Skip to main content

Metabolic Production of H2O2 in Carcinogenesis and Cancer Treatment

  • Chapter
  • First Online:
Redox-Active Therapeutics

Abstract

The metabolic production of O2 •− and H2O2 in the presence of redox active metal ions is known to contribute to several steps involved with initiation, promotion, and progression of carcinogenesis that can induce genomic instability, promotion of the transformed phenotype, and rapid cancer cell growth as well as progression to an aggressively malignant phenotype. However, when the metabolic production of H2O2 can be further increased selectively in cancer vs. normal cells using pharmacological approaches, H2O2 can enhance tumoricidal responses to traditional cancer therapies by selectively increasing metabolic oxidative stress. In this way, the metabolic production of H2O2 can be considered as a double-edged sword that can exert both detrimental and beneficial effects in cancer biology and therapy. This chapter discusses critical mechanistic details surrounding the pleiotropic effects of H2O2-induced metabolic oxidative stress in cancer biology and therapy that could be used to develop novel biochemical rationales for controlling cancer in humans.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Warburg O. On the origin of cancer cells. Science. 1956;123(3191):309–14.

    Article  CAS  PubMed  Google Scholar 

  2. Weinhouse S, Warburg O, Burk D, Schade AL. On respiratory impairment in cancer cells. Science. 1956;124(3215):267–72.

    Article  CAS  PubMed  Google Scholar 

  3. Vander Heiden MG, Cantley LC, Thompson CB. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science. 2009;324(5930):1029–33. doi:10.1126/science.1160809. PMID: 19460998.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Salskov A, Tammisetti VS, Grierson J, Vesselle H. FLT: measuring tumor cell proliferation in vivo with positron emission tomography and 3′-deoxy-3′-[18F]fluorothymidine. Semin Nucl Med. 2007;37(6):429–39.

    Article  PubMed  Google Scholar 

  5. Shields AF, Grierson JR, Dohmen BM, Machulla HJ, Stayanoff JC, Lawhorn-Crews JM, Obradovich JE, Muzik O, Mangner TJ. Imaging proliferation in vivo with [F-18]FLT and positron emission tomography. Nat Med. 1998;4(11):1334–6. PMID: 9809561.

    Article  CAS  PubMed  Google Scholar 

  6. Maity A, Tuttle SW. 2-Deoxyglucose and radiosensitization: teaching an old DOG new tricks? Cancer Biol Ther. 2006;5(7):824–6. PMID: 16880734.

    Article  CAS  PubMed  Google Scholar 

  7. Weinhouse S. Isozyme alterations, gene regulation and the neoplastic transformation. Adv Enzyme Regul. 1983;21:369–86.

    Article  CAS  PubMed  Google Scholar 

  8. Fantin VR, St-Pierre J, Leder P. Attenuation of LDH-A expression uncovers a link between glycolysis, mitochondrial physiology, and tumor maintenance. Cancer Cell. 2006;9:425–34.

    Article  CAS  PubMed  Google Scholar 

  9. Springer EL. Comparative study of the cytoplasmic organelles of epithelial cell lines derived from human carcinomas and nonmalignant tissues. Cancer Res. 1980;40(3):803–17. PMID: 7193514.

    CAS  PubMed  Google Scholar 

  10. Bize IB, Oberley LW, Morris HP. Superoxide dismutase and superoxide radical in Morris hepatomas. Cancer Res. 1980;40(10):3686–93. PMID: 62546387.

    CAS  PubMed  Google Scholar 

  11. Ahmad IM, Aykin-Burns N, Sim JE, Walsh SA, Higashikubo R, Buettner GR, Venkataraman S, Mackey MA, Flanagan S, Oberley LW, Spitz DR. Mitochondrial O2 •− and H2O2 mediate glucose deprivation-induced cytotoxicity and oxidative stress in human cancer cells. J Biol Chem. 2005;280(6):4254–63. PMID: 15561720.

    Article  CAS  PubMed  Google Scholar 

  12. Aykin-Burns N, Ahmad IM, Zhu Y, Oberley L, Spitz DR. Increased levels of superoxide and hydrogen peroxide mediate the differential susceptibility of cancer cells vs. normal cells to glucose deprivation. Biochem J. 2009;418:29–37. PMID: 18937644 PMCID: PMC2678564.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Graham NA, Tahmasian M, Kohli B, Komisopoulou E, Zhu M, Vivanco I, Teitell MA, Wu H, Ribas A, Lo RS, Mellinghoff IK, Mischel PS, Graeber TG. Glucose deprivation activates a metabolic and signaling amplification loop leading to cell death. Mol Syst Biol. 2012;8:589. doi:10.1038/msb.2012.20.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Zhou D, Shao L, Spitz DR. Reactive oxygen species in normal and tumor stem cells. Adv Cancer Res. 2014;122:1–67. PMID:24974178 PMCID: PMC4207279.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Spitz DR, Azzam EI, Li JJ, Gius D. Metabolic oxidation/reduction reactions and cellular responses to ionizing radiation: a unifying concept in stress response biology. Cancer Metastasis Rev. 2004;23:311–22. PMID: 15197331.

    Article  CAS  PubMed  Google Scholar 

  16. Spitz DR, Sim JE, Ridnour LA, Galoforo SS, Lee YJ. Glucose deprivation-induced oxidative stress in human tumor cells: a fundamental defect in metabolism? Ann NY Acad Sci. 2000;899:349–62. PMID: 10863552.

    Article  CAS  PubMed  Google Scholar 

  17. Wallace DC. Mitochondria and cancer: Warburg addressed. Cold Spring Harb Symp Quant Biol. 2005;70:363–74. PMID: 16869773.

    Article  CAS  PubMed  Google Scholar 

  18. Wallace DC. Why do we still have a maternally inherited mitochondrial DNA? Insights from evolutionary medicine. Annu Rev Biochem. 2007;76:781–821.

    Article  CAS  PubMed  Google Scholar 

  19. Ishikawa K, Takenaga K, Akimoto M, Koshikawa N, Yamaguchi A, Imanishi H, Nakada K, Honma Y, Hayashi J. ROS-generating mitochondrial DNA mutations can regulate tumor cell metastasis. Science. 2008;320(5876):661–4.

    Article  CAS  PubMed  Google Scholar 

  20. Polyak K, Li Y, Zhu H, Lengauer C, Willson JK, Markowitz SD, Trush MA, Kinzler KW, Vogelstein B. Somatic mutations of the mitochondrial genome in human colorectal tumours. Nat Genet. 1998;20(3):291–3. PMID: 9806551.

    Article  CAS  PubMed  Google Scholar 

  21. Liu VW, Shi HH, Cheung AN, Chiu PM, Leung TW, Nagley P, Wong LC, Ngan HY. High incidence of somatic mitochondrial DNA mutations in human ovarian carcinomas. Cancer Res. 2001;61(16):5998–6001. PMID: 11507041.

    CAS  PubMed  Google Scholar 

  22. Dasgupta S, Hoque MO, Upadhyay S, Sidransky D. Mitochondrial cytochrome B gene mutation promotes tumor growth in bladder cancer. Cancer Res. 2008;68(3):700–6. PMID: 18245469.

    Article  CAS  PubMed  Google Scholar 

  23. Roy K, Wu Y, Meitzler JL, Juhasz A, Liu H, Jiang G, Lu J, Antony S, Doroshow JH. NADPH oxidases and cancer. Clin Sci (Lond). 2015;128(12):863–75.

    Article  CAS  Google Scholar 

  24. Lambeth JD. Nox enzymes, ROS, and chronic disease: an example of antagonistic pleiotropy. Free Radic Biol Med. 2007;43(3):332–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kamata T. Roles of Nox1 and other Nox isoforms in cancer development. Cancer Sci. 2009;100(8):1382–8. PMID: 19493276.

    Article  CAS  PubMed  Google Scholar 

  26. Heard JJ, Fong V, Bathaie SZ, Tamanoi F. Recent progress in the study of the Rheb family GTPases. Cell Signal. 2014;26(9):1950–7. PMID: 24863881.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wen X, Wu J, Wang F, Liu B, Huang C, Wei Y. Deconvoluting the role of reactive oxygen species and autophagy in human diseases. Free Radic Biol Med. 2013;65:402–10.

    Article  CAS  PubMed  Google Scholar 

  28. Wells PG, McCallum GP, Chen CS, Henderson JT, Lee CJ, Perstin J, Preston TJ, Wiley MJ, Wong AW. Oxidative stress in developmental origins of disease: teratogenesis, neurodevelopmental deficits, and cancer. Toxicol Sci. 2009;108(1):4–18. PMID: 19126598.

    Article  CAS  PubMed  Google Scholar 

  29. Finkel T. Intracellular redox regulation by the family of small GTPases. Antioxid Redox Signal. 2006;8(9–10):1857–63. PMID: 16987038.

    Article  CAS  PubMed  Google Scholar 

  30. Bellot GL, Liu D, Pervaiz S. ROS, autophagy, mitochondria and cancer: Ras, the hidden master? Mitochondrion. 2013;13(3):155–62. doi:10.1016/j.mito.2012.06.007. PMID: 22750269.

    Article  CAS  PubMed  Google Scholar 

  31. Szent-Györgyi A. Towards a new biochemistry? Science. 1941;93(2426):609–11. PMID: 17841996.

    Article  PubMed  Google Scholar 

  32. Szent-Gyorgyi A. Molecules, electrons and biology. Trans N Y Acad Sci. 1969;31(4):334–40. PMID:5257509.

    Article  CAS  PubMed  Google Scholar 

  33. Szent-Györgyi A. Electronic biology and its relation to cancer. Life Sci. 1974;15(5):863–75. PMID: 4620969.

    Article  PubMed  Google Scholar 

  34. Szent-Györgyi A. Electronic biology and cancer. New York: Marcel Decker; 1976. p. 34–5.

    Google Scholar 

  35. Patt HM, Tyree EB, Straube RL, Smith DE. Cysteine protection against X irradiation. Science. 1949;110(2852):213–4. PMID: 17811258.

    Article  CAS  PubMed  Google Scholar 

  36. Gerschman R, Gilbert DL, Nye SW, Dwyer P, Fenn WO. Oxygen poisoning and x-irradiation: a mechanism in common. Science. 1954;119(3097):623–6. PMID: 13156638.

    Article  CAS  PubMed  Google Scholar 

  37. Harman D. Prolongation of the normal lifespan and inhibition of spontaneous cancer by antioxidants. J Gerontol. 1961;16:247–54. PMID: 13711616.

    Article  CAS  PubMed  Google Scholar 

  38. Oberley LW, Oberley TD, Buettner GR. Cell differentiation, aging and cancer: the possible roles of superoxide and superoxide dismutases. Med Hypotheses. 1980;6(3):249–68. PMID: 6253771.

    Article  CAS  PubMed  Google Scholar 

  39. Oberley LW, Oberley TD, Buettner GR. Cell division in normal and transformed cells: the possible role of superoxide and hydrogen peroxide. Med Hypotheses. 1981;7(1):21–42. PMID: 6259499.

    Article  CAS  PubMed  Google Scholar 

  40. Woo DK, Shadel GS. Mitochondrial stress signals revise an old aging theory. Cell. 2011;144(1):11–2. doi:10.1016/j.cell.2010.12.023.

    Article  CAS  PubMed  Google Scholar 

  41. Treiber N, Maity P, Singh K, Kohn M, Keist AF, Ferchiu F, Sante L, Frese S, Bloch W, Kreppel F, Kochanek S, Sindrilaru A, Iben S, Högel J, Ohnmacht M, Claes LE, Ignatius A, Chung JH, Lee MJ, Kamenisch Y, Berneburg M, Nikolaus T, Braunstein K, Sperfeld AD, Ludolph AC, Briviba K, Wlaschek M, Florin L, Angel P, Scharffetter-Kochanek K. Accelerated aging phenotype in mice with conditional deficiency for mitochondrial superoxide dismutase in the connective tissue. Aging Cell. 2011;10(2):239–54. PMID 21108731.

    Article  CAS  PubMed  Google Scholar 

  42. Schriner SE, Linford NJ, Martin GM, Treuting P, Ogburn CE, Emond M, Coskun PE, Ladiges W, Wolf N, Van Remmen H, Wallace DC, Rabinovitch PS. Extension of murine life span by overexpression of catalase targeted to mitochondria. Science. 2005;308(5730):1909–11. PMID: 15879174.

    Article  CAS  PubMed  Google Scholar 

  43. Holmström KM, Finkel T. Cellular mechanisms and physiological consequences of redox-dependent signaling. Nat Rev Mol Cell Biol. 2014;15(6):411–21. PMID: 24854789.

    Article  PubMed  CAS  Google Scholar 

  44. Lu T, Finkel T. Free radicals and senescence. Exp Cell Res. 2008;314(9):1918–22. doi:10.1016/j.yexcr.2008.01.011. PMID: 18282568.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Oberley LW, Buettner GR. Role of superoxide dismutase in cancer: a review. Cancer Res. 1979;39(4):1141–9. PMID: 217531.

    CAS  PubMed  Google Scholar 

  46. Church SL, Grant JW, Ridnour LA, Oberley LW, Swanson PE, Meltzer PS, Trent JM. Increased manganese superoxide dismutase expression suppresses the malignant phenotype of human melanoma cells. Proc Natl Acad Sci U S A. 1993;90(7):3113–7. PMID: 8464931.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Urano M, Kuroda M, Reynolds R, Oberley TD, St Clair DK. Expression of manganese superoxide dismutase reduces tumor control radiation dose: gene-radiotherapy. Cancer Res. 1995;55(12):2490–3. PMID: 7780953.

    CAS  PubMed  Google Scholar 

  48. Oberley LW, Rogers KL, Schutt L, Oberley TD, Leuthauser SW, Sorenson JR. Possible role of glutathione in the antitumor effect of a copper-containing synthetic superoxide dismutase in mice. J Natl Cancer Inst. 1983;71(5):1089–94. PMID: 6580486.

    CAS  PubMed  Google Scholar 

  49. Leuthauser SW, Oberley LW, Oberley TD, Sorenson JR, Ramakrishna K. Antitumor effect of a copper coordination compound with superoxide dismutase-like activity. J Natl Cancer Inst. 1981;66(6):1077–81. PMID: 6941042.

    CAS  PubMed  Google Scholar 

  50. Brown DI, Griendling KK. Nox proteins in signal transduction. Free Radic Biol Med. 2009;47(9):1239–53. PMID: 19628035.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Pervaiz S, Clement MV. Superoxide anion: oncogenic reactive oxygen species? Int J Biochem Cell Biol. 2007;39(7–8):1297–304. PMID: 17531522.

    Article  CAS  PubMed  Google Scholar 

  52. Hitchler MJ, Domann FE. Metabolic defects provide a spark for the epigenetic switch in cancer. Free Radic Biol Med. 2009;47(2):115–27. PMID: 19362589.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Hitchler MJ, Domann FE. Redox regulation of the epigenetic landscape in cancer: a role for metabolic reprogramming in remodeling the epigenome. Free Radic Biol Med. 2012;53(11):2178–87. PMID: 23022407.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Buettner GR. Superoxide dismutase in redox biology: the roles of superoxide and hydrogen peroxide. Anticancer Agents Med Chem. 2011;11(4):341–6. PMID: 21453242.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Gius D, Spitz DR. Redox signaling in cancer biology. Antioxid Redox Signal. 2006;8(7–8):1249–52. PMID: 16910772.

    Article  CAS  PubMed  Google Scholar 

  56. Sarsour EH, Kumar MG, Chaudhuri L, Kalen AL, Goswami PC. Redox control of the cell cycle in health and disease. Antioxid Redox Signal. 2009;11(12):2985–3011. PMID: 19505186.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Menon SG, Goswami PC. A redox cycle within the cell cycle: ring in the old with the new. Oncogene. 2007;26(8):1101–9. PMID: 16924237.

    Article  CAS  PubMed  Google Scholar 

  58. Schafer FQ, Buettner GR. Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple. Free Radic Biol Med. 2001;30(11):1191–212. PMID: 11368918.

    Article  CAS  PubMed  Google Scholar 

  59. Niethammer P, Grabher C, Look AT, Mitchison TJ. A tissue-scale gradient of hydrogen peroxide mediates rapid wound detection in zebrafish. Nature. 2009;459(7249):996–9. PMID: 19494811.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Chance B, Sies H, Boveris A. Hydroperoxide metabolism in mammalian organs. Physiol Rev. 1979;59(3):527–605. PMID: 37532.

    CAS  PubMed  Google Scholar 

  61. Halliwell B. Reactive oxygen species and the central nervous system. J Neurochem. 1992;59(5):1609–23. PMID: 1402908.

    Article  CAS  PubMed  Google Scholar 

  62. Dringen R, Pawlowski PG, Hirrlinger J. Peroxide detoxification by brain cells. J Neurosci Res. 2005;79(1–2):157–65. PMID: 15573410.

    Article  CAS  PubMed  Google Scholar 

  63. Rhee SG. Cell signaling. H2O2, a necessary evil for cell signaling. Science. 2006;312(5782):1882–3. PMID: 16809515.

    Article  PubMed  Google Scholar 

  64. Mishina NM, Tyurin-Kuzmin PA, Markvicheva KN, Vorotnikov AV, Tkachuk VA, Laketa V, Schultz C, Lukyanov S, Belousov VV. Does cellular hydrogen peroxide diffuse or act locally? Antioxid Redox Signal. 2011;14(1):1–7. PMID: 20690882.

    Article  CAS  PubMed  Google Scholar 

  65. Szatrowski TP, Nathan CF. Production of large amounts of hydrogen peroxide by human tumor cells. Cancer Res. 1991;51(3):794–8. PMID: 1846317.

    CAS  PubMed  Google Scholar 

  66. Zhu P, Tan MJ, Huang RL, Tan CK, Chong HC, Pal M, Lam CR, Boukamp P, Pan JY, Tan SH, Kersten S, Li HY, Ding JL, Tan NS. Angiopoietin-like 4 protein elevates the prosurvival intracellular O2 •−:H2O2 ratio and confers anoikis resistance to tumors. Cancer Cell. 2011;19(3):401–15. PMID: 21397862.

    Article  CAS  PubMed  Google Scholar 

  67. Bienert GP, Møller AL, Kristiansen KA, Schulz A, Møller IM, Schjoerring JK, Jahn TP. Specific aquaporins facilitate the diffusion of hydrogen peroxide across membranes. J Biol Chem. 2007;282(2):1183–92. PMID: 17105724.

    Article  CAS  PubMed  Google Scholar 

  68. Bienert GP, Schjoerring JK, Jahn TP. Membrane transport of hydrogen peroxide. Biochim Biophys Acta. 2006;1758(8):994–1003. PMID: 16566894.

    Article  CAS  PubMed  Google Scholar 

  69. Miller EW, Dickinson BC, Chang CJ. Aquaporin-3 mediates hydrogen peroxide uptake to regulate downstream intracellular signaling. Proc Natl Acad Sci U S A. 2010;107(36):15681–6. PMID: 20724658.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Bertolotti M, Bestetti S, García-Manteiga JM, Medraño-Fernandez I, Dal Mas A, Malosio ML, Sitia R. Tyrosine kinase signal modulation: a matter of H2O2 membrane permeability? Antioxid Redox Signal. 2013;19(13):1447–51. PMID: 23541115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Freese E, Sklarow S, Freese EB. DNA damage caused by antidepressant hydrazines and related drugs. Mutat Res. 1968;5(3):343–8. PMID: 5727268.

    Article  CAS  PubMed  Google Scholar 

  72. Jonas SK, Riley PA, Willson RL. Hydrogen peroxide cytotoxicity. Low-temperature enhancement by ascorbate or reduced lipoate. Biochem J. 1989;264(3):651–5. PMID: 2515850.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Toyokuni S, Sagripanti JL. Iron-mediated DNA damage: sensitive detection of DNA strand breakage catalyzed by iron. J Inorg Biochem. 1992;47(3–4):241–8. PMID: 1431883.

    Article  CAS  PubMed  Google Scholar 

  74. Nyaga SG, Jaruga P, Lohani A, Dizdaroglu M, Evans MK. Accumulation of oxidatively induced DNA damage in human breast cancer cell lines following treatment with hydrogen peroxide. Cell Cycle. 2007;6(12):1472–8. PMID: 17568196.

    Article  CAS  PubMed  Google Scholar 

  75. Hartman PS, Eisenstark A. Killing of Escherichia coli K-12 by near-ultraviolet radiation in the presence of hydrogen peroxide: role of double-strand DNA breaks in absence of recombinational repair. Mutat Res. 1980;72(1):31–42. PMID: 7003364.

    Article  CAS  PubMed  Google Scholar 

  76. Meneghini R, Hoffmann ME. The damaging action of hydrogen peroxide on DNA of human fibroblasts is mediated by a non-dialyzable compound. Biochim Biophys Acta. 1980;608(1):167–73. PMID: 7388029.

    Article  CAS  PubMed  Google Scholar 

  77. Ward JF, Blakely WF, Joner EI. Mammalian cells are not killed by DNA single-strand breaks caused by hydroxyl radicals from hydrogen peroxide. Radiat Res. 1985;103(3):383–92. PMID: 2994167.

    Article  CAS  PubMed  Google Scholar 

  78. Aruoma OI, Halliwell B, Gajewski E, Dizdaroglu M. Copper-ion-dependent damage to the bases in DNA in the presence of hydrogen peroxide. Biochem J. 1991;273:601–4. PMID: 1899997.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Galloway SM, Painter RB. Vitamin C is positive in the DNA synthesis inhibition and sister-chromatid exchange tests. Mutat Res. 1979;60(3):321–7. PMID: 481430.

    Article  CAS  PubMed  Google Scholar 

  80. Hunt CR, Sim JE, Sullivan SJ, Featherstone T, Golden W, Von Kapp-Herr C, Hock RA, Gomez RA, Parsian AJ, Spitz DR. Genomic instability and catalase gene amplification induced by chronic exposure to oxidative stress. Cancer Res. 1998;58(17):3986–92. PMID: 9731512.

    CAS  PubMed  Google Scholar 

  81. Dayal D, Martin SM, Limoli CL, Spitz DR. Hydrogen peroxide mediates the radiation-induced mutator phenotype in mammalian cells. Biochem J. 2008;413(1):185–91. PMID: 18352860.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Fridlich R, Annamalai D, Roy R, Bernheim G, Powell SN. BRCA1 and BRCA2 protect against oxidative DNA damage converted into double-strand breaks during DNA replication. DNA Repair (Amst). 2015;30:11–20. PMID: 25836596.

    Article  CAS  Google Scholar 

  83. Kennedy AR, Troll W, Little JB. Role of free radicals in the initiation and promotion of radiation transformation in vitro. Carcinogenesis. 1984;5(10):1213–8. PMID: 6488446.

    Article  CAS  PubMed  Google Scholar 

  84. Zimmerman R, Cerutti P. Active oxygen acts as a promoter of transformation in mouse embryo C3H/10T1/2/C18 fibroblasts. Proc Natl Acad Sci U S A. 1984;81(7):2085–7. PMID: 6425826.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Nakamura Y, Colburn NH, Gindhart TD. Role of reactive oxygen in tumor promotion: implication of superoxide anion in promotion of neoplastic transformation in JB-6 cells by TPA. Carcinogenesis. 1985;6(2):229–35. PMID: 2982513.

    Article  CAS  PubMed  Google Scholar 

  86. Ames BN. Dietary carcinogens and anticarcinogens. Oxygen radicals and degenerative diseases. Science. 1983;221(4617):1256–64. PMID: 6351251.

    Article  CAS  PubMed  Google Scholar 

  87. Zieba M, Suwalski M, Kwiatkowska S, Piasecka G, Grzelewska-Rzymowska I, Stolarek R, Nowak D. Comparison of hydrogen peroxide generation and the content of lipid peroxidation products in lung cancer tissue and pulmonary parenchyma. Respir Med. 2000;94(8):800–5. PMID: 10955757.

    Article  CAS  PubMed  Google Scholar 

  88. Lim SD, Sun C, Lambeth JD, Marshall F, Amin M, Chung L, Petros JA, Arnold RS. Increased Nox1 and hydrogen peroxide in prostate cancer. Prostate. 2005;62(2):200–7. PMID: 15389790.

    Article  CAS  PubMed  Google Scholar 

  89. Arbiser JL, Petros J, Klafter R, Govindajaran B, McLaughlin ER, Brown LF, Cohen C, Moses M, Kilroy S, Arnold RS, Lambeth JD. Reactive oxygen generated by Nox1 triggers the angiogenic switch. Proc Natl Acad Sci U S A. 2002;99(2):715–20. PMID: 11805326.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Slane BG, Aykin-Burns N, Smith BJ, Kalen AL, Goswami PC, Domann FE, Spitz DR. Mutation of succinate dehydrogenase subunit C results in increased O2.-, oxidative stress, and genomic instability. Cancer Res. 2006;66(15):7615–20. PMID: 16885361.

    Article  CAS  PubMed  Google Scholar 

  91. Owens KM, Aykin-Burns N, Dayal D, Coleman MC, Domann FE, Spitz DR. Genomic instability induced by mutant succinate dehydrogenase subunit D (SDHD) is mediated by O2 •−and H2O2. Free Radic Biol Med. 2012;52(1):160–6. PMID: 22041456.

    Article  CAS  PubMed  Google Scholar 

  92. Polytarchou C, Hatziapostolou M, Papadimitriou E. Hydrogen peroxide stimulates proliferation and migration of human prostate cancer cells through activation of activator protein-1 and up-regulation of the heparin affin regulatory peptide gene. J Biol Chem. 2005;280(49):40428–35. PMID: 16199533.

    Article  CAS  PubMed  Google Scholar 

  93. Nelson KK, Ranganathan AC, Mansouri J, Rodriguez AM, Providence KM, Rutter JL, Pumiglia K, Bennett JA, Melendez JA. Elevated sod2 activity augments matrix metalloproteinase expression: evidence for the involvement of endogenous hydrogen peroxide in regulating metastasis. Clin Cancer Res. 2003;9(1):424–32. PMID: 12538496.

    CAS  PubMed  Google Scholar 

  94. Nishikawa M, Tamada A, Hyoudou K, Umeyama Y, Takahashi Y, Kobayashi Y, Kumai H, Ishida E, Staud F, Yabe Y, Takakura Y, Yamashita F, Hashida M. Inhibition of experimental hepatic metastasis by targeted delivery of catalase in mice. Clin Exp Metastasis. 2004;21(3):213–21. PMID: 15387371.

    Article  CAS  PubMed  Google Scholar 

  95. del Bello B, Paolicchi A, Comporti M, Pompella A, Maellaro E. Hydrogen peroxide produced during gamma-glutamyl transpeptidase activity is involved in prevention of apoptosis and maintenance of proliferation in U937 cells. FASEB J. 1999;13(1):69–79. PMID: 9872931.

    PubMed  Google Scholar 

  96. Qian Y, Luo J, Leonard SS, Harris GK, Millecchia L, Flynn DC, Shi X. Hydrogen peroxide formation and actin filament reorganization by Cdc42 are essential for ethanol-induced in vitro angiogenesis. J Biol Chem. 2003;278(18):16189–97. PMID:12598535.

    Article  CAS  PubMed  Google Scholar 

  97. Kobayashi Y, Nishikawa M, Hyoudou K, Yamashita F, Hashida M. Hydrogen peroxide-mediated nuclear factor kappaB activation in both liver and tumor cells during initial stages of hepatic metastasis. Cancer Sci. 2008;99(8):1546–52. PMID: 18754865.

    Article  CAS  PubMed  Google Scholar 

  98. Groeger G, Quiney C, Cotter TG. Hydrogen peroxide as a cell-survival signaling molecule. Antioxid Redox Signal. 2009;11(11):2655–71. PMID: 19558209.

    Article  CAS  PubMed  Google Scholar 

  99. Kaewpila S, Venkataraman S, Buettner GR, Oberley LW. Manganese superoxide dismutase modulates hypoxia-inducible factor-1 alpha induction via superoxide. Cancer Res. 2008;68(8):2781–8. PMID: 18413745.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Wang M, Kirk JS, Venkataraman S, Domann FE, Zhang HJ, Schafer FQ, Flanagan SW, Weydert CJ, Spitz DR, Buettner GR, Oberley LW. Manganese superoxide dismutase suppresses hypoxic induction of hypoxia-inducible factor-1alpha and vascular endothelial growth factor. Oncogene. 2005;24(55):8154–66. PMID: 16170370.

    CAS  PubMed  Google Scholar 

  101. Giorgio M, Trinei M, Migliaccio E, Pelicci PG. Hydrogen peroxide: a metabolic by-product or a common mediator of ageing signals? Nat Rev Mol Cell Biol. 2007;8(9):722–8. PMID: 17700625.

    Article  CAS  PubMed  Google Scholar 

  102. Oliveira-Marques V, Marinho HS, Cyrne L, Antunes F. Role of hydrogen peroxide in NF-kappaB activation: from inducer to modulator. Antioxid Redox Signal. 2009;11(9):2223–43. PMID: 19496701.

    Article  CAS  PubMed  Google Scholar 

  103. Ma HP. Hydrogen peroxide stimulates the epithelial sodium channel through a phosphatidylinositide 3-kinase-dependent pathway. J Biol Chem. 2011;286(37):32444–53. PMID: 21795700.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Toullec A, Gerald D, Despouy G, Bourachot B, Cardon M, Lefort S, Richardson M, Rigaill G, Parrini MC, Lucchesi C, Bellanger D, Stern MH, Dubois T, Sastre-Garau X, Delattre O, Vincent-Salomon A, Mechta-Grigoriou F. Oxidative stress promotes myofibroblast differentiation and tumour spreading. EMBO Mol Med. 2010;2(6):211–30. PMID: 20535745.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Chandel NS, McClintock DS, Feliciano CE, Wood TM, Melendez JA, Rodriguez AM, Schumacker PT. Reactive oxygen species generated at mitochondrial complex III stabilize hypoxia-inducible factor-1alpha during hypoxia: a mechanism of O2 sensing. J Biol Chem. 2000;275(33):25130–8. PMID: 10833514.

    Article  CAS  PubMed  Google Scholar 

  106. Haddad JJ, Land SC. A non-hypoxic, ROS-sensitive pathway mediates TNF-alpha-dependent regulation of HIF-1alpha. FEBS Lett. 2001;505(2):269–74. PMID: 11566189.

    Article  CAS  PubMed  Google Scholar 

  107. Guzy RD, Hoyos B, Robin E, Chen H, Liu L, Mansfield KD, Simon MC, Hammerling U, Schumacker PT. Mitochondrial complex III is required for hypoxia-induced ROS production and cellular oxygen sensing. Cell Metab. 2005;1(6):401–8. PMID: 16054089.

    Article  CAS  PubMed  Google Scholar 

  108. Semenza GL. Targeting HIF-1 for cancer therapy. Nat Rev Cancer. 2003;3(10):721–32. PMID: 13130303.

    Article  CAS  PubMed  Google Scholar 

  109. Lee AC, Fenster BE, Ito H, Takeda K, Bae NS, Hirai T, Yu ZX, Ferrans VJ, Howard BH, Finkel T. Ras proteins induce senescence by altering the intracellular levels of reactive oxygen species. J Biol Chem. 1999;274(12):7936–40. PMID: 10075689.

    Article  CAS  PubMed  Google Scholar 

  110. Yang JQ, Buettner GR, Domann FE, Li Q, Engelhardt JF, Weydert CD, Oberley LW. v-Ha-ras mitogenic signaling through superoxide and derived reactive oxygen species. Mol Carcinog. 2002;33(4):206–18. PMID: 11933074.

    Article  CAS  PubMed  Google Scholar 

  111. Yang JQ, Li S, Domann FE, Buettner GR, Oberley LW. Superoxide generation in v-Ha-ras-transduced human keratinocyte HaCaT cells. Mol Carcinog. 1999;26(3):180–8. PMID: 10559793.

    Article  CAS  PubMed  Google Scholar 

  112. Hole PS, Pearn L, Tonks AJ, James PE, Burnett AK, Darley RL, Tonks A. Ras-induced reactive oxygen species promote growth factor-independent proliferation in human CD34+ hematopoietic progenitor cells. Blood. 2010;115(6):1238–46. PMID: 20007804.

    Article  CAS  PubMed  Google Scholar 

  113. Feng Y, Santoriello C, Mione M, Hurlstone A, Martin P. Live imaging of innate immune cell sensing of transformed cells in zebrafish larvae: parallels between tumor initiation and wound inflammation. PLoS Biol. 2010;8(12), e1000562. PMID: 21179501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Arnold RS, Shi J, Murad E, Whalen AM, Sun CQ, Polavarapu R, Parthasarathy S, Petros JA, Lambeth JD. Hydrogen peroxide mediates the cell growth and transformation caused by the mitogenic oxidase Nox1. Proc Natl Acad Sci U S A. 2001;98(10):5550–5. PMID: 11331784.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Alexandrova AY, Kopnin PB, Vasiliev JM, Kopnin BP. ROS up-regulation mediates Ras-induced changes of cell morphology and motility. Exp Cell Res. 2006;312(11):2066–73. PMID: 16624288.

    Article  CAS  PubMed  Google Scholar 

  116. Hempel N, Ye H, Abessi B, Mian B, Melendez JA. Altered redox status accompanies progression to metastatic human bladder cancer. Free Radic Biol Med. 2009;46(1):42–50. PMID: 18930813.

    Article  CAS  PubMed  Google Scholar 

  117. Lisanti MP, Martinez-Outschoorn UE, Lin Z, Pavlides S, Whitaker-Menezes D, Pestell RG, Howell A, Sotgia F. Hydrogen peroxide fuels aging, inflammation, cancer metabolism and metastasis: the seed and soil also needs “fertilizer”. Cell Cycle. 2011;10(15):2440–9. PMID: 21734470.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Ishii K, Zhen LX, Wang DH, Funamori Y, Ogawa K, Taketa K. Prevention of mammary tumorigenesis in acatalasemic mice by vitamin E supplementation. Jpn J Cancer Res. 1996;87(7):680–4. PMID: 8698615.

    Article  CAS  PubMed  Google Scholar 

  119. Ahn J, Gammon MD, Santella RM, Gaudet MM, Britton JA, Teitelbaum SL, Terry MB, Nowell S, Davis W, Garza C, Neugut AI, Ambrosone CB. Associations between breast cancer risk and the catalase genotype, fruit and vegetable consumption, and supplement use. Am J Epidemiol. 2005;162(10):943–52. PMID: 16192345.

    Article  PubMed  Google Scholar 

  120. Hyoudou K, Nishikawa M, Ikemura M, Kobayashi Y, Mendelsohn A, Miyazaki N, Tabata Y, Yamashita F, Hashida M. Prevention of pulmonary metastasis from subcutaneous tumors by binary system-based sustained delivery of catalase. J Control Release. 2009;137(2):110–5. PMID: 19361547.

    Article  CAS  PubMed  Google Scholar 

  121. Hyoudou K, Nishikawa M, Kobayashi Y, Umeyama Y, Yamashita F, Hashida M. PEGylated catalase prevents metastatic tumor growth aggravated by tumor removal. Free Radic Biol Med. 2006;41(9):1449–58. PMID: 17023272.

    Article  CAS  PubMed  Google Scholar 

  122. Nishikawa M, Tamada A, Kumai H, Yamashita F, Hashida M. Inhibition of experimental pulmonary metastasis by controlling biodistribution of catalase in mice. Int J Cancer. 2002;99(3):474–9. PMID: 11992420.

    Article  CAS  PubMed  Google Scholar 

  123. Goh J, Enns L, Fatemie S, Hopkins H, Morton J, Pettan-Brewer C, Ladiges W. Mitochondrial targeted catalase suppresses invasive breast cancer in mice. BMC Cancer. 2011;11:191. PMID: 21605372.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Brigelius-Flohé R, Maiorino M. Glutathione peroxidases. Biochim Biophys Acta. 2013;1830(5):3289–303. PMID: 23201771.

    Article  PubMed  CAS  Google Scholar 

  125. Mishra M, Jiang H, Wu L, Chawsheen HA, Wei Q. The sulfiredoxin-peroxiredoxin (Srx-Prx) axis in cell signal transduction and cancer development. Cancer Lett. 2015;366(2):150–9. PMID: 26170166.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Liu J, Du J, Zhang Y, Sun W, Smith BJ, Oberley LW, Cullen JJ. Suppression of the malignant phenotype in pancreatic cancer by overexpression of phospholipid hydroperoxide glutathione peroxidase. Hum Gene Ther. 2006;17(1):105–16. PMID: 16409129.

    Article  CAS  PubMed  Google Scholar 

  127. Liu J, Hinkhouse MM, Sun W, Weydert CJ, Ritchie JM, Oberley LW, Cullen JJ. Redox regulation of pancreatic cancer cell growth: role of glutathione peroxidase in the suppression of the malignant phenotype. Hum Gene Ther. 2004;15(3):239–50. PMID: 15018733.

    Article  CAS  PubMed  Google Scholar 

  128. Brigelius-Flohé R, Kipp A. Glutathione peroxidases in different stages of carcinogenesis. Biochim Biophys Acta. 2009;1790(11):1555–68. PMID: 19289149.

    Article  PubMed  CAS  Google Scholar 

  129. Jiang H, Wu L, Mishra M, Chawsheen HA, Wei Q. Expression of peroxiredoxin 1 and 4 promotes human lung cancer malignancy. Am J Cancer Res. 2014;4(5):445–60. PMID: 25232487.

    PubMed  PubMed Central  Google Scholar 

  130. Jezierska-Drutel A, Rosenzweig SA, Neumann CA. Role of oxidative stress and the microenvironment in breast cancer development and progression. Adv Cancer Res. 2013;119:107–25. PMID: 23870510.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Martinez-Outschoorn UE, Balliet RM, Rivadeneira DB, Chiavarina B, Pavlides S, Wang C, Whitaker-Menezes D, Daumer KM, Lin Z, Witkiewicz AK, Flomenberg N, Howell A, Pestell RG, Knudsen ES, Sotgia F, Lisanti MP. Oxidative stress in cancer associated fibroblasts drives tumor-stroma co-evolution: a new paradigm for understanding tumor metabolism, the field effect and genomic instability in cancer cells. Cell Cycle. 2010;9(16):3256–76. PMID: 20814239.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  132. Martinez-Outschoorn UE, Trimmer C, Lin Z, Whitaker-Menezes D, Chiavarina B, Zhou J, Wang C, Pavlides S, Martinez-Cantarin MP, Capozza F, Witkiewicz AK, Flomenberg N, Howell A, Pestell RG, Caro J, Lisanti MP, Sotgia F. Autophagy in cancer associated fibroblasts promotes tumor cell survival: Role of hypoxia, HIF1 induction and NFκB activation in the tumor stromal microenvironment. Cell Cycle. 2010;9(17):3515–33. PMID: 20855962.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Martinez-Outschoorn UE, Pavlides S, Whitaker-Menezes D, Daumer KM, Milliman JN, Chiavarina B, Migneco G, Witkiewicz AK, Martinez-Cantarin MP, Flomenberg N, Howell A, Pestell RG, Lisanti MP, Sotgia F. Tumor cells induce the cancer associated fibroblast phenotype via caveolin-1 degradation: implications for breast cancer and DCIS therapy with autophagy inhibitors. Cell Cycle. 2010;9(12):2423–33. PMID: 20562526.

    Article  CAS  PubMed  Google Scholar 

  134. Martinez-Outschoorn UE, Lin Z, Trimmer C, Flomenberg N, Wang C, Pavlides S, Pestell RG, Howell A, Sotgia F, Lisanti MP. Cancer cells metabolically “fertilize” the tumor microenvironment with hydrogen peroxide, driving the Warburg effect: implications for PET imaging of human tumors. Cell Cycle. 2011;10(15):2504–20. PMID: 2177882.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Chiavarina B, Whitaker-Menezes D, Migneco G, Martinez-Outschoorn UE, Pavlides S, Howell A, Tanowitz HB, Casimiro MC, Wang C, Pestell RG, Grieshaber P, Caro J, Sotgia F, Lisanti MP. HIF1-alpha functions as a tumor promoter in cancer associated fibroblasts, and as a tumor suppressor in breast cancer cells: autophagy drives compartment-specific oncogenesis. Cell Cycle. 2010;9(17):3534–51. PMID: 20864819.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Khan N, Afaq F, Mukhtar H. Cancer chemoprevention through dietary antioxidants: progress and promise. Antioxid Redox Signal. 2008;10(3):475–510. PMID: 18154485.

    Article  CAS  PubMed  Google Scholar 

  137. Rui Q, Komori K, Tian Y, Liu H, Luo Y, Sakai Y. Electrochemical biosensor for the detection of H2O2 from living cancer cells based on ZnO nanosheets. Anal Chim Acta. 2010;670(1–2):57–62. PMID: 20685417.

    Article  CAS  PubMed  Google Scholar 

  138. Stolarek RA, Potargowicz E, Seklewska E, Jakubik J, Lewandowski M, Jeziorski A, Nowak D. Increased H2O2 level in exhaled breath condensate in primary breast cancer patients. J Cancer Res Clin Oncol. 2010;136(6):923–30. PMID: 19967414.

    Article  CAS  PubMed  Google Scholar 

  139. Chan HP, Tran V, Lewis C, Thomas PS. Elevated levels of oxidative stress markers in exhaled breath condensate. J Thorac Oncol. 2009;4(2):172–8. PMID: 19179892.

    Article  PubMed  Google Scholar 

  140. Averill-Bates DA, Przybytkowski E. The role of glucose in cellular defenses against cytotoxicity of hydrogen peroxide in Chinese hamster ovary cells. Arch Biochem Biophys. 1994;312(1):52–8. PMID: 8031146.

    Article  CAS  PubMed  Google Scholar 

  141. DeBoer LW, Bekx PA, Han L, Steinke L. Pyruvate enhances recovery of rat hearts after ischemia and reperfusion by preventing free radical generation. Am J Physiol. 1993;265(5 Pt 2):H1571–6. PMID: 8238569.

    CAS  PubMed  Google Scholar 

  142. Salahudeen AK, Clark EC, Nath KA. Hydrogen peroxide-induced renal injury. A protective role for pyruvate. J Clin Invest. 1991;88(6):1886–93. PMID: 1752950.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Simons AL, Mattson DM, Dornfeld K, Spitz DR. Glucose deprivation-induced metabolic oxidative stress and cancer therapy. J Cancer Res Ther. 2009;5 Suppl 1:S2–6. PMID: 20009288.

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Lee YJ, Galoforo SS, Berns CM, Chen JC, Davis BH, Sim JE, Corry PM, Spitz DR. Glucose deprivation-induced cytotoxicity and alterations in mitogen-activated protein kinase activation are mediated by oxidative stress in multidrug-resistant human breast carcinoma cells. J Biol Chem. 1998;273(9):5294–9. PMID: 9478987.

    Article  CAS  PubMed  Google Scholar 

  145. Scarbrough PM, Mapuskar KA, Mattson DM, Gius D, Watson WH, Spitz DR. Simultaneous inhibition of glutathione- and thioredoxin-dependent metabolism is necessary to potentiate 17AAG-induced cancer cell killing via oxidative stress. Free Radic Biol Med. 2012;52(2):436–43. PMID: 22100505.

    Article  CAS  PubMed  Google Scholar 

  146. Fath MA, Ahmad IM, Smith CJ, Spence J, Spitz DR. Enhancement of carboplatin-mediated lung cancer cell killing by simultaneous disruption of glutathione and thioredoxin metabolism. Clin Cancer Res. 2011;17(19):6206–17. PMID: 21844013.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  147. Shutt DC, O’Dorisio MS, Aykin-Burns N, Spitz DR. 2-deoxy-D-glucose induces oxidative stress and cell killing in human neuroblastoma cells. Cancer Biol Ther. 2010;9(11):853–61. PMID: 20364116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Hadzic T, Aykin-Burns N, Zhu Y, Coleman MC, Leick K, Jacobson GM, Spitz DR. Paclitaxel combined with inhibitors of glucose and hydroperoxide metabolism enhances breast cancer cell killing via H2O2-mediated oxidative stress. Free Radic Biol Med. 2010;48(8):1024–33. PMID: 20083194.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Coleman MC, Asbury CR, Daniels D, Du J, Aykin-Burns N, Smith BJ, Li L, Spitz DR, Cullen JJ. 2-deoxy-D-glucose causes cytotoxicity, oxidative stress, and radiosensitization in pancreatic cancer. Free Radic Biol Med. 2008;44(3):322–31. PMID: 18215740.

    Article  CAS  PubMed  Google Scholar 

  150. Dornfeld K, Hopkins S, Simmons J, Spitz DR, Menda Y, Graham M, Smith R, Funk G, Karnell L, Karnell M, Dornfeld M, Yao M, Buatti J. Posttreatment FDG-PET uptake in the supraglottic and glottic larynx correlates with decreased quality of life after chemoradiotherapy. Int J Radiat Oncol Biol Phys. 2008;71(2):386–92. PMID: 18164842.

    Article  PubMed  Google Scholar 

  151. Ahmad IM, Abdalla MY, Aykin-Burns N, Simons AL, Oberley LW, Domann FE, Spitz DR. 2-Deoxyglucose combined with wild-type p53 overexpression enhances cytotoxicity in human prostate cancer cells via oxidative stress. Free Radic Biol Med. 2008;44(5):826–34. PMID: 18155176.

    Article  CAS  PubMed  Google Scholar 

  152. Simons AL, Fath MA, Mattson DM, Smith BJ, Walsh SA, Graham MM, Hichwa RD, Buatti JM, Dornfeld K, Spitz DR. Enhanced response of human head and neck cancer xenograft tumors to cisplatin combined with 2-deoxy-D-glucose correlates with increased 18F-FDG uptake as determined by PET imaging. Int J Radiat Oncol Biol Phys. 2007;69(4):1222–30. PMID: 17967311.

    Article  PubMed  PubMed Central  Google Scholar 

  153. Simons AL, Ahmad IM, Mattson DM, Dornfeld KJ, Spitz DR. 2-Deoxy-D-glucose combined with cisplatin enhances cytotoxicity via metabolic oxidative stress in human head and neck cancer cells. Cancer Res. 2007;67(7):3364–70. PMID: 17409446.

    Article  CAS  PubMed  Google Scholar 

  154. Lin X, Zhang F, Bradbury CM, Kaushal A, Li L, Spitz DR, Aft RL, Gius D. 2-Deoxy-D-glucose-induced cytotoxicity and radiosensitization in tumor cells is mediated via disruptions in thiol metabolism. Cancer Res. 2003;63(12):3413–7. PMID: 12810678.

    CAS  PubMed  Google Scholar 

  155. Holman RA. Method of destroying a malignant rat tumour in vivo. Nature. 1957;179(4568):1033. PMID: 13430783.

    Article  CAS  PubMed  Google Scholar 

  156. Jeffree GM. Hydrogen peroxide and cancer. Nature. 1958;182(4639):892. PMID: 13590164.

    Article  CAS  PubMed  Google Scholar 

  157. Nathan CF, Cohn ZA. Antitumor effects of hydrogen peroxide in vivo. J Exp Med. 1981;154(5):1539–53. PMID: 7299347.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Questionable methods of cancer management: hydrogen peroxide and other ‘hyperoxygenation’ therapies. CA Cancer J Clin. 1993; 43(1):47–56. PMID: 8422605.

    Google Scholar 

  159. Wondrak GT. Redox-directed cancer therapeutics: molecular mechanisms and opportunities. Antioxid Redox Signal. 2009;11(12):3013–69. PMID: 19496700.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Safford SE, Oberley TD, Urano M, St Clair DK. Suppression of fibrosarcoma metastasis by elevated expression of manganese superoxide dismutase. Cancer Res. 1994;54(16):4261–5. PMID: 8044768.

    CAS  PubMed  Google Scholar 

  161. Yan T, Oberley LW, Zhong W, St Clair DK. Manganese-containing superoxide dismutase overexpression causes phenotypic reversion in SV40-transformed human lung fibroblasts. Cancer Res. 1996;56(12):2864–71. PMID: 8665527.

    CAS  PubMed  Google Scholar 

  162. Zhang Y, Zhao W, Zhang HJ, Domann FE, Oberley LW. Overexpression of copper zinc superoxide dismutase suppresses human glioma cell growth. Cancer Res. 2002;62(4):1205–12. PMID: 11861405.

    CAS  PubMed  Google Scholar 

  163. Zhang HJ, Yan T, Oberley TD, Oberley LW. Comparison of effects of two polymorphic variants of manganese superoxide dismutase on human breast MCF-7 cancer cell phenotype. Cancer Res. 1999;59(24):6276–83. PMID: 10626823.

    CAS  PubMed  Google Scholar 

  164. Rodríguez AM, Carrico PM, Mazurkiewicz JE, Meléndez JA. Mitochondrial or cytosolic catalase reverses the MnSOD-dependent inhibition of proliferation by enhancing respiratory chain activity, net ATP production, and decreasing the steady state levels of H202. Free Radic Biol Med. 2000;29(9):801–13. PMID: 11063906.

    Article  PubMed  Google Scholar 

  165. Li S, Yan T, Yang JQ, Oberley TD, Oberley LW. The role of cellular glutathione peroxidase redox regulation in the suppression of tumor cell growth by manganese superoxide dismutase. Cancer Res. 2000;60(14):3927–39. PMID: 10919671.

    CAS  PubMed  Google Scholar 

  166. Buettner GR, Ng CF, Wang M, Rodgers VG, Schafer FQ. A new paradigm: manganese superoxide dismutase influences the production of H2O2 in cells and thereby their biological state. Free Radic Biol Med. 2006;41(8):1338–50. PMID: 17015180.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Ahmad KA, Iskandar KB, Hirpara JL, Clement MV, Pervaiz S. Hydrogen peroxide-mediated cytosolic acidification is a signal for mitochondrial translocation of Bax during drug-induced apoptosis of tumor cells. Cancer Res. 2004;64(21):7867–78. PMID: 15520193.

    Article  CAS  PubMed  Google Scholar 

  168. Ahmad KA, Clement MV, Hanif IM, Pervaiz S. Resveratrol inhibits drug-induced apoptosis in human leukemia cells by creating an intracellular milieu nonpermissive for death execution. Cancer Res. 2004;64(4):1452–9. PMID: 14973069.

    Article  CAS  PubMed  Google Scholar 

  169. Alexandre J, Nicco C, Chéreau C, Laurent A, Weill B, Goldwasser F, Batteux F. Improvement of the therapeutic index of anticancer drugs by the superoxide dismutase mimic mangafodipir. J Natl Cancer Inst. 2006;98(4):236–44. PMID: 16478742.

    Article  CAS  PubMed  Google Scholar 

  170. Mizutani H, Tada-Oikawa S, Hiraku Y, Kojima M, Kawanishi S. Mechanism of apoptosis induced by doxorubicin through the generation of hydrogen peroxide. Life Sci. 2005;76(13):1439–53. PMID: 15680309.

    Article  CAS  PubMed  Google Scholar 

  171. Wagner BA, Evig CB, Reszka KJ, Buettner GR, Burns CP. Doxorubicin increases intracellular hydrogen peroxide in PC3 prostate cancer cells. Arch Biochem Biophys. 2005;440(2):181–90. PMID: 16054588.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Kajiwara K, Ikeda K, Kuroi R, Hashimoto R, Tokumaru S, Kojo S. Hydrogen peroxide and hydroxyl radical involvement in the activation of caspase-3 in chemically induced apoptosis of HL-60 cells. Cell Mol Life Sci. 2001;58(3):485–91. PMID: 11315194.

    Article  CAS  PubMed  Google Scholar 

  173. Tome ME, Jaramillo MC, Briehl MM. Hydrogen peroxide signaling is required for glucocorticoid-induced apoptosis in lymphoma cells. Free Radic Biol Med. 2011;51(11):2048–59. PMID: 21964507.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Lee YS, Kang YS, Lee SH, Kim JA. Role of NAD(P)H oxidase in the tamoxifen-induced generation of reactive oxygen species and apoptosis in HepG2 human hepatoblastoma cells. Cell Death Differ. 2000;7(10):925–32. PMID: 11279538.

    Article  CAS  PubMed  Google Scholar 

  175. Cao L, Li LS, Spruell C, Xiao L, Chakrabarti G, Bey EA, Reinicke KE, Srougi MC, Moore Z, Dong Y, Vo P, Kabbani W, Yang CR, Wang X, Fattah F, Morales JC, Motea EA, Bornmann WG, Yordy JS, Boothman DA. Tumor-selective, futile redox cycle-induced bystander effects elicited by NQO1 bioactivatable radiosensitizing drugs in triple-negative breast cancers. Antioxid Redox Signal. 2014;21(2):237–50. PMID: 24512128.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Bey EA, Reinicke KE, Srougi MC, Varnes M, Anderson VE, Pink JJ, Li LS, Patel M, Cao L, Moore Z, Rommel A, Boatman M, Lewis C, Euhus DM, Bornmann WG, Buchsbaum DJ, Spitz DR, Gao J, Boothman DA. Catalase abrogates β-lapachone-induced PARP1 hyperactivation-directed programmed necrosis in NQO1-positive breast cancers. Mol Cancer Ther. 2013;12(10):2110–20. PMID: 23883585.

    Article  CAS  PubMed  Google Scholar 

  177. Chen Q, Espey MG, Krishna MC, Mitchell JB, Corpe CP, Buettner GR, Shacter E, Levine M. Pharmacologic ascorbic acid concentrations selectively kill cancer cells: action as a pro-drug to deliver hydrogen peroxide to tissues. Proc Natl Acad Sci U S A. 2005;102(38):13604–9. PMID: 16157892.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Chen Q, Espey MG, Sun AY, Pooput C, Kirk KL, Krishna MC, Khosh DB, Drisko J, Levine M. Pharmacologic doses of ascorbate act as a prooxidant and decrease growth of aggressive tumor xenografts in mice. Proc Natl Acad Sci U S A. 2008;105(32):11105–9. PMID: 18678913.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Chen Q, Espey MG, Sun AY, Lee JH, Krishna MC, Shacter E, Choyke PL, Pooput C, Kirk KL, Buettner GR, Levine M. Ascorbate in pharmacologic concentrations selectively generates ascorbate radical and hydrogen peroxide in extracellular fluid in vivo. Proc Natl Acad Sci U S A. 2007;104(21):8749–54. PMID: 17502596.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Du J, Martin SM, Levine M, Wagner BA, Buettner GR, Wang SH, Taghiyev AF, Du C, Knudson CM, Cullen JJ. Mechanisms of ascorbate-induced cytotoxicity in pancreatic cancer. Clin Cancer Res. 2010;16(2):509–20. PMID: 20068072.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Du J, Cieslak 3rd JA, Welsh JL, Sibenaller ZA, Allen BG, Wagner BA, Kalen AL, Doskey CM, Strother RK, Button AM, Mott SL, Smith B, Tsai S, Mezhir J, Goswami PC, Spitz DR, Buettner GR, Cullen JJ. Pharmacological ascorbate radiosensitizes pancreatic cancer. Cancer Res. 2015;75(16):3314–26. PMID: 26081808.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Cameron E, Pauling L. Supplemental ascorbate in the supportive treatment of cancer: reevaluation of prolongation of survival times in terminal human cancer. Proc Natl Acad Sci U S A. 1978;75(9):4538–42. PMID: 279931.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Creagan ET, Moertel CG, O’Fallon JR, Schutt AJ, O’Connell MJ, Rubin J, Frytak S. Failure of high-dose vitamin C (ascorbic acid) therapy to benefit patients with advanced cancer. A controlled trial. N Engl J Med. 1979;301(13):687–90. PMID: 384241.

    Article  CAS  PubMed  Google Scholar 

  184. Moertel CG, Fleming TR, Creagan ET, Rubin J, O’Connell MJ, Ames MM. High-dose vitamin C versus placebo in the treatment of patients with advanced cancer who have had no prior chemotherapy. A randomized double-blind comparison. N Engl J Med. 1985;312(3):137–41. PMID: 3880867.

    Article  CAS  PubMed  Google Scholar 

  185. Padayatty SJ, Sun H, Wang Y, Riordan HD, Hewitt SM, Katz A, Wesley RA, Levine M. Vitamin C pharmacokinetics: implications for oral and intravenous use. Ann Intern Med. 2004;140(7):533–7. PMID: 15068981.

    Article  CAS  PubMed  Google Scholar 

  186. Drisko JA, Chapman J, Hunter VJ. The use of antioxidants with first-line chemotherapy in two cases of ovarian cancer. J Am Coll Nutr. 2003;22(2):118–23. PMID: 12672707.

    Article  PubMed  Google Scholar 

  187. Riordan HD, Casciari JJ, González MJ, Riordan NH, Miranda-Massari JR, Taylor P, Jackson JA. A pilot clinical study of continuous intravenous ascorbate in terminal cancer patients. P R Health Sci J. 2005;24(4):269–76. PMID: 16570523.

    PubMed  Google Scholar 

  188. Welsh JL, Wagner BA, van’t Erve TJ, Zehr PS, Berg DJ, Halfdanarson TR, Yee NS, Bodeker KL, Du J, Roberts 2nd LJ, Drisko J, Levine M, Buettner GR, Cullen JJ. Pharmacological ascorbate with gemcitabine for the control of metastatic and node-positive pancreatic cancer (PACMAN): results from a phase I clinical trial. Cancer Chemother Pharmacol. 2013;71(3):765–75. PMID: 23381814.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Graumlich JF, Ludden TM, Conry-Cantilena C, Cantilena Jr LR, Wang Y, Levine M. Pharmacokinetic model of ascorbic acid in healthy male volunteers during depletion and repletion. Pharm Res. 1997;14(9):1133–9.

    Article  CAS  PubMed  Google Scholar 

  190. Buettner GR, Jurkiewicz BA. Catalytic metals, ascorbate and free radicals: combinations to avoid. Radiat Res. 1996;145(5):532–41. PMID: 8619018.

    Article  CAS  PubMed  Google Scholar 

  191. Buettner GR. In the absence of catalytic metals ascorbate does not autoxidize at pH 7: ascorbate as a test for catalytic metals. J Biochem Biophys Methods. 1988;16(1):27–40. PMID: 3135299.

    Article  CAS  PubMed  Google Scholar 

  192. Winterbourn CC. Toxicity of iron and hydrogen peroxide: the Fenton reaction. Toxicol Lett. 1995;82–83:969–74. PMID: 8597169.

    Article  PubMed  Google Scholar 

  193. Richardson DR, Ponka P. The molecular mechanisms of the metabolism and transport of iron in normal and neoplastic cells. Biochim Biophys Acta. 1997;1331(1):1–40. PMID: 9325434.

    Article  CAS  PubMed  Google Scholar 

  194. Buettner GR. The reaction of superoxide, formate radical, and hydrated electron with transferrin and its model compound, Fe(III)-ethylenediamine-N, N′-bis[2-(2-hydroxyphenyl)acetic acid] as studied by pulse radiolysis. J Biol Chem. 1987;262(25):11995–8. PMID: 3040725.

    CAS  PubMed  Google Scholar 

  195. Sirivech S, Frieden E, Osaki S. The release of iron from horse spleen ferritin by reduced flavins. Biochem J. 1974;143(2):311–5. PMID: 4462557.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Williams DM, Lee GR, Cartwright GE. The role of superoxide anion radical in the reduction of ferritin iron by xanthine oxidase. J Clin Invest. 1974;53(2):665–7. PMID: 11344583.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Güner G, Kirkali G, Yenisey C, Töre IR. Cytosol and serum ferritin in breast carcinoma. Cancer Lett. 1992;67(2–3):103–12. PMID: 1483258.

    Article  PubMed  Google Scholar 

  198. Miyata Y, Koga S, Nishikido M, Hayashi T, Kanetake H. Relationship between serum ferritin levels and tumour status in patients with renal cell carcinoma. BJU Int. 2001;88(9):974–7. PMID: 11851623.

    Article  CAS  PubMed  Google Scholar 

  199. Basso D, Fabris C, Del Favero G, Meggiato T, Panozzo MP, Vianello D, Plebani M, Naccarato R. Hepatic changes and serum ferritin in pancreatic cancer and other gastrointestinal diseases: the role of cholestasis. Ann Clin Biochem. 1991;28:34–8. PMID: 2024931.

    Article  PubMed  Google Scholar 

  200. Hann HW, Lange B, Stahlhut MW, McGlynn KA. Prognostic importance of serum transferrin and ferritin in childhood Hodgkin’s disease. Cancer. 1990;66(2):313–6. PMID: 2369713.

    Article  CAS  PubMed  Google Scholar 

  201. Moser JC, Rawal M, Wagner BA, Du J, Cullen JJ, Buettner GR. Pharmacological ascorbate and ionizing radiation (IR) increase labile iron in pancreatic cancer. Redox Biol. 2013;2:22–7. PMID: 24396727.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  202. Du J, Wagner BA, Buettner GR, Cullen JJ. Role of labile iron in the toxicity of pharmacological ascorbate. Free Radic Biol Med. 2015;84:289–95. PMID: 25857216.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Nicco C, Laurent A, Chereau C, Weill B, Batteux F. Differential modulation of normal and tumor cell proliferation by reactive oxygen species. Biomed Pharmacother. 2005;59(4):169–74. PMID: 15862711.

    Article  CAS  PubMed  Google Scholar 

  204. Oberley LW. Mechanism of the tumor suppressive effect of MnSOD overexpression. Biomed Pharmacother. 2005;59(4):143–8. PMID: 15862707.

    Article  CAS  PubMed  Google Scholar 

  205. Trachootham D, Alexandre J, Huang P. Targeting cancer cells by ROS-mediated mechanisms: a radical therapeutic approach? Nat Rev Drug Discov. 2009;8(7):579–91. PMID: 19478820.

    Article  CAS  PubMed  Google Scholar 

  206. Hoffer LJ, Levine M, Assouline S, Melnychuk D, Padayatty SJ, Rosadiuk K, Rousseau C, Robitaille L, Miller Jr WH. Phase I clinical trial of i.v. ascorbic acid in advanced malignancy. Ann Oncol. 2008;19(12):2095. PMID: 18544557.

    Article  Google Scholar 

  207. Monti DA, Mitchell E, Bazzan AJ, Littman S, Zabrecky G, Yeo CJ, Pillai MV, Newberg AB, Deshmukh S, Levine M. Phase I evaluation of intravenous ascorbic acid in combination with gemcitabine and erlotinib in patients with metastatic pancreatic cancer. PLoS One. 2012;7(1), e29794. PMID: 22272248.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Ma Y, Chapman J, Levine M, Polireddy K, Drisko J, Chen Q. High-dose parenteral ascorbate enhanced chemosensitivity of ovarian cancer and reduced toxicity of chemotherapy. Sci Transl Med. 2014;6(222):222ra18. PMID: 24500406.

    Article  PubMed  CAS  Google Scholar 

  209. Tian WN, Braunstein LD, Apse K, Pang J, Rose M, Tian X, Stanton RC. Importance of glucose-6-phosphate dehydrogenase activity in cell death. Am J Physiol. 1999;276(5 Pt 1):C1121–31. PMID:10329961.

    CAS  PubMed  Google Scholar 

  210. Rees DC, Kelsey H, Richards JD. Acute haemolysis induced by high dose ascorbic acid in glucose-6-phosphate dehydrogenase deficiency. BMJ. 1993;306(6881):841–2. PMID: 8490379.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Verrax J, Calderon PB. Pharmacologic concentrations of ascorbate are achieved by parenteral administration and exhibit antitumoral effects. Free Radic Biol Med. 2009;47(1):32–40. PMID: 19254759.

    Article  CAS  PubMed  Google Scholar 

  212. Prasad KN, Sinha PK, Ramanujam M, Sakamoto A. Sodium ascorbate potentiates the growth inhibitory effect of certain agents on neuroblastoma cells in culture. Proc Natl Acad Sci U S A. 1979;76(2):829–32. PMID: 284405.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  213. Kurbacher CM, Wagner U, Kolster B, Andreotti PE, Krebs D, Bruckner HW. Ascorbic acid (vitamin C) improves the antineoplastic activity of doxorubicin, cisplatin, and paclitaxel in human breast carcinoma cells in vitro. Cancer Lett. 1996;103(2):183–9. PMID: 8635156.

    Article  CAS  PubMed  Google Scholar 

  214. Herst PM, Broadley KW, Harper JL, McConnell MJ. Pharmacological concentrations of ascorbate radiosensitize glioblastoma multiforme primary cells by increasing oxidative DNA damage and inhibiting G2/M arrest. Free Radic Biol Med. 2012;52(8):1486–93. PMID: 22342518.

    Article  CAS  PubMed  Google Scholar 

  215. Espey MG, Chen P, Chalmers B, Drisko J, Sun AY, Levine M, Chen Q. Pharmacologic ascorbate synergizes with gemcitabine in preclinical models of pancreatic cancer. Free Radic Biol Med. 2011;50(11):1610–9. PMID: 21402145.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank Drs. Larry Oberley, Garry Buettner, Frederick Domann, Prabhat Goswami, and Joseph Cullen for many helpful scientific discussions. The authors thank Gareth Smith for graphics and manuscript editorial assistance. The authors were supported in part by a grant from ASTRO JF2014-1, The Carver Research Program of Excellence in Redox Biology, P30CA086862, and NIH CA182804.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bryan G. Allen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Allen, B.G., Spitz, D.R. (2016). Metabolic Production of H2O2 in Carcinogenesis and Cancer Treatment. In: Batinić-Haberle, I., Rebouças, J., Spasojević, I. (eds) Redox-Active Therapeutics. Oxidative Stress in Applied Basic Research and Clinical Practice. Springer, Cham. https://doi.org/10.1007/978-3-319-30705-3_6

Download citation

Publish with us

Policies and ethics