Skip to main content

Emergent Scalar and Vector Fields in Quantum Chemical Topology

  • Chapter
  • First Online:
Applications of Topological Methods in Molecular Chemistry

Abstract

Several potentially useful scalar and vector fields that have been scarcely or even never used to date in Quantum Chemical Topology are defined, computed, and analyzed for a few small molecules. The fields include the Ehrenfest force derived from the second order density matrix, which does not show many of the spurious features encountered when it is computed from the electronic stress tensor, the exchange-correlation (xc) potential, the potential acting on one electron in a molecule, and the additive and effective energy densities. The basic features of the topology of some of these fields are also explored and discussed, paying attention to their possible future interest.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bader RFW (1990) Atoms in molecules. Oxford University Press, Oxford

    Google Scholar 

  2. Bader RFW, Gatti C (1998) Chem Phys Lett 287:233–238

    Article  CAS  Google Scholar 

  3. Becke AD, Edgecombe KE (1990) A simple measure of electron localization in atomic and molecular systems. J Chem Phys 92:5397–5403

    Article  CAS  Google Scholar 

  4. Berlin T (1951) J Chem Phys 19:208–213

    Article  CAS  Google Scholar 

  5. Blanco MA, Martín Pendás A, Francisco E (2005) J Chem Theory Comput 1:1096–1109

    Google Scholar 

  6. Cancès E, Keriven R, Lodier F, Savin A (2004) Theoret Chem Acc 111:373–380

    Article  Google Scholar 

  7. Dong-Xia Z, Li-Dong G, Zhong-Zhi Y (2005) J Phys Chem 109:10121–10128

    Article  Google Scholar 

  8. Dong-Xia Z, Zhong-Zhi Y (2014) J Comput Chem 35:965–977

    Article  Google Scholar 

  9. Finzel K (2014) Int J Quantum Chem 114(9):568–576

    Article  CAS  Google Scholar 

  10. Francisco E, Martín Pendás A, Blanco MA J Chem Phys 126

    Google Scholar 

  11. Francisco E, Martín Pendás A, Blanco MA (2008) Comput Phys Commun 178:621–634

    Google Scholar 

  12. Francisco E, Martín Pendás A, García-Revilla M (2013) Comput Theoret Chem 1003:71–78

    Google Scholar 

  13. Francisco E, Pendás M (2014) Comput Phys Commun 185:2663–2682

    Article  CAS  Google Scholar 

  14. García-Revilla M, Francisco E, Popelier PLA, Martín Pendás A (2013) Chem Phys Chem 14:1211–1218

    Google Scholar 

  15. García-Revilla M, Popelier PLA, Francisco E, Martín Pendás A (2011) J Chem Theory Comput 7:1704–1711

    Google Scholar 

  16. Gatti C, Macchi P (eds) (2012) Modern charge-density analysis. Springer, Dordrecht

    Google Scholar 

  17. Guevara-Vela JM, Chávez-Calvillo R, García-Revilla M, Hernández-Trujillo J, Christiansen O, Francisco E, Martín Pendás A (2013) Chem Eur J 19, 14:304–14,315

    Google Scholar 

  18. Hernandez-Trujillo J, Cortés-Guzman F, Fang DC, Bader RFW (2007) Faraday Discuss 135:79–95

    Article  CAS  Google Scholar 

  19. Kohout M (2004) A measure of electron localizability. Int J Quantum Chem 97:651–658

    Article  CAS  Google Scholar 

  20. Kohout M (2007) Bonding indicators from electron pair density functionals. Faraday Discuss 135:43–54

    Article  CAS  Google Scholar 

  21. Kohout M, Pernal K, Wagner FR, Grin Y (2004) Electron localizability indicator for correlated wavefunctions. i. parallel-spin pairs. Theoret Chem Acc 112:453–459

    Article  CAS  Google Scholar 

  22. Kohout M, Pernal K, Wagner FR, Grin Y (2005) Electron localizability indicator for correlated wavefunctions. ii antiparallel-spin pairs. Theoret Chem Acc 113:287–293

    Article  CAS  Google Scholar 

  23. Kohout M, Wagner FR, Grin Y (2008) Electron localizability indicator for correlated wavefunctions. iii: singlet and triplet pairs. Theoret Chem Acc 119:413–420

    Article  CAS  Google Scholar 

  24. Martín Pendás A, Francisco E Promolden. a qtaim/iqa code (unpublished). A QTAIM/IQA code (Unpublished)

    Google Scholar 

  25. Martín Pendás A, Francisco E, Blanco MA J Chem Phys 127

    Google Scholar 

  26. Martín Pendás A, Francisco E, Blanco MA, Gatti C (2007) Chem Eur J 13:9362–9371

    Google Scholar 

  27. Martín Pendás A, Hernández-Trujillo J (2012) J Chem Phys 137, 134:101–1–134,101–9

    Google Scholar 

  28. Matta CF (ed) (2010) Quantum biochemistry. Wiley-VCH Verlag GmbH & Co. KGaA

    Google Scholar 

  29. Matta CF, Boyd RJ (eds): The Quantum Theory of Atoms in Molecules. Wiley-VCH Verlag GmbH & Co. KGaA (2007)

    Google Scholar 

  30. Maza JR, Jenkins S, Steven RK, Anderson JSM, Ayers PW (2013) Phys Chem Chem Phys 15:17823–17836

    Article  CAS  Google Scholar 

  31. Menéndez M, Álvarez Boto R, Francisco E, Martín Pendás A (2015) J Comput Chem xxx, xxxx–xxxx

    Google Scholar 

  32. Murray KS, Sen K (eds) (1996) Molecular electrostatic potentials: concepts and applications, Elsevier

    Google Scholar 

  33. Savin A, Jepsen O, Flad J, Andersen OK, Preuss H, von Schnering HG (1992) Angew Chem Int Ed Engl 31:187–188

    Article  Google Scholar 

  34. Schmider HL, Becke AD (2002) J Chem Phys 116(8):3184–3193

    Article  CAS  Google Scholar 

  35. Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su SJ, Windus TL, Dupuis M, Montgomery JA (1993) J Comput Chem 14:1347

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support from the Spanish MICINN, Project CTQ2012-31174. AGB also acknowledges FICYT for a Ph.D. grant (BP 11-127).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Martín Pendás .

Editor information

Editors and Affiliations

Appendix

Appendix

Here, we give some details regarding the calculation of the different scalar and vector fields defined in Sect. 6.2, as well as of their gradients and Hessians. In all of the following expressions, \({\boldsymbol{\nabla }}f\left( \varvec{r} \right)\) and \({\boldsymbol{\nabla }}^{t} f\left( \varvec{r} \right)\) represent the gradient of the scalar field \(f\left( \varvec{r} \right)\) in row and column forms, respectively, \({\boldsymbol{\nabla }}^{t} {\boldsymbol{\nabla }}f\left( \varvec{r} \right)\) is the 3 × 3 array of the second derivatives of \(f\left( \varvec{r} \right)\), and \({\boldsymbol{\nabla }}^{t} f\left( \varvec{r} \right){\boldsymbol{\nabla }}g\left( \varvec{r} \right)\) is the 3 × 3 array that results from the matrix product of the column vector \({\boldsymbol{\nabla }}^{t} f\left( \varvec{r} \right)\) with the row vector \({\boldsymbol{\nabla }}g\left( \varvec{r} \right)\). All the integrals involving the molecular orbitals (MOs) were evaluated using the McMurchie-Davidson algorithm as implemented in the PROMOLDEN code.

The xc potential, \(\rho^{\text{xc}} \left( {\varvec{r}_{1} ,\varvec{r}_{2} } \right)\), can be written in terms of a set of m real MOs \({\varphi }_{i}\) (\(i = 1, \ldots ,m\)) in the form

$$\varvec{\rho}^{\text{xc}} \left( {\varvec{r}_{1} ,\varvec{r}_{2} } \right) = \sum\limits_{p \ge q}^{m} \sum\limits_{r \ge s}^{m} \lambda_{pq,rs} {\varphi }_{p} \left( {\varvec{r}_{1} } \right){\varphi }_{q} \left( {\varvec{r}_{1} } \right){\varphi }_{r} \left( {\varvec{r}_{2} } \right){\varphi }_{s} \left( {\varvec{r}_{2} } \right),$$
(6.25)

where the array λ is symmetric in the (pq) and (rs) pairs. To compact the notation, we will collect the pair of indices p and q with \(p \ge q\) in a single index i, and the product \({\varphi }_{p} \left( \varvec{r} \right){\varphi }_{q} \left( \varvec{r} \right)\) will be represented as \(\phi_{i} \left( \varvec{r} \right)\). Then

$$\rho^{\text{xc}} \left( {\varvec{r}_{1} ,\varvec{r}_{2} } \right) = \sum\limits_{i,j} \lambda_{ij} \phi_{i} \left( {\varvec{r}_{1} } \right)\phi_{j} \left( {\varvec{r}_{2} } \right).$$
(6.26)

Although it is not strictly necessary, it is convenient for our purposes to diagonalize λ and express \(\rho^{\text{xc}} \left( {\varvec{r}_{1} ,\varvec{r}_{2} } \right)\) in the form

$$\rho^{\text{xc}} \left( {\varvec{r},\varvec{r}_{2} } \right) = \sum\limits_{i}{\eta}_{i} G_{i} \left( \varvec{r} \right)G_{i} \left( {\varvec{r}_{2} } \right),$$
(6.27)

where \({\eta}_{i}\) are the eigenvalues of λ,

$$G_{i} \left( \varvec{r} \right) = \sum\limits_{j} d_{ji} \phi_{j} \left( \varvec{r} \right),$$
(6.28)

and \(\left( {d_{1i} ,d_{2i} , \ldots } \right) \equiv {\varvec{d}}_{i}\) is the ith eigenvector of λ. This is the usual way of proceed in the PROMOLDEN program to facilitate the numerical evaluation of all the integrals that appear within the Interacting Quantum Atoms (IQA) method. Substituting 6.27 into Eq. 6.5 we have

$$V_{\text{xc}} \left( \varvec{r} \right) = \sum\limits_{i}{\eta}_{i} G_{i} \left( \varvec{r} \right)\int {d\varvec{r}_{2} \frac{{G_{i} \left( {\varvec{r}_{2} } \right)}}{{|\varvec{r} - \varvec{r}_{2} |}}} = \sum\limits_{i}{\eta}_{i} G_{i} \left( \varvec{r} \right)V_{{G_{i} }} \left( \varvec{r} \right).$$
(6.29)

The gradient of \(V_{\text{xc}} \left( \varvec{r} \right)\) is

$${\boldsymbol{\nabla }}V_{\text{xc}} \left( \varvec{r} \right) = \sum\limits_{i} \eta_{i} G_{i} \left( \varvec{r} \right){\boldsymbol{\nabla }}V_{{G_{i} }} \left( \varvec{r} \right) + \sum\limits_{i} \eta_{i} V_{{G_{i} }} \left( \varvec{r} \right){\boldsymbol{\nabla }}G_{i} \left( \varvec{r} \right)$$
(6.30)

The three components of \({\boldsymbol{\nabla }}G_{i} \left( \varvec{r} \right)\) can be obtained simply by deriving Eq. 6.28. On the other hand, from the definition of \(V_{{G_{i} }} \left( \varvec{r} \right)\) in Eq. 6.29 we have

$${\boldsymbol{\nabla }}V_{{G_{i} }} \left( \varvec{r} \right) = - \int {d\varvec{r}_{2} \frac{{G_{i} \left( {\varvec{r}_{2} } \right)\left( {\varvec{r} - \varvec{r}_{2} } \right)}}{{|\varvec{r} - \varvec{r}_{2} |^{3} }}}$$
(6.31)

From the definition of \(F_{\text{xc}} \left( \varvec{r} \right)\) in Eqs. 6.12 and 6.27 we also have

$$\varvec{F}_{\text{xc}} \left( \varvec{r} \right) = - \sum\limits_{i} \eta_{i} G_{i} \left( \varvec{r} \right)\int {d\varvec{r}_{2} \frac{{G_{i} \left( {\varvec{r}_{2} } \right)\left( {\varvec{r} - \varvec{r}_{2} } \right)}}{{|\varvec{r} - \varvec{r}_{2} |^{3} }}} = \sum\limits_{i} \eta_{i} G_{i} \left( \varvec{r} \right){\boldsymbol{\nabla }}V_{{G_{i} }} \left( \varvec{r} \right),$$
(6.32)

so that

$${\boldsymbol{\nabla }}V_{\text{xc}} \left( \varvec{r} \right) = {\varvec{F}}_{\text{xc}} \left( \varvec{r} \right) + \sum\limits_{i} \eta_{i} V_{{G_{i} }} \left( \varvec{r} \right){\boldsymbol{\nabla }}G_{i} \left( \varvec{r} \right).$$
(6.33)

It is important to note that, according to the above equations, \(\varvec{F}_{\text{xc}} \left( \varvec{r} \right) \ne {\boldsymbol{\nabla }}V_{\text{xc}} \left( \varvec{r} \right)\). The Hessian of \(V_{\text{xc}} \left( \varvec{r} \right)\) is obtained by simply deriving Eq. 6.33:

$${\boldsymbol{\nabla }}^{t} {\boldsymbol{\nabla }}V_{\text{xc}} \left( \varvec{r} \right) = \varvec{H}_{\text{xc}} \left( \varvec{r} \right) + \sum\limits_{i} \eta_{i} \left[ {{\boldsymbol{\nabla }}^{t} G_{i} \left( \varvec{r} \right){\boldsymbol{\nabla }}V_{{G_{i} }} \left( \varvec{r} \right) + V_{{G_{i} }} \left( \varvec{r} \right){\boldsymbol{\nabla }}^{t} {\boldsymbol{\nabla }}G_{i} \left( \varvec{r} \right)} \right],$$
(6.34)

where \(\left( {\varvec{H}_{\text{xc}} } \right)_{\alpha \beta } \equiv \left( {\partial F_{{{\text{xc,}}\alpha }} /\partial \beta } \right)\). From Eq. 6.32 one has

$$\varvec{H}_{\text{xc}} = \sum\limits_{i} {\eta_{i} \left[ {{\boldsymbol{\nabla }}^{t} V_{{G_{i} }} \left( \varvec{r} \right){\boldsymbol{\nabla }}G_{i} \left( \varvec{r} \right) + G_{i} \left( \varvec{r} \right){\boldsymbol{\nabla }}^{t} {\boldsymbol{\nabla }}V_{{G_{i} }} \left( \varvec{r} \right)} \right],\quad {\text{with}}}$$
(6.35)
$${\boldsymbol{\nabla }}^{t} {\boldsymbol{\nabla }}V_{{G_{i} }} \left( \varvec{r} \right) = \int {d\varvec{r}_{2} \frac{{G_{i} \left( {\varvec{r}_{2} } \right)}}{{|\varvec{r} - \varvec{r}_{2} |^{5} }}\left[ {3\left( {\alpha - \alpha_{2} } \right)\left( {\beta - \beta_{2} } \right) - \delta_{\alpha \beta } |\varvec{r} - \varvec{r}_{2} |^{2} } \right].}$$
(6.36)

Regarding the Ehrenfest force, \(\varvec{F}_{e} \left( \varvec{r} \right)\), calling \(\left( \varvec{H} \right)_{e,\alpha \beta } \equiv H_{e,\alpha \beta } = \left( {\partial F_{e,\alpha } /\partial \beta } \right)\), one easily obtains from Eq. 6.10

$$\varvec{H}_{e} \left( \varvec{r} \right) = \rho \left( \varvec{r} \right){\boldsymbol{\nabla }}^{t} {\boldsymbol{\nabla }}V_{\text{mep}} \left( \varvec{r} \right) + {\boldsymbol{\nabla }}^{t} V_{\text{mep}} \left( \varvec{r} \right){\boldsymbol{\nabla }}\rho \left( \varvec{r} \right) + \varvec{H}_{\text{xc}} \left( \varvec{r} \right)$$
(6.37)

The exact relationship between \(\varvec{F}_{e} \left( \varvec{r} \right)\) and \(\varvec{f}_{\text{PAEM}} \left( \varvec{r} \right) = \rho \left( \varvec{r} \right)\varvec{F}_{\text{PAEM}} \left( \varvec{r} \right)\), obtained by explicity computing the gradient \({\boldsymbol{\nabla }}\left( {V_{\text{xc}} /\rho } \right)\) that appears in Eq. 6.19, is

$$\varvec{f}_{\text{PAEM}} \left( \varvec{r} \right) = \varvec{F}_{e} \left( \varvec{r} \right) - \frac{{V_{\text{xc}} \left( \varvec{r} \right)}}{{\rho \left( \varvec{r} \right)}}{\boldsymbol{\nabla }}\rho \left( \varvec{r} \right) + \sum\limits_{i} \eta_{i} V_{{G_{i} }} \left( \varvec{r} \right){\boldsymbol{\nabla }}G_{i} \left( \varvec{r} \right).$$
(6.38)

As a consequence of the last term in Eq. 6.38 the expression for \(\varvec{H}_{\text{PAEM}}\), defined as \(\left( {\varvec{H}_{\text{PAEM}} } \right)_{\alpha \beta } = \left( {\partial \,\varvec{f}_{{\alpha ,{\text{PAEM}}}} \left( \varvec{r} \right)/\partial \beta } \right)\) is a little bit cumbersome:

$$\begin{aligned} \varvec{H}_{\text{PAEM}} & = \varvec{H}_{e} - \frac{{V_{\text{xc}} }}{\rho }{\boldsymbol{\nabla }}^{t} {\boldsymbol{\nabla }}\rho - \frac{{\left( {{\boldsymbol{\nabla }}^{t} \rho } \right)F_{\text{xc}} }}{\rho } + \frac{{V_{\text{xc}} }}{{\rho^{2} }}{\boldsymbol{\nabla }}^{t} \rho {\boldsymbol{\nabla }}\rho \\ & \quad - \frac{{{\boldsymbol{\nabla }}^{t} \rho }}{\rho }\sum\limits_{i} \eta_{i} V_{{G_{i} }} {\boldsymbol{\nabla }}G_{i} + \sum\limits_{i} \eta_{i} \left[ {\left( {{\boldsymbol{\nabla }}^{t} G_{i} } \right)\left( {{\boldsymbol{\nabla }}V_{{G_{i} }} } \right) + V_{{G_{i} }} {\boldsymbol{\nabla }}^{t} {\boldsymbol{\nabla }}G_{i} } \right]. \\ \end{aligned}$$
(6.39)

The gradient and Hessian of \(E_{\text{eff}} \left( \varvec{r} \right)\), Eq. 6.23, are given by

$${\boldsymbol{\nabla }}E_{\text{eff}} = {\boldsymbol{\nabla }}G - \rho {\boldsymbol{\nabla }}V_{\text{mep}} - V_{\text{mep}} {\boldsymbol{\nabla }}\rho - {\boldsymbol{\nabla }}V_{\text{xc}} ,$$
(6.40)
$$\begin{aligned} {\boldsymbol{\nabla }}^{t} {\boldsymbol{\nabla }}E_{\text{eff}} & = {\boldsymbol{\nabla }}^{t} {\boldsymbol{\nabla }}G - \rho {\boldsymbol{\nabla }}^{t} {\boldsymbol{\nabla }}V_{\text{mep}} - {\boldsymbol{\nabla }}^{t} V_{\text{mep}} {\boldsymbol{\nabla }}\rho - V_{\text{mep}} {\boldsymbol{\nabla }}^{t} {\boldsymbol{\nabla }}\rho \\ & \quad - {\boldsymbol{\nabla }}^{t} \rho {\boldsymbol{\nabla }}V_{\text{mep}} - {\boldsymbol{\nabla }}^{t} {\boldsymbol{\nabla }}V_{\text{xc}} . \\ \end{aligned}$$
(6.41)

where \({\boldsymbol{\nabla }}^{t} {\boldsymbol{\nabla }}V_{\text{xc}} \left( \varvec{r} \right)\) is given by Eq. 6.34 The gradient and Hessian of \(E_{\text{add}} \left( \varvec{r} \right)\), Eq. 6.20, are even more complicated:

$$\begin{aligned} {\boldsymbol{\nabla }}E_{\text{add}} & = {\boldsymbol{\nabla }}G - \rho {\boldsymbol{\nabla }}V_{\text{mep}}^{\text{nuc}} - V_{\text{mep}}^{\text{nuc}} {\boldsymbol{\nabla }}\rho \\ & \quad - \frac{1}{2}\left[ {\rho {\boldsymbol{\nabla }}V_{\text{mep}}^{\text{ele}} + V_{\text{mep}}^{\text{ele}} {\boldsymbol{\nabla }}\rho + \varvec{F}_{\text{xc}} } \right] - \frac{1}{2}\sum\limits_{i} \eta_{i} V_{{G_{i} }} {\boldsymbol{\nabla }}G_{i} , \\ \end{aligned}$$
(6.42)
$$\begin{aligned} {\boldsymbol{\nabla }}^{t} {\boldsymbol{\nabla }}E_{\text{add}} & = {\boldsymbol{\nabla }}^{t} {\boldsymbol{\nabla }}G - \rho {\boldsymbol{\nabla }}^{t} {\boldsymbol{\nabla }}V_{\text{mep}}^{\text{nuc}} - {\boldsymbol{\nabla }}^{t} V_{\text{mep}}^{\text{nuc}} {\boldsymbol{\nabla }}\rho - V_{\text{mep}}^{\text{nuc}} {\boldsymbol{\nabla }}^{t} {\boldsymbol{\nabla }}\rho - {\boldsymbol{\nabla }}^{t} \rho {\boldsymbol{\nabla }}V_{\text{mep}}^{\text{nuc}} \\ & \quad - \frac{1}{2}\left[ {{\varvec{H}}_{\text{xc}} + \rho {\boldsymbol{\nabla }}^{t} {\boldsymbol{\nabla }}V_{\text{mep}}^{\text{ele}} + {\boldsymbol{\nabla }}^{t} V_{\text{mep}}^{\text{ele}} {\boldsymbol{\nabla }}\rho + V_{\text{mep}}^{\text{ele}} {\boldsymbol{\nabla }}^{t} {\boldsymbol{\nabla }}\rho + {\boldsymbol{\nabla }}^{t} \rho {\boldsymbol{\nabla }}V_{\text{mep}}^{\text{ele}} } \right] \\ & \quad - \frac{1}{2}\sum\limits_{i} \eta_{i} \left[ {{\boldsymbol{\nabla }}^{t} G_{i} {\boldsymbol{\nabla }}V_{{G_{i} }} + V_{{G_{i} }} {\boldsymbol{\nabla }}^{t} {\boldsymbol{\nabla }}G_{i} } \right]. \\ \end{aligned}$$
(6.43)

To shorten Eqs. 6.396.43, the dependence on r of every magnitude has been avoided.

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Martín Pendás, A., Francisco, E., Gallo Bueno, A., Guevara Vela, J.M., Costales, A. (2016). Emergent Scalar and Vector Fields in Quantum Chemical Topology. In: Chauvin, R., Lepetit, C., Silvi, B., Alikhani, E. (eds) Applications of Topological Methods in Molecular Chemistry. Challenges and Advances in Computational Chemistry and Physics, vol 22. Springer, Cham. https://doi.org/10.1007/978-3-319-29022-5_6

Download citation

Publish with us

Policies and ethics