbonate diagenesis: International Association Sedimentologists Reprint Series 1. Oxford: Blackwell Scientific Publications.

    Google Scholar 

  • Uliana, N. M. (2001) The geology and hydrogeology of the Capital Aquifer – A brief overview. In R. E. Mace, W. F. Mullican, III & E. D. Angle (Eds.) Aquifers of West Texas. Report 356 (pp. 207–225). Austin: Texas Water Development Board.

    Google Scholar 

  • Vacher, H. L. (1997) Introduction; Varieties of carbonate islands and a historical perspective. In H. L. Vacher & T. and Quinn (Eds.) Geology and hydrogeology of carbonate islands, Developments in sedimentology 54 (pp. 1–33): Amsterdam: Elsevier.

    Google Scholar 

  • Wilson, J. L. (1975) Carbonate facies in geological history. New York: Springer-Verlag.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert G. Maliva .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Maliva, R.G. (2016). Carbonate Facies Models and Diagenesis. In: Aquifer Characterization Techniques. Springer Hydrogeology. Springer, Cham. https://doi.org/10.1007/978-3-319-32137-0_4

Download citation

Publish with us

Policies and ethics