Skip to main content

Measuring Observable Quantum Contextuality

  • Conference paper
  • First Online:
Book cover Quantum Interaction (QI 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9535))

Included in the following conference series:

Abstract

Contextuality is a central property in comparative analysis of classical, quantum, and supercorrelated systems. We examine and compare two well-motivated approaches to contextuality. One approach (“contextuality-by-default”) is based on the idea that one and the same physical property measured under different conditions (contexts) is represented by different random variables. The other approach is based on the idea that while a physical property is represented by a single random variable irrespective of its context, the joint distributions of the random variables describing the system can involve negative (quasi-)probabilities. We show that in the Leggett-Garg and EPR-Bell systems, the two measures essentially coincide.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This example has the same structure as the Leggett-Garg system [30]. A special version of it was examined by Suppes and Zanotti [36], and also by Specker [34].

  2. 2.

    No-signaling condition is a fundamental limitation of any approach with noncontextually labeled random variables, including NP.

  3. 3.

    This formulation is predicated on no-signaling, which we assume throughout this paper. CbD has been generalized to situations when this condition is violated [4, 1518, 27, 28].

References

  1. Abramsky, S., Brandenburger, A.: The sheaf-theoretic structure of non-locality and contextuality. New J. Phys. 13, 113036 (2011)

    Article  Google Scholar 

  2. Abramsky, S., Brandenburger, A.: An operational interpretation of negative probabilities and no-signalling models. In: van Breugel, F., Kashefi, E., Palamidessi, C., Rutten, J. (eds.) Horizons of the Mind. LNCS, vol. 8464, pp. 59–75. Springer, Heidelberg (2014)

    Google Scholar 

  3. Al-Safi, S., Short, A.: Simulating all nonsignaling correlations via classical or quantum theory with negative probabilities. Phys. Rev. Lett. 111, 170403 (2013)

    Article  Google Scholar 

  4. Bacciagaluppi, G.: Leggett-Garg inequalities, pilot waves and contextuality. Int. J. Quant. Found. 1(1), 1–17 (2015)

    MathSciNet  Google Scholar 

  5. Brunner, N., Scarani, V., Gisin, N.: Bell-type inequalities for non-local resources. J. Math. Phys. 47, 112101 (2006)

    Article  MathSciNet  Google Scholar 

  6. Chaves, R., Fritz, T.: Entropic approach to local realism and noncontextuality. Phys. Rev. A 85, 032113 (2012)

    Article  Google Scholar 

  7. de Barros, J.A.: Decision making for inconsistent expert judgments using negative probabilities. In: Atmanspacher, H., Haven, E., Kitto, K., Raine, D. (eds.) QI 2013. LNCS, vol. 8369, pp. 257–269. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  8. de Barros, J.A., Oas, G., Suppes, P.: Negative probabilities and counterfactual reasoning on the double-slit experiment. In: Beziau, J.-Y., Krause, D., Arenhart, J.B. (eds.) Conceptual Clarification: Tributes to Patrick Suppes. College Publications, London (2015). (1992–2014)

    Google Scholar 

  9. de Barros, J.A., Oas, G.: Negative probabilities and counter-factual reasoning in quantum cognition. Phys. Scripta T163, 014008 (2014)

    Article  Google Scholar 

  10. Dzhafarov, E., Kujala, J.: All-possible-couplings approach to measuring probabilistic context. Plos One 8, e61712 (2013)

    Article  Google Scholar 

  11. Dzhafarov, E., Kujala, J.: Embedding quantum into classical: contextualization vs conditionalization. Plos One 9, e92818 (2014)

    Article  Google Scholar 

  12. Dzhafarov, E., Kujala, J.: Contextualityis about identity of random variables. Phys. Scripta T163, 014009 (2014)

    Article  Google Scholar 

  13. Dzhafarov, E., Kujala, J.: Random variables recorded under mutually exclusive conditions: contextuality-by-default. In: Liljenström, H. (Ed.) Advances in Cognitive Neurodynamics IV, pp. 405–410 (2015)

    Google Scholar 

  14. Dzhafarov, E.N., Kujala, J.V.: A qualified kolmogorovian account of probabilistic contextuality. In: Atmanspacher, H., Haven, E., Kitto, K., Raine, D. (eds.) QI 2013. LNCS, vol. 8369, pp. 201–212. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  15. Dzhafarov, E., Kujala, J.: probabilistic contextuality in EPR/Bohm-type systems with signaling allowed. arXiv:1406.0243 [quant-ph, q-bio] (2014)

  16. Dzhafarov, E., Kujala, J.: Generalizing Bell-type and Leggett-Garg-type inequalities to systems with signaling. arXiv:1407.2886 [quant-ph] (2014)

  17. Dzhafarov, E., Kujala, J., Larsson, J.-Å.: Contextuality in three types of quantum mechanical systems. Found. Phys. 45, 762–782 (2014). doi:10.1007/s10701-015-9882-9

    Article  MathSciNet  Google Scholar 

  18. Dzhafarov, E., Kujala, J., Larsson, J.-Å.: Contextuality-by-default: a brief overview of ideas, concepts, and terminology. arXiv:1504.00530 [quant-ph] (2015)

  19. Fine, A.: Hidden variables, joint probability, and the Bell inequalities. Phys. Rev. Lett. 48, 291 (1982)

    Article  MathSciNet  Google Scholar 

  20. Grudka, A., Horodecki, K., Horodecki, M., Horodecki, P., Horodecki, R., Joshi, P., Kłobus, W., Wójcik, A.: Quantifying contextuality. Phys. Rev. Lett. 112, 120401 (2014)

    Article  Google Scholar 

  21. Halmos, P.: Measure Theory. Springer-Verlag, New York (1974)

    MATH  Google Scholar 

  22. Kleinmann, M., Gühne, O., Portillo, J., Larsson, J.-Å., Cabello, A.: Memory cost of quantum contextuality. New J. Phys. 13, 113011 (2011)

    Article  Google Scholar 

  23. Khrennikov, A.: The principle of supplementarity: a contextual probabilistic viewpoint to complementarity, the interference of probabilities, and the incompatibility of variables in quantum mechanics. Found. Phys. 35, 1655–1693 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  24. Khrennikov, A.: Bell-Boole inequality: nonlocality or probabilistic incompatibility of random variables? Entropy 10, 19–32 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  25. Khrennikov, A.: Contextual Approach to Quantum Formalism. Springer, Berlin (2009)

    Book  MATH  Google Scholar 

  26. Kurzyński, P., Ramanathan, R., Kaszlikowski, D.: Entropic test of quantum contextuality. Phys. Rev. Lett. 109, 020404 (2012)

    Article  Google Scholar 

  27. Kujala, J., Dzhafarov, E., Larsson, J.Å.: Necessary and sufficient conditions for maximal noncontextuality in a broad class of quantum mechanical systems. Phys. Rev. Lett. (in press)

    Google Scholar 

  28. Kujala, J., Dzhafarov, E.: Proof of a conjecture on contextuality in cyclic systems with binary variables. arXiv:1503.02181 [quant-ph] (2015)

  29. Larsson, J.-Å.: A Kochen-Specker inequality. EPL (Eur. Lett.) 58, 799–805 (2002)

    Article  Google Scholar 

  30. Leggett, A., Garg, A.: Quantum mechanics versus macroscopic realism: is the flux there when nobody looks? Phys. Rev. Lett. 54, 857 (1985)

    Article  MathSciNet  Google Scholar 

  31. Oas, G., de Barros, J.A., Carvalhaes, C.: Exploring non-signalling polytopes with negative probability. Phys. Scripta T163, 014034 (2014)

    Article  Google Scholar 

  32. Popescu, S., Rohrlich, D.: Nonlocality as an axiom. Found. Phys. 24, 379 (1994)

    Article  MathSciNet  Google Scholar 

  33. Simon, C., Brukner, Č., Zeilinger, A.: Hidden-variable theorems for real experiments. Phys. Rev. Lett. 86(20), 4427–4430 (2001)

    Article  Google Scholar 

  34. Specker, E.P.: The logic of propositions which are not simultaneously decidable. In: Hooker, C.A. (ed.) The Logico-Algebraic Approach to Quantum Mechanics. The University of Western Ontario Series in Philosophy of Science, vol. 5a, pp. 135–140. Springer, Netherlands (1975)

    Chapter  Google Scholar 

  35. Spekkens, R.W.: Negativity and contextuality are equivalent notions of nonclassicality. Phys. Rev. Lett. 101, 020401 (2008)

    Article  MathSciNet  Google Scholar 

  36. Suppes, P., Zanotti, M.: When are probabilistic explanations possible? Synthese 48, 191 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  37. Svozil, K.: How much contextuality? Nat. Comput. 11, 261 (2012)

    Article  MathSciNet  Google Scholar 

  38. Winter, A.: What does an experimental test of quantum contextuality prove or disprove? J. Phys. A: Math. Theor. 47, 424031 (2014)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by NSF grant SES-1155956, AFOSR grant FA9550-14-1-0318, and A. von Humboldt Foundation. The authors are grateful to Samson Abramsky, Guido Bacciagaluppi, Andrei Khrennikov, Jan-Åke Larsson, and Patrick Suppes for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jose Acacio de Barros .

Editor information

Editors and Affiliations

A Proofs of Statements

A Proofs of Statements

In this appendix, we describe how the analytic results of the main text were obtained for each of the expressions (4), (10), (12), and (16) of the main text.

1.1 A.1 EPR-Bell: Contextuality-by-Default

Following the computations of Dzhafarov and Kujala [10, TextS3], or the more general formulation in Ref. [16], it can be shown that the observable distributions with probabilities given by the matrices

(18)

are compatible with the connections

(19)

if and only if

$$\begin{aligned} \begin{array}{l} s_{u}\!\left( \left\langle \mathbf {A}_{1,1}\mathbf {B}_{1,1}\right\rangle \!,\left\langle \mathbf {A}_{1,2}\mathbf {B}_{1,2}\right\rangle \!,\left\langle \mathbf {A}_{2,1}\mathbf {B}_{2,1}\right\rangle \!,\left\langle \mathbf {A}_{2,2}\mathbf {B}_{2,2}\right\rangle \right) \\ \le 6-s_{1-u}\!\left( \left\langle \mathbf {A}_{1,1}\mathbf {A}_{1,2}\right\rangle \!,\left\langle \mathbf {A}_{2,1}\mathbf {A}_{2,2}\right\rangle \!,\left\langle \mathbf {B}_{1,1}\mathbf {B}_{2,1}\right\rangle \!,\left\langle \mathbf {B}_{1,2}\mathbf {B}_{2,2}\right\rangle \right) , \end{array} \end{aligned}$$
(20)

where u stands for 0 or 1, and

$$\begin{aligned} s_{0}(x_{1},\dots ,x_{n})&=\max \{\pm x_{1}\pm \dots \pm x_{n}:\text {even }\# \text { of } -'s \},\\ s_{1}(x_{1},\dots ,x_{n})&=\max \{\pm x_{1}\pm \dots \pm x_{n}:\text {odd }\# \text { of } -'s \}. \end{aligned}$$

Here we use the parameterization by the 12 expectation variables defined as (with \(i,j\in \{ 1,2 \}\))

$$\begin{aligned} \left\langle \mathbf {A}_{i,j}\mathbf {B}_{i,j}\right\rangle =\left( 4p_{ij}-1\right) -\left( 2a_{i}-1\right) -\left( 2b_{j}-1\right) , \end{aligned}$$
(21)
$$\begin{aligned} \left\langle \mathbf {A}_{i,1}\mathbf {A}_{i,2}\right\rangle =1-4\alpha _{i}=1-2\Pr \left[ \mathbf {A}_{i,1}\ne \mathbf {A}_{i,2}\right] , \end{aligned}$$
(22)
$$\begin{aligned} \left\langle \mathbf {B}_{1,j}\mathbf {B}_{2,j}\right\rangle =1-4\beta _{j}=1-2\Pr \left[ \mathbf {B}_{1,j}\ne \mathbf {B}_{2,j}\right] , \end{aligned}$$
(23)
$$\begin{aligned} \left\langle \mathbf {A}_{i}\right\rangle =2a_{i}-1,\quad \left\langle \mathbf {B}_{j}\right\rangle =2b_{j}-1. \end{aligned}$$
(24)

Writing the inequality (20) in terms of these expectations rather than in terms of probabilities is the most economic way of presenting the 128 non-trivial inequalities of the system, as the marginal probabilities \(a_{1},a_{2},b_{1},b_{2}\) (or expectations \(\left\langle \mathbf {A}_{1}\right\rangle ,\left\langle \mathbf {A}_{2}\right\rangle ,\left\langle \mathbf {B}_{1}\right\rangle ,\left\langle \mathbf {B}_{2}\right\rangle \)) vanish in this form. However, it should be noted that in addition to these 128 inequalities, the form of the observed distributions and connections itself imposes further 28 trivial constraints on the 12 expectation variables of the system: the probabilities within each \(2\times 2\) matrix in (18) and (19) should be nonnegative and sum to one. 16 of these trivial constraints pertain to the observed distributions and 12 to the connections. In terms of the expectations, these trivial constraints correspond to

$$\begin{aligned} -1+|\left\langle \mathbf {A}\right\rangle +\left\langle \mathbf {B}\right\rangle |\le \left\langle \mathbf {A}\mathbf {B}\right\rangle \le 1-|\left\langle \mathbf {A}\right\rangle -\left\langle \mathbf {B}\right\rangle |, \end{aligned}$$
(25)

for given marginals for each pair \((\mathbf {A},\mathbf {B})\) of random variables in (21)–(23). This expands to four inequalities for each of the observed distributions and to three inequalities for each of the connections (the two upper bounds in (25) coincide when \(\left\langle \mathbf {A}\right\rangle =\left\langle \mathbf {B}\right\rangle \)). Although these trivial constraints can usually be assumed implicitly, it is important to keep them explicitly in the system for the next step.

Adding the equation

$$\begin{aligned} \varDelta =&\Pr \left[ \mathbf {A}_{1,1}\ne \mathbf {A}_{1,2}\right] +\Pr \left[ \mathbf {A}_{2,1}\ne \mathbf {A}_{2,2}\right] +\Pr \left[ \mathbf {B}_{1,1}\ne \mathbf {B}_{2,1}\right] +\Pr \left[ \mathbf {B}_{1,2}\ne \mathbf {B}_{2,2}\right] \\ =&~2-\frac{1}{2}\left( \left\langle \mathbf {A}_{1,1}\mathbf {A}_{1,2}\right\rangle +\left\langle \mathbf {A}_{2,1}\mathbf {A}_{2,2}\right\rangle +\left. \left\langle \mathbf {B}_{1,1}\mathbf {B}_{2,1}\right\rangle +\left\langle \mathbf {B}_{1,2}\mathbf {B}_{2,2}\right\rangle \right) \right. \end{aligned}$$

to the system and then eliminating the connection correlations \(\left\langle \mathbf {A}_{1,1}\mathbf {A}_{1,2}\right\rangle \), \(\left\langle \mathbf {A}_{2,1}\mathbf {A}_{2,2}\right\rangle \), \(\left\langle \mathbf {B}_{1,1}\mathbf {B}_{2,1}\right\rangle \), \(\left\langle \mathbf {B}_{1,2}\mathbf {B}_{2,2}\right\rangle \) from the system using the Fourier–Motzkin elimination algorithm, we obtain the system

$$\begin{aligned}&-1+\frac{1}{2}S_{CHSH}\le \varDelta \le 4-\left[ -1+\frac{1}{2}S_{CHSH}\right] ,\end{aligned}$$
(26)
$$\begin{aligned}&0\le \varDelta \le 4-\left( \left| \left\langle \mathbf {A}_{1}\right\rangle \right| +\left| \left\langle \mathbf {A}_{2}\right\rangle \right| +\left| \left\langle \mathbf {B}_{1}\right\rangle \right| +\left| \left\langle \mathbf {B}_{2}\right\rangle \right| \right) , \end{aligned}$$
(27)

where we denote

$$\begin{aligned} \begin{array}{l} S_{CHSH}=s_{1}\big (\left\langle \mathbf {A}_{1,1}\mathbf {B}_{1,1}\right\rangle ,\left\langle \mathbf {A}_{1,2}\mathbf {B}_{1,2}\right\rangle ,\left\langle \mathbf {A}_{2,1}\mathbf {B}_{2,1}\right\rangle ,\left\langle \mathbf {A}_{2,2}\mathbf {B}_{2,2}\right\rangle \big )\end{array} \end{aligned}$$
(28)

as in the main text. This means that \(\varDelta \) is compatible with the given observed probabilities if and only if the above inequalities are satisfied. Since the set of possible values of \(\varDelta \) constrained by (26) and (27) is known to be nonempty, it follows that the minimum value of \(\varDelta \) is always given by

$$\begin{aligned} \varDelta _{\min }=\max \left\{ 0,\frac{1}{2}S_{CHSH}-1\right\} . \end{aligned}$$

1.2 A.2 EPR-Bell: Negative Probabilities

The analogous result for the negative probabilities approach is that the observable distributions (18) are obtained as the marginals of some negative probability joint of \(\mathbf {A}_{1}=\mathbf {A}_{1,1}=\mathbf {A}_{1,2},\) \(\mathbf {A}_{2}=\mathbf {A}_{2,1}=\mathbf {A}_{2,2}\), \(\mathbf {B}_{1}=\mathbf {B}_{1,1}=\mathbf {B}_{2,1},\) and \(\mathbf {B}_{2}=\mathbf {B}_{1,2}=\mathbf {B}_{2,2}\) given by

$$\begin{aligned}&\Pr \left[ \mathbf {A}_{1}=a'_{1},\mathbf {\,A}_{2}=a'_{2},\,\mathbf {B}_{1}=b'_{1},\,\mathbf {B}_{2}=b'_{2}\right] \,=p^{+}(a'_{1},a'_{2},b'_{1},b'_{2})-p^{-}(a'_{1},a'_{2},b'_{1},b'_{2}), \end{aligned}$$

\(a'_{1},a'_{2},b'_{1},b'_{2}\in \{1,-1\}\), for some nonnegative functions \(p^{+}\) and \(p^{-}\) having a total probability mass value

$$\begin{aligned} M=\sum _{a'_{1},a'_{2},b'_{1},b'_{2}}p^{+}(a'_{1},a'_{2},b'_{1},b'_{2})+p^{-}(a'_{1},a'_{2},b'_{1},b'_{2}) \end{aligned}$$

if and only if \(M\ge 1+\varGamma _{\min }\), where

$$\begin{aligned} \varGamma _{\min }=\max \left\{ 0,\frac{1}{2}S_{CHSH}-1\right\} . \end{aligned}$$

The computations are similar to those of the CbD approach, but there are two general differences. First, in the CbD approach, the convex range of the possible observed and connection expectations (21)–(24) over the convex polytope of all possible joints is obtained by looking at these expectations at the \(2^{8}\) vertices defining the polytope of all joints and then applying a computer algorithm to find the set of inequalities delineating the extreme values of the expectations at these vertices. However, in the negative probabilities approach, the joint is represented by the \(2^{4}\) differences of the positive and negative components of the distribution and so, although these \(2\cdot 2^{4}\) components are nonnegative as in the CbD approach, they do not need to sum to one. Hence, the joint is represented by a convex cone rather than a bounded polytope. Still, a convex cone is a special case of a general polytope and can be handled by the same algorithms that we have used in the CbD approach.

Second, we do not need to apply the Fourier–Motzkin elimination algorithm here as we have defined M directly by the representation of the joint so there are no extra variables we would need to eliminate. This difference, however, is not really a difference between the two approaches, as we could have done the same in the CbD approach as well: we could have defined \({\varDelta }\) directly based on the joint of all eight variables without explicitly defining the connection correlations (22)–(23), and then we would have obtained the result directly from the half-space representation, as we do in the negative probabilities approach.

1.3 A.3 Leggett–Garg: Contextuality-by-Default

The results for Leggett–Garg \(\mathbf {Q}_{1},\mathbf {Q}_{2},\mathbf {Q}_{3}\) can be obtained in the same way as for the EPR-Bell systems. In the CbD approach, the observed correlations \(\left\langle \mathbf {Q}_{1,2}\mathbf {Q}_{2,1}\right\rangle \), \(\left\langle \mathbf {Q}_{1,3}\mathbf {Q}_{3,1}\right\rangle \), \(\left\langle \mathbf {Q}_{2,3}\mathbf {Q}_{3,2}\right\rangle \), \(\left\langle \mathbf {Q}_{1}\right\rangle =\left\langle \mathbf {Q}_{1,2}\right\rangle =\left\langle \mathbf {Q}_{1,3}\right\rangle \), \(\left\langle \mathbf {Q}_{2}\right\rangle =\left\langle \mathbf {Q}_{2,1}\right\rangle =\left\langle \mathbf {Q}_{3,2}\right\rangle \), \(\left\langle \mathbf {Q}_{3}\right\rangle =\left\langle \mathbf {Q}_{3,1}\right\rangle =\left\langle \mathbf {Q}_{3,2}\right\rangle \) are consistent with the connection correlations \(\left\langle \mathbf {Q}_{1,2}\mathbf {Q}_{1,3}\right\rangle \), \(\left\langle \mathbf {Q}_{2,1}\mathbf {Q}_{2,3}\right\rangle \), \(\left\langle \mathbf {Q}_{3,1}\mathbf {Q}_{3,2}\right\rangle \) if and only if these connection correlations are realizable with the given marginals (i.e., each correlation \(\left\langle \mathbf {AB}\right\rangle \) has to satisfy \(-1+|\left\langle \mathbf {A}\right\rangle +\left\langle \mathbf {B}\right\rangle |\le \left\langle \mathbf {A}\mathbf {B}\right\rangle \le 1-|\left\langle \mathbf {A}\right\rangle -\left\langle \mathbf {B}\right\rangle |\) as discussed in the EPR-Bell case above) and satisfy

$$\begin{aligned} \begin{array}{l} s_{u}\left( \left\langle \mathbf {Q}_{1,2}\mathbf {Q}_{2,1}\right\rangle ,\left\langle \mathbf {Q}_{1,3}\mathbf {Q}_{3,1}\right\rangle ,\left\langle \mathbf {Q}_{2,3}\mathbf {Q}_{3,2}\right\rangle \right) \\ +s_{1-u}\left( \left\langle \mathbf {Q}_{1,2}\mathbf {Q}_{1,3}\right\rangle ,\left\langle \mathbf {Q}_{2,1}\mathbf {Q}_{2,3}\right\rangle ,\left\langle \mathbf {Q}_{3,1}\mathbf {Q}_{3,2}\right\rangle \right) \le 4, \end{array} \end{aligned}$$
(29)

These two inequalities (with u standing for 0 or 1) expand to 32 linear inequalities and there are 21 trivial constraints.

Denoting

$$\begin{aligned} \varDelta&=\Pr \left[ \mathbf {Q}_{1,2}\!\ne \!\mathbf {Q}_{1,3}\right] +\Pr \left[ \mathbf {Q}_{2,1}\!\ne \!\mathbf {Q}_{2,3}\right] +\Pr \left[ \mathbf {Q}_{3,1}\!\ne \!\mathbf {Q}_{3,2}\right] \\&=\frac{3}{2}-\frac{1}{2}\left( \left\langle \mathbf {Q}_{1,2}\mathbf {Q}_{1,3}\right\rangle +\left\langle \mathbf {Q}_{2,1}\mathbf {Q}_{2,3}\right\rangle +\left\langle \mathbf {Q}_{3,1}\mathbf {Q}_{3,2}\right\rangle \right) \end{aligned}$$

and eliminating the connection correlations from the system using the Fourier–Motzkin algorithm, we obtain the system

$$\begin{aligned} -\frac{1}{2}+\frac{1}{2}S_{LG}\le \varDelta&\le 3-\left[ -\frac{1}{2}+\frac{1}{2}S_{LG}^{0}\right] ,\end{aligned}$$
(30)
$$\begin{aligned} 0\le \varDelta&\le 3-\left| \left\langle \mathbf {Q}_{1}\right\rangle \right| -\left| \left\langle \mathbf {Q}_{2}\right\rangle \right| -\left| \left\langle \mathbf {Q}_{3}\right\rangle \right| , \end{aligned}$$
(31)

where we denote

$$\begin{aligned} S_{LG}&=s_{1}\left( \left\langle \mathbf {Q}_{1,2}\mathbf {Q}_{2,1}\right\rangle ,\left\langle \mathbf {Q}_{1,3}\mathbf {Q}_{3,1}\right\rangle ,\left\langle \mathbf {Q}_{2,3}\mathbf {Q}_{3,2}\right\rangle \right) ,\\ S_{LG}^{0}&=s_{0}\left( \left\langle \mathbf {Q}_{1,2}\mathbf {Q}_{2,1}\right\rangle ,\left\langle \mathbf {Q}_{1,3}\mathbf {Q}_{3,1}\right\rangle ,\left\langle \mathbf {Q}_{2,3}\mathbf {Q}_{3,2}\right\rangle \right) . \end{aligned}$$

That is, \(\varDelta \) is consistent with the observed probabilities if and only if the above inequalities are satisfied. It follows that the minimum value of \(\varDelta \) is given by

$$\begin{aligned} \varDelta _{\min }=\max \left\{ 0,\frac{1}{2}S_{LG}-\frac{1}{2}\right\} . \end{aligned}$$

1.4 A.4 Leggett–Garg: Negative Probabilities

With the same additional comments as in the negative probability calculations for the EPR-Bell case, our calculations show that the observable probabilities \(\Pr \left[ \mathbf {Q}_{12}=q_{1},\mathbf {Q}_{21}=q_{2}\right] \), \(\Pr \left[ \mathbf {Q}_{13}=q_{1},\mathbf {Q}_{31}=q_{3}\right] \), \(\Pr \left[ \mathbf {Q}_{23}=q_{2},\mathbf {Q}_{32}=q_{3}\right] \), \(q_{1},q_{2},q_{3}\in \{0,1\},\) can be obtained as the marginals of a negative probability jpd of \(\mathbf {Q}_{1}=\mathbf {Q}_{1,2}=\mathbf {Q}_{1,3}\), \(\mathbf {Q}_{2}=\mathbf {Q}_{2,1}=\mathbf {Q}_{3,2}\), and \(\mathbf {Q}_{3}=\mathbf {Q}_{3,1}=\mathbf {Q}_{3,2}\) with the total probability mass of M if and only if \(M\ge 1+\varGamma _{\min }\), where

$$\begin{aligned} \varGamma _{\min }=\max \left\{ 0,\frac{1}{2}S_{LG}-\frac{1}{2}\right\} . \end{aligned}$$

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

de Barros, J.A., Dzhafarov, E.N., Kujala, J.V., Oas, G. (2016). Measuring Observable Quantum Contextuality. In: Atmanspacher, H., Filk, T., Pothos, E. (eds) Quantum Interaction. QI 2015. Lecture Notes in Computer Science(), vol 9535. Springer, Cham. https://doi.org/10.1007/978-3-319-28675-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-28675-4_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-28674-7

  • Online ISBN: 978-3-319-28675-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics