Skip to main content

Implications of Genotype and Environment on Variation in DNA Methylation

  • Living reference work entry
  • First Online:
Handbook of Nutrition, Diet, and Epigenetics

Abstract

The epigenome is highly plastic and reacts to the changing external conditions such as diet, lifestyle, and toxins throughout the lifespan. Epigenome-wide association studies (EWAS) provide an opportunity to identify epigenetic variants associated with such exposures and the associated suboptimal health outcomes. DNA methylation at 5-methylcytosine is a routinely interrogated epigenetic mark in such EWAS studies. However, depending upon the choice of biological sample, a reliable quantification of the change in methylome at a genomic locus is often confounded by cellular heterogeneity. In addition, the interpretation of cause and effect of this methylation diversity in epigenomes is further complicated by the contributions from genotype and its interaction with the environment, thereby warranting a more sophisticated approach to reliably measure and interpret EWAS findings. This chapter discusses the factors influencing the variability in DNA methylome and its implications on biological interpretations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

AHRR:

Aryl-hydrocarbon receptor repressor

ASM:

Allele-specific methylation

CGI:

CpG islands

CNV:

Copy number variation

CYP1A1:

Cytochrome P450 family 1 subfamily A member 1

DNMT1:

DNA methyltransferase 1

eQTL:

Expression quantitative trait locus

EWAS:

Epigenome-wide association study

FKBP5:

FK506 binding protein 5

GNAS:

Guanine nucleotide binding protein, Alpha stimulating

GRB10:

Growth factor receptor bound protein 10

HIF1A:

Hypoxia-inducible factor 1-alpha

LD:

Linkage disequilibrium

MAT:

Methionine adenosyltransferase

meQTL:

Methylation quantitative trait locus

P-ASM:

Parent-of-origin allele-specific methylation

PCR:

Polymerase chain reaction

POP:

Persistent organic pollutant

PTSD:

Post-traumatic stress disorder

SAM:

S-adenosylmethionine

S-ASM:

Sequence-dependent allele-specific methylation

SNP:

Single nucleotide polymorphism

TET:

Ten-eleven translocation

References

  • Aliev F et al (2014) Testing for measured gene-environment interaction: problems with the use of cross-product terms and a regression model reparameterization solution. Behav Genet 44(2):165–181

    Article  PubMed  PubMed Central  Google Scholar 

  • Antequera F, Bird A (1993) Number of CpG islands and genes in human and mouse. Proc Natl Acad Sci U S A 90(24):11995–11999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arnaud P et al (2003) Conserved methylation imprints in the human and mouse GRB10 genes with divergent allelic expression suggests differential reading of the same mark. Hum Mol Genet 12(9):1005–1019

    Article  CAS  PubMed  Google Scholar 

  • Ball MP et al (2009) Targeted and genome-scale strategies reveal gene-body methylation signatures in human cells. Nat Biotechnol 27(4):361–368. Available at: http://dx.doi.org/10.1038/nbt.1533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bell JT et al (2011) DNA methylation patterns associate with genetic and gene expression variation in HapMap cell lines. Genome Biol 12(1):R10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Binder EB et al (2004) Polymorphisms in FKBP5 are associated with increased recurrence of depressive episodes and rapid response to antidepressant treatment. Nat Genet 36(12):1319–1325

    Article  CAS  PubMed  Google Scholar 

  • Breitling LP et al (2011) Tobacco-smoking-related differential DNA methylation: 27K discovery and replication. Am J Hum Genet 88:450–457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brenet F et al (2011) DNA methylation of the first exon is tightly linked to transcriptional silencing. PLoS One 6(1):e14524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dominguez-Salas P et al (2014) Maternal nutrition at conception modulates DNA methylation of human metastable epialleles. Nat Commun 5:3746–3752

    Google Scholar 

  • Druker R et al (2004) Complex patterns of transcription at the insertion site of a retrotransposon in the mouse. Nucleic Acids Res 32(19):5800–5808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dudbridge F, Fletcher O (2014) Gene-environment dependence creates spurious gene-environment interaction. Am J Hum Genet 95(3):301–307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duhl DM et al (1994) Neomorphic agouti mutations in obese yellow mice. Nat Genet 8(1):59–65

    Article  CAS  PubMed  Google Scholar 

  • Duncan LE, Keller MC (2011) A critical review of the first 10 years of candidate gene-by-environment interaction research in psychiatry. Am J Psychiatr 168(10):1041–1049

    Article  PubMed  PubMed Central  Google Scholar 

  • Edgar R et al (2014) Meta-analysis of human methylomes reveals stably methylated sequences surrounding CpG islands associated with high gene expression. Epigenetics Chromatin 7(1):28

    Article  PubMed  PubMed Central  Google Scholar 

  • Elliott G et al (2015) Intermediate DNA methylation is a conserved signature of genome regulation. Nat Commun 6:6363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Finkelstein JD (2000) Pathways and regulation of homocysteine metabolism in mammals. Semin Thromb Hemost 26(3):219–225

    Article  CAS  PubMed  Google Scholar 

  • Fraga MF et al (2005) Epigenetic differences arise during the lifetime of monozygotic twins. Proc Natl Acad Sci U S A 102(30):10604–10609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gardiner-Garden M, Frommer M (1987) CpG Islands in vertebrate genomes. J Mol Biol 196(2):261–282

    Article  CAS  PubMed  Google Scholar 

  • Gaunt TR et al (2016) Systematic identification of genetic influences on methylation across the human life course. Genome Biol 17(1):61

    Article  PubMed  PubMed Central  Google Scholar 

  • Germain-Lee EL et al (2002) Paternal imprinting of Gαs in the human thyroid as the basis of TSH resistance in pseudohypoparathyroidism type 1a. Biochem Biophys Res Commun 296(1):67–72

    Article  CAS  PubMed  Google Scholar 

  • Gibbs JR et al (2010) Abundant quantitative trait loci exist for DNA methylation and gene expression in human brain. PLoS Genet 6(5):29

    Article  Google Scholar 

  • Gordon L et al (2012) Neonatal DNA methylation profile in human twins is specified by a complex interplay between intrauterine environmental and genetic factors, subject to tissue-specific influence. Genome Res 22(8):1395–1406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haydak MH (1943) Larval food and development of castes in the honeybee. J Econ Ent 36:778–792

    Article  CAS  Google Scholar 

  • Hayward BE et al (2001) Imprinting of the Gsα gene GNAS1 in the pathogenesis of acromegaly. J Clin Investig 107(6)

    Google Scholar 

  • He J et al (2015) Characterization and machine learning prediction of allele-specific DNA methylation. Genomics 106(6):331–339

    Article  CAS  PubMed  Google Scholar 

  • Heyn H et al (2016) Epigenomic analysis detects aberrant super-enhancer DNA methylation in human cancer. Genome Biol 17:11–26

    Article  PubMed  PubMed Central  Google Scholar 

  • Huang J et al (2012) Telomere shortening and DNA damage of embryonic stem cells induced by cigarette smoke. Reprod Toxicol 35:89–95

    Article  PubMed  Google Scholar 

  • Irizarry RA et al (2009) The human colon cancer methylome shows similar hypo- and hypermethylation at conserved tissue-specific CpG island shores. Nat Genet 41(2):178–186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jaffe AE, Irizarry RA (2014) Accounting for cellular heterogeneity is critical in epigenome-wide association studies. Genome Biol 15(2):R31

    Article  PubMed  PubMed Central  Google Scholar 

  • Jeong M et al (2014) Large conserved domains of low DNA methylation maintained by Dnmt3a. Nat Genet 46(1):17–23

    Article  CAS  PubMed  Google Scholar 

  • Joubert BR et al (2012) 450K epigenome-wide scan identifies differential DNA methylation in newborns related to maternal smoking during pregnancy. Environ Health Perspect 120:1425–1431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keller MC (2014) Gene × environment interaction studies have not properly controlled for potential confounders: the problem and the (simple) solution. Biol Psychiatry 75(1):18–24

    Article  PubMed  Google Scholar 

  • Kerkel K et al (2008) Genomic surveys by methylation-sensitive SNP analysis identify sequence-dependent allele-specific DNA methylation. Nat Genet 40(7):904–908

    Article  CAS  PubMed  Google Scholar 

  • Klengel T et al (2013) Allele-specific FKBP5 DNA demethylation mediates gene-childhood trauma interactions. Nat Neurosci 16(1):33–41

    Article  CAS  PubMed  Google Scholar 

  • Ladd-Acosta C, Fallin MD (2015) The role of epigenetics in genetic and environmental epidemiology. Epigenomics 8:epi.15.102

    Google Scholar 

  • Lee KWK, Pausova Z (2013) Cigarette smoking and DNA methylation. Front Genet 4(JUL):132

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mantovani G et al (2002) The Gs?? Gene: predominant maternal origin of transcription in human thyroid gland and gonads. J Clin Endocrinol Metab 87(10):4736–4740

    Article  CAS  PubMed  Google Scholar 

  • Mantovani G et al (2004) Biallelic expression of the Gsalpha gene in human bone and adipose tissue. J Clin Endocrinol Metab 89(12):6316–6319

    Article  CAS  PubMed  Google Scholar 

  • Mehta D et al (2013) Childhood maltreatment is associated with distinct genomic and epigenetic profiles in posttraumatic stress disorder. Proc Natl Acad Sci 110(20):8302–8307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mohn F et al (2008) Lineage-specific Polycomb targets and De Novo DNA methylation define restriction and potential of neuronal progenitors. Mol Cell 30(6):755–766

    Article  CAS  PubMed  Google Scholar 

  • Morgan HD et al (1999) Epigenetic inheritance at the agouti locus in the mouse. Nat Genet 23(3):314–318

    Article  CAS  PubMed  Google Scholar 

  • Pfeifer GP (2006) Mutagenesis at methylated CpG sequences. Curr Top Microbiol Immunol 301:259–281

    Google Scholar 

  • Rakyan VK et al (2002) Metastable epialleles in mammals. Trends Genet 18(7):348–351

    Article  CAS  PubMed  Google Scholar 

  • Satta R et al (2008) Nicotine decreases DNA methyltransferase 1 expression and glutamic acid decarboxylase 67 promoter methylation in GABAergic interneurons. Proc Natl Acad Sci 105(42):16356–16361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saxonov S, Berg P, Brutlag DL (2006) A genome-wide analysis of CpG dinucleotides in the human genome distinguishes two distinct classes of promoters. Proc Natl Acad Sci U S A 103(5):1412–1417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schultz MD et al (2015) Human body epigenome maps reveal noncanonical DNA methylation variation. Nature 523(7559):212–216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sherman CB (1991) Health effects of cigarette smoking. Clin Chest Med 12(4):643–658

    CAS  PubMed  Google Scholar 

  • Shuel RW, Dixon S (1959) Studies in the mode of action of royal jelly in honeybee development. J Can Zool 37(4):803–813

    Article  CAS  Google Scholar 

  • Taudt A et al (2016) Genetic sources of population epigenomic variation. Nature Rev Genet 17(6):319–332

    Article  CAS  PubMed  Google Scholar 

  • Teh AL et al (2014) The effect of genotype and in utero environment on interindividual variation in neonate DNA methylomes. Genome Res 24(7):1064–1074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thienpont B et al (2016) Tumour hypoxia causes DNA hypermethylation by reducing TET activity. Nature 537(7618):63–68

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van de Dungen MW et al (2017) Persistent organic pollutants alter DNA methylation during human adipocyte differentiation. Toxicol In Vitro 40:79–87

    Article  PubMed  Google Scholar 

  • Vasicek TJ et al (1997) Two dominant mutations in the mouse fused gene are the result of transposon insertions. Genetics 147(2):777–786

    CAS  PubMed  PubMed Central  Google Scholar 

  • Waterland RA, Jirtle RL (2003) Transposable elements: targets for early nutritional effects on epigenetic gene regulation. Mol Cell Biol 23(15):5293–5300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Waterland RA et al (2006) Maternal methyl supplements increase offspring DNA methylation at Axin fused. Genesis 44(9):401–406

    Article  CAS  PubMed  Google Scholar 

  • White H (1980) A heteroskedasticity-consistent covariance-matrix estimator and a direct test for heteroskedasticity. Econometrica 48(4):817–838

    Article  Google Scholar 

  • Wittkopp PJ (2007) Variable gene expression in eukaryotes: a network perspective. J Exp Biol 210(Pt 9):1567–1575

    Article  CAS  PubMed  Google Scholar 

  • Wong CCY et al (2010) A longitudinal study of epigenetic variation in twins. Epigenetics 5(6):516–526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xie W et al (2013) Epigenomic analysis of multilineage differentiation of human embryonic stem cells. Cell 153(5):1134–1148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yousefi M et al (2013) The methylation of the LEPR/LEPROT genotype at the promoter and body regions influence concentrations of leptin in girls and BMI at age 18 years if their mother smoked during pregnancy. Int J Mol Epidemiol Genet 4(2):86–100

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ziller MJ et al (2013) Charting a dynamic DNA methylation landscape of the human genome. Nature 500(7463):477–481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neerja Karnani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this entry

Cite this entry

Lim, I.Y., Lin, X., Karnani, N. (2017). Implications of Genotype and Environment on Variation in DNA Methylation. In: Patel, V., Preedy, V. (eds) Handbook of Nutrition, Diet, and Epigenetics. Springer, Cham. https://doi.org/10.1007/978-3-319-31143-2_56-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-31143-2_56-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-31143-2

  • Online ISBN: 978-3-319-31143-2

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics