Skip to main content

Catalytic Role of Dehydrons in Soluble Proteins: Biological Chemistry of Frustrated Interfacial Water

  • Chapter
  • First Online:
Book cover Physics at the Biomolecular Interface

Part of the book series: Soft and Biological Matter ((SOBIMA))

  • 784 Accesses

Abstract

This chapter unravels the catalytic role of dehydrons at biomolecular interfaces. It prompts a significant revision of the mechanisms of biological chemistry to encompass the chemical functionality of frustrated interfacial water. We first establish the chemical basicity of interfacial water frustrated in its hydrogen-bonding opportunities due to partial confinement at sub-nanoscale structural defects (dehydrons). Through the functionalization of vicinal water, the dehydron is shown to be an enabler and promoter of enzymatic activity. Through multiple steering molecular dynamics with a pulling coordinate spanning the proton-transference trajectory, we show that the vast majority of transesterification reactions, ubiquitous in biological chemistry, are actually enabled by nearby dehydrons that deprotonate the pro-nucleophiles that may potentially intervene in such reactions. The theoretical results are validated against experimentally measured pKa decreases at functional sites and by experimental corroboration of the aberrant deregulation of catalytic activity arising from dehydron-creating mutations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fernández A. The principle of minimal episteric distortion of the water matrix and its steering role in protein folding. J Chem Phys. 2013;139:085101.

    Article  ADS  Google Scholar 

  2. Giovambattista N, Lopez CF, Rossky P, Debenedetti P. Hydrophobicity of protein surfaces: separating geometry from chemistry. Proc Natl Acad Sci U S A. 2008;105:2274–9.

    Article  ADS  Google Scholar 

  3. Fernández A. Epistructural tension promotes protein associations. Phys Rev Lett. 2012;108:188102.

    Article  ADS  Google Scholar 

  4. Kumar P, Han S, Stanley HE. Anomalies of water and hydrogen bond dynamics in hydrophobic nanoconfinement. J Phys Condens Matter. 2009;21:504108.

    Article  Google Scholar 

  5. Schutz CN, Warshel A. What are the dielectric “constants” of proteins and how to validate electrostatic models? Protein Struct Funct Genet. 2001;44:400–8.

    Article  Google Scholar 

  6. Fernández A. Communication: chemical functionality of interfacial water enveloping nanoscale structural defects in proteins. J Chem Phys. 2014;140:221102.

    Article  ADS  Google Scholar 

  7. Fernández A. Nanoscale thermodynamics of biological interfacial tension. Proc R Soc A. 2010;467:559–68.

    Article  MathSciNet  MATH  Google Scholar 

  8. Parai MK, Huggins DJ, Cao H, Nalam MN, Ali A, Schiffer CA, Tidor B, Rana TM. Design, synthesis, and biological and structural evaluations of novel HIV-1 protease inhibitors to combat drug resistance. J Med Chem. 2012;55:6328–41.

    Article  Google Scholar 

  9. The Uniprot Consortium. Activities at the Universal Protein Resource (UniProt). Nucleic Acids Res. 2014;42:D191–8.

    Article  Google Scholar 

  10. Hardie DG, editor. Protein phosphorylation: a practical approach. Oxford: Oxford University Press; 1999.

    Google Scholar 

  11. Zanzoni A, Carbajo D, Diella F, Gherardini PF, Tramontano A, Helmer-Citterich M, Via A. Phospho3D 2.0: an enhanced database of three-dimensional structures of phosphorylation sites. Nucleic Acids Res. 2011;39:D268–71.

    Article  Google Scholar 

  12. Liebschner D, Dauter M, Brzuszkiewicz A, Dauter Z. On the reproducibility of protein crystal structures: five atomic resolution structures of trypsin. Acta Crystallogr Sect D. 2013;69:1447–62.

    Article  Google Scholar 

  13. Pietrosemoli N, Crespo A, Fernández A. Dehydration propensity of order–disorder intermediate regions in soluble proteins. J Proteome Res. 2007;6:3519–26.

    Article  Google Scholar 

  14. Dodson G, Wlodawer A. Catalytic triads and their relatives. Trends Biochem Sci. 1998;23:347–52.

    Article  Google Scholar 

  15. Fernández A, Crespo A. Protein wrapping: a molecular marker for association, aggregation and drug design. Chem Soc Rev. 2008;37:2373–82.

    Article  Google Scholar 

  16. Fernández A. Protein structural defects are enablers and stimulators of enzyme catalysis, Scientist Ariel Fernandez finds. Market Watch (The Wall Street Journal). http://www.marketwatch.com/story/protein-structural-defects-are-enablers-and-stimulators-of-enzyme-catalysis-scientist-ariel-fernandez-finds-2014-07-14. Accessed 14 July 2014.

  17. Fernández A, Lynch M. Non-adaptive origins of interactome complexity. Nature. 2011;474:502–5.

    Article  Google Scholar 

  18. Li H, Robertson AD, Jensen JH. Very fast empirical prediction and rationalization of protein pKa values. Proteins Struct Funct Bioinf. 2005;61:704–21.

    Article  Google Scholar 

  19. Jarzynski C. Nonequilibrium equality for free energy differences. Phys Rev Lett. 1997;78:2690–3.

    Article  ADS  Google Scholar 

  20. van der Kamp MW, Mulholland AJ. Combined quantum mechanics/molecular mechanics (QM/MM) methods in computational enzymology. Biochemistry. 2013;52:2708–28.

    Article  Google Scholar 

  21. Senn HM, Thiel W. QM/MM methods for biomolecular systems. Angew Chem Int Ed. 2009;48:1198–229.

    Article  Google Scholar 

  22. Agarwal S, Kazi JU, Ronnstrand L. Phosphorylation of the activation loop tyrosine 823 in c-Kit is crucial for cell survival and proliferation. J Biol Chem. 2013;288:22460–8.

    Article  Google Scholar 

  23. Sankey OF, Niklewski DJ. Ab initio multicenter tight-binding model for molecular-dynamics simulations and other applications in covalent systems. Phys Rev B Condens Matter. 1989;40:3979–95.

    Article  ADS  Google Scholar 

  24. Kleinman L, Bylander DM. Efficacious Form for Model Pseudopotentials. Phys Rev Lett. 1982;48:1425–8.

    Article  ADS  Google Scholar 

  25. Chiodo S, Russo N, Sicilia E. Newly developed basis sets for density functional calculations. J Comput Chem. 2005;26:175–84.

    Article  Google Scholar 

  26. Fernández A. Fast Track Communication: water promotes the sealing of nanoscale packing defects in folding proteins. J Phys Condens Matter. 2014;26:202101.

    Article  Google Scholar 

  27. Wang J, Cieplak P, Kollman PA. How well does a restrained electrostatic potential (RESP) model perform in calculating conformational energies of organic and biological molecules? J Comput Chem. 2000;21:1049–74.

    Article  Google Scholar 

  28. Plesniak LA, Connelly GP, Wakarchuk WW, McIntosh LP. Characterization of a buried neutral histidine residue in Bacillus circulans xylanase: NMR assignments, pH titration, and hydrogen exchange. Protein Sci. 1996;5:2319–28.

    Article  Google Scholar 

  29. Goedken ER, Marqusee S. Co-crystal of Escherichia coli RNase HI with Mn2+ ions reveals two divalent metals bound in the active site. J Biol Chem. 2001;276:7266–71.

    Article  Google Scholar 

  30. Kanaya S, Katayanagi K, Morikawa K, Inoue H, Ohtsuka E, Ikehara M. Effect of mutagenesis at each of five histidine residues on enzymatic activity and stability of ribonuclease H from Escherichia coli. Eur J Biochem. 1991;198:437–40.

    Article  Google Scholar 

  31. Bentley GA, Brange J, Derewenda Z, Dodson EJ, Dodson GG, Markussen J, Wilkinson AJ, Wollmer A. Role of B13 Glu in insulin assembly. The hexamer structure of recombinant mutant (B13 Glu → Gln) insulin. J Mol Biol. 1992;228:1163–76.

    Article  Google Scholar 

  32. Wei L, Jiang P, Yau YH, Summer H, Shocha SG, Mu Y, Pervushin K. Residual structure in islet amyloid polypeptide mediates its interactions with soluble insulin. Biochemistry. 2009;48:2368–76.

    Article  Google Scholar 

  33. Piao X, Bernstein A. A point mutation in the catalytic domain of c-kit induces growth factor independence, tumorigenicity, and differentiation of mast cells. Blood. 1996;87:3117–23.

    Google Scholar 

  34. Fernández A. Packing defects functionalize soluble proteins. FEBS Lett. 2015;589:967–73.

    Article  Google Scholar 

  35. Fernández Stigliano A. Breakdown of the Debye polarization ansatz at protein-water interfaces. J Chem Phys. 2013;138:225103.

    Article  ADS  Google Scholar 

  36. Mobley DL, Barber AE, Fennell CJ, Dill KA. Charge asymmetries in hydration of polar solutes. J Phys Chem B. 2008;112:2405–14.

    Article  Google Scholar 

  37. Magalhaes A, Maigret B, Hoflack J, Gomes JN, Scheraga HA. Contribution of unusual arginine-arginine short-range interactions to stabilization and recognition in proteins. J Protein Chem. 1994;13:195–215.

    Article  Google Scholar 

  38. Fernández Stigliano A. Biomolecular interfaces: interactions, functions and drug design, epilogue. Heidelberg: Springer; 2015.

    Book  Google Scholar 

  39. Garczarek F, Gerwert K. Functional waters in intraprotein proton transfer monitored by FTIR difference spectroscopy. Nature. 2006;439:109–12.

    Article  ADS  Google Scholar 

  40. Littlefield P, Liu L, Mysore V, Shan Y, Shaw DE, Jura N. Structural analysis of the EGFR/HER3 heterodimer reveals the molecular basis for activating HER3 mutations. Sci Signal. 2014;7:ra114.

    Article  Google Scholar 

  41. Gajiwala KS, Feng J, Ferre R, Ryan K, Brodsky O, Weinrich S, Kath JC, Stewart A. Insights into the aberrant activity of mutant EGFR kinase domain and drug recognition. Structure. 2013;21:209–19.

    Article  Google Scholar 

  42. Sutto L, Gervasio FL. Effects of oncogenic mutations on the conformational free-energy landscape of EGFR kinase. Proc Natl Acad Sci U S A. 2013;110:10616.

    Article  ADS  Google Scholar 

  43. Shan Y, Eastwood MP, Zhang X, Kim ET, Arkhipov A, Dror RO, Jumper J, Kuriyan J, Shaw DE. Oncogenic mutations counteract intrinsic disorder in the EGFR kinase and promote receptor dimerization. Cell. 2012;149:860–70.

    Article  Google Scholar 

  44. Yun CH, Boggon TJ, Li Y, Woo MS, Greulich H, Meyerson M, Eck MJ. Structures of lung cancer-derived EGFR mutants and inhibitor complexes: mechanism of activation and insights into differential inhibitor sensitivity. Cancer Cell. 2007;11:217–27.

    Article  Google Scholar 

  45. Dougherty DA, Ma JC. The cation-π interaction. Chem Rev. 1997;97:1303–24.

    Article  Google Scholar 

  46. Zhang X, Bruice TC. Enzymatic mechanism and product specificity of SET-domain protein lysine methyltransferases. Proc Natl Acad Sci U S A. 2008;105:5728–32.

    Article  ADS  Google Scholar 

  47. Scott LR, Fernández Stigliano A. Mismatched ions indicate quantum effects in proteins. The University of Chicago, Department of Computer Science Technical Report TR-2015-10; 2015.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Fernández, A. (2016). Catalytic Role of Dehydrons in Soluble Proteins: Biological Chemistry of Frustrated Interfacial Water. In: Physics at the Biomolecular Interface. Soft and Biological Matter. Springer, Cham. https://doi.org/10.1007/978-3-319-30852-4_7

Download citation

Publish with us

Policies and ethics