Skip to main content

Fabrication Process Flows for Implementation of Piezoelectric MEMS Resonators

  • Chapter
  • First Online:

Part of the book series: Microsystems and Nanosystems ((MICRONANO))

Abstract

Since the first demonstration of thin-film piezoelectric resonators [1], high performance MEMS devices including low insertion-loss resonators and filters [2, 3], small form factor energy harvesters [4], large-force actuators [5], and highly sensitive resonant sensors [6–8] have been successfully demonstrated using piezoelectric materials such as AlN, ZnO, and PZT. Thin film AlN has been of great interest mainly due to the high quality of its film growth and CMOS compatibility, as well as well-developed process recipes. The processing advantages in addition to the superior piezoelectric and acoustic properties of AlN, including large wave propagation velocity [9] and low thermoacoustic dissipation [10], have made it a popular choice for piezoelectric transduction of MEMS resonant devices.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Lakin KM, Wang JS (1981) Acoustic bulk wave composite resonators. Appl Phys Lett 38(3):125–127

    Article  Google Scholar 

  2. Pan W, Abdolvand R, Ayazi F (2008) A low-loss 1.8 GHz monolithic thin-film piezoelectric-on-substrate filter. In: Proc. 21st IEEE international conference on micro electro mechanical systems (MEMS 2008), Tucson, AZ, Jan 2008, pp 176–179

    Google Scholar 

  3. Pan W, Ayazi F (2010) Thin-film piezoelectric-on substrate resonators with Q enhancement and TCF reduction. In: 23rd IEEE international conference on micro electro mechanical systems (MEMS 2010), pp 727–730

    Google Scholar 

  4. Jeon Y, Sood R, Jeong J-H, Kim S-G (2005) MEMS power generator with transverse mode thin film PZT. Sensors Actuators A 122(1):16–22

    Article  Google Scholar 

  5. DeVoe DL, Pisano AP (2007) Modeling and optimal design of piezoelectric cantilever microactuators. J Microelectromech Syst 6(3):266–270

    Article  Google Scholar 

  6. Fu JL, Ayazi F (2010) Dual-mode piezo-on-silicon resonant temperature and humidity sensor for portable air quality monitoring systems. In: IEEE sensors conference, Waikoloa, Big Island, Hawaii, 2010, pp 2131–2135

    Google Scholar 

  7. Tabrizian R, Ayazi F (2014) Dual-mode vertical membrane resonant pressure sensor. In: Proc. of IEEE international micro electro mechanical systems conference (MEMS 2014), San Francisco, CA, January 2014, pp 120–123

    Google Scholar 

  8. Tabrizian R, Ayazi F (2013) Acoustically-engineered multi-port AlN-on-silicon resonators for accurate temperature sensing. In: Proc. of IEEE international electron devices meeting (IEDM 2013), Washington, DC, December 2013, pp 1811–1814

    Google Scholar 

  9. Dubois MA, Muralt P (1999) Properties of aluminum nitride thin films for piezoelectric transducers and microwave filter applications. Appl Phys Lett 74(20):3032–3034

    Article  Google Scholar 

  10. Pandey DK, Singh D, Yadav RR (2007) Ultrasonic wave propagation in IIIrd group nitrides. Appl Acoust 68(7):766–777

    Article  Google Scholar 

  11. Krishnaswamy SV, Rosenbaum J, Horwitz S, Vale C, Moore RA (1990, December) Film bulk acoustic wave resonator technology. In Ultrasonics symposium, 1990. IEEE proceedings. IEEE, pp 529–536

    Google Scholar 

  12. Piazza G, Stephanou PJ, Pisano AP (2006) Piezoelectric aluminum nitride vibrating contour-mode MEMS resonators. J Microelectromech Syst 15(6):1406–1418

    Article  Google Scholar 

  13. Shiosaki T, Yamamoto T, Oda T, Kawabata A (1980) Low‐temperature growth of piezoelectric AlN film by rf reactive planar magnetron sputtering. Appl Phys Lett 36(8):643–645

    Article  Google Scholar 

  14. Yang CM, Uehara K, Kim SK, Kameda S, Nakase H, Tsubouchi K (2003, October) Highly c-axis-oriented AlN film using MOCVD for 5GHz-band FBAR filter. In: 2003 IEEE symposium on ultrasonics, vol 1. IEEE, pp 170–173

    Google Scholar 

  15. Sitar Z, Paisley MJ, Yan B, Ruan J, Choyke WJ, Davis RF (1990) Growth of AlN/GaN layered structures by gas source molecular‐beam epitaxy. J Vac Sci Technol B 8(2):316–322

    Article  Google Scholar 

  16. Felmetsger VV, Laptev PN, Graham RJ (2011) Deposition of ultrathin AlN films for high frequency electroacoustic devices. J Vac Sci Technol A 29(2):021014

    Article  Google Scholar 

  17. Tonisch K, Cimalla V, Foerster C, Romanus H, Ambacher O, Dontsov D (2006) Piezoelectric properties of polycrystalline AlN thin films for MEMS application. Sensors Actuators A Phys 132(2):658–663

    Article  Google Scholar 

  18. Naik RS, Lutsky JJ, Reif R, Sodini CG, Becker A, Fetter L, Huggins H, Miller R, Pastalan J, Rittenhouse G, Wong YH (2000) Measurements of the bulk, c-axis electromechanical coupling constant as a function of AlN film quality. IEEE Trans Ultrason Ferroelectr Freq Control 47(1):292–296

    Article  Google Scholar 

  19. Felmetsger V, Laptev P, Tanner S (2008) Crystal orientation and stress in ac reactively sputtered AlN films on Mo electrodes for electro-acoustic devices. In: Proceedings of the IEEE international ultrasonic symposium, Beijing, 2008, vol 1, pp 2146–2149

    Google Scholar 

  20. Felmetsger VV, Laptev PN (2010) New generation of S-Gun magnetron for AlN reactive sputtering. In: The forth international symposium on acoustic wave devices for future mobile communication systems, Chiba, University, Japan, 3–5 Mar 2010, vol 1, pp 145–152

    Google Scholar 

  21. Tabrizian R, Felmetsger V, Ayazi F (2011) A sidewall AlN process for efficient 3D piezoelectric transduction of MEMS. In: Proc. technologies for future micro-nano manufacturing workshop, Napa, California, Aug 2011, pp 23–27

    Google Scholar 

  22. Kamohara T, Akiyama M, Ueno N, Nonaka K, Kuwano N (2006) Influence of molybdenum bottom electrodes on crystal growth of aluminum nitride thin films”. Appl Phys Lett 89:071919

    Article  Google Scholar 

  23. Felmetsger V, Laptev P, Tanner S (2008) In: Proceedings of the IEEE international ultrasonics symposium, Beijing, 2–5 Nov 2008, pp 2146–2149

    Google Scholar 

  24. Ruby R, Small M, Bi F, Lee D, Callaghan L, Parker R, Ortiz S (2012) Positioning FBAR technology in the frequency and timing domain. IEEE Trans Ultrason Ferroelectr Freq Control 59(3):334–345

    Article  Google Scholar 

  25. Lakin KM, McCarron KT, Rose RE (1995, November) Solidly mounted resonators and filters. In: Ultrasonics symposium, 1995. IEEE proceedings. IEEE, vol 2, pp 905–908

    Google Scholar 

  26. Pourkamali S, Ho GK, Ayazi F (2007) Low-impedance VHF and UHF capacitive silicon bulk acoustic wave resonators—Part I: Concept and fabrication. IEEE Trans Electron Dev 54(8):2017–2023

    Article  Google Scholar 

  27. Tabrizian R, Rais-Zadeh M (2015, June). The effect of charge redistribution on limiting the kt 2. Q product of piezoelectrically transduced resonators. In: 2015 18th international conference on solid-state sensors, actuators and microsystems (TRANSDUCERS), 2015 transducers. IEEE, pp 981–984

    Google Scholar 

  28. Tabrizian R, Ayazi F (2014) Thermo-acoustic engineering of silicon microresonators via evanescent waves. Appl Phys Lett 106(26):263504

    Article  Google Scholar 

  29. Samarao AK, Ayazi F (2012) Temperature compensation of silicon resonators via degenerate doping. IEEE Trans Electron Dev 59(1):87–93

    Article  Google Scholar 

  30. Tabrizian R, Casinovi G, Ayazi F (2013) Temperature-stable silicon oxide (SilOx) micromechanical resonators. IEEE Trans Electron Dev 60(8):2656–2663

    Article  Google Scholar 

  31. Bean KE (1978) Anisotropic etching of silicon. IEEE Trans Electron Dev 25(10):1185–1193

    Article  Google Scholar 

  32. Tabrizian R, Ayazi F (2011) Laterally excited silicon bulk acoustic resonators with sidewall AlN. In: 16th international conference on solid-state sensors, actuators and microsystems (Transducers 2011), Beijing, China, June 2011, pp 1520–1523

    Google Scholar 

  33. Rais-Zadeh M, Gokhale V, Ansari A, Faucher M, Theron D, Cordier Y, Buchaillot L (2014) Gallium nitride as an electromechanical material. IEEE J Microelectromech Syst 23(6):1252–1271

    Article  Google Scholar 

  34. Bahr B, Popa LC, Weinstein D (2015) 1 GHz GaN-MMIC monolithically integrated MEMS-based oscillators. In: IEEE int. solid state circuits conf. (ISSCC 2015), San Francisco, CA, 22–26 Feb 2015

    Google Scholar 

  35. Ansari A, Gokhale V, Roberts J, Rais-Zadeh M (2012) Monolithic integration of GaN-based micromechanical resonators and HEMTs for timing application. In: IEEE international electron device meeting (IEDM’12), San Francisco, CA, Dec 2012, pp 15.5.1–15.5.4

    Google Scholar 

  36. Ansari A, Rais-Zadeh M (2014) A thickness-mode AlGaN/GaN resonant body high electron mobility transistor. IEEE Trans Electron Dev 61(4):1006–1013

    Article  Google Scholar 

  37. Ansari A, Tabrizian R, Rais-Zadeh M (2015) A high-Q AlGaN/GaN phonon trap with integrated HEMT read-out. In: 18th international conference on solid-state sensors, actuators and microsystems (Transducers 2015), Alaska, USA, June 2015, pp 2256–2259

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roozbeh Tabrizian .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Tabrizian, R. (2017). Fabrication Process Flows for Implementation of Piezoelectric MEMS Resonators. In: Bhugra, H., Piazza, G. (eds) Piezoelectric MEMS Resonators. Microsystems and Nanosystems. Springer, Cham. https://doi.org/10.1007/978-3-319-28688-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-28688-4_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-28686-0

  • Online ISBN: 978-3-319-28688-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics