Skip to main content

Electrical Stimulation for Modification of Memory and Cognition

  • Chapter
  • First Online:
Electroceuticals

Abstract

A major challenge in neuroscience research is to develop stimulation systems (both minimally invasive and noninvasive) that can safely, flexibly and efficiently tap into the human brain, to coordinate complex cognitive and behavioral tasks. In this regard, neural technology is targeting new therapeutic approaches to improve mental performance for patients with cognitive disorders. Herein, we discuss recent developments in electro-stimulation therapies that have been instrumental in improving memory and cognition, including working memory, decision making and executive control, by enhancing cognitive performance. The use of various stimulation devices and technologies developed recently is examined in terms of preclinical (nonhuman primate experiments) and clinical applications to human brain disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Parent A. Aldini’s Essay on Galvanism. Can J Neurol Sci. 2004;31(4):576–84.

    Article  PubMed  Google Scholar 

  2. Aldini J. Essai théorique et expérimental sur le galvanisme, avec une série d’expériences faites devant des commissaires de l’Institut national de France, et en divers amphithéâtres anatomiques de Londres. Paris: Fournier Fils; 1804.

    Google Scholar 

  3. Fritsch G, Hitsig E. On the electrical excitability of the cerebrum. Archiv für Anatomie, Physiologie, und Wissenscahftliche Medicin. 1870;37:300–32.

    Google Scholar 

  4. Ferrier D. The functions of the brain. London: Smith, Elder & Co; 1886.

    Google Scholar 

  5. Penfield W, Perot P. The brain’s record of auditory and visual experience. A Final Summary and Discussion. Brain. 1963;86:595–696.

    Article  PubMed  CAS  Google Scholar 

  6. Stamm JS, Rosen SC. Electrical stimulation and steady potential shifts in prefrontal cortex during delayed response performance by monkeys. Acta Biol Exp (Warsz). 1969;29(3):385–99.

    CAS  Google Scholar 

  7. Geddes LA. History of Magnetic Stimulation of the Nervous System. J Clin Neurophysiol. 1991;8(1):3–9.

    Article  PubMed  CAS  Google Scholar 

  8. Barker AT, Jalinous R, Freeston IL. Non-invasive magnetic stimulation of human motor cortex. The Lancet. 1985;325(8437):1106–7.

    Article  Google Scholar 

  9. Albert DJ. The effect of spreading depression on the consolidation of learning. Neuropsychologia. 1966;4:49–64.

    Article  Google Scholar 

  10. Merton PA, Morton HB. Stimulation of the cerebral cortex in the intact human subject. Nature. 1980;285(5762):227.

    Article  PubMed  CAS  Google Scholar 

  11. Christie MJ, Williams JT, North RA. Electrical coupling synchronizes subthreshold activity in locus coeruleus neurons in vitro from neonatal rats. J Neurosci. 1989;9:3584–9.

    PubMed  CAS  Google Scholar 

  12. Alvarez VA, Chow CC, Van Bockstaele EJ, Williams JT. Frequency-dependent synchrony in locus ceruleus: role of electrotonic coupling. Proc Natl Acad Sci U S A. 2002;99:4032–6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Opris I, Barborica A, Ferrera VP. Effects of electrical microstimulation in monkey frontal eye field on saccades to remembered targets. Vision Res. 2005a;45(27):3414–29.

    Article  PubMed  Google Scholar 

  14. Opris I, Barborica A, Ferrera VP. Microstimulation of dorsolateral prefrontal cortex biases saccade target selection. J Cogn Neurosci. 2005b;17(6):893–904.

    Article  PubMed  Google Scholar 

  15. Wegener SP, Johnston K, Everling S. Microstimulation of monkey dorsolateral prefrontal cortex impairs antisaccade performance. Exp Brain Res. 2008;190(4):463–73.

    Article  PubMed  Google Scholar 

  16. Popa I, Donos C, Barborica A, Opris I, Mălîia MD, Ene M, Ciurea J, Mîndruţă I. Intrusive thoughts elicited by direct electrical stimulation during stereo-electroencephalography. Front. Neurol. 2016. http://dx.doi.org/10.3389/fneur.2016.00114.

  17. Opris I, Popa IL, Casanova MF. Prefrontal cortical microcircuits of executive control. Chapter 10. In: Manuel F, editor. Recent advances on the modular organization of the cerebral cortex. Dordrecht: Casanova and Ioan Opris, Springer; 2015. p. 157–79.

    Chapter  Google Scholar 

  18. Carter ME, Yizhar O, Chikahisa S, Nguyen H, Adamantidis A, et al. Tuning arousal with optogenetic modulation of locus coeruleus neurons. Nat Neurosci. 2010;13:1526–33.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Ohayon S, Grimaldi P, Schweers N, Tsao DY. Saccade modulation by optical and electrical stimulation in the macaque frontal eye field. J Neurosci. 2013;33:16684–97.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Dai J, Brooks DI, Sheinberg DL. Optogenetic and electrical microstimulation systematically bias visuospatial choice in primates. Curr Biol. 2014;24:63–9.

    Article  PubMed  CAS  Google Scholar 

  21. Tehovnik EJ. Electrical stimulation of neural tissue to evoke behavioral responses. J Neurosci Methods. 1996;65:1–17.

    Article  PubMed  CAS  Google Scholar 

  22. Gerits A, Farivar R, Rosen BR, Wald LL, Boyden ES, Vanduffel W. Optogenetically induced behavioral and functional network changes in primates. Curr Biol. 2012;22:1722–6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Cavanaugh J, Monosov IE, McAlonan K, Berman R, Smith MK, et al. Optogenetic inactivation modifies monkey visuomotor behavior. Neuron. 2012;76:901–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Jazayeri M, Lindbloom-Brown Z, Horwitz GD. Saccadic eye movements evoked by optogenetic activation of primate V1. Nat Neurosci. 2012;15:1368–70.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Diester I, Kaufman MT, Mogri M, Pashaie R, Goo W, Yizhar O, Ramakrishnan C, Deisseroth K, Shenoy KV. An optogenetic toolbox designed for primates. Nat Neurosci. 2011;14(3):387–97. doi:10.1038/nn.2749.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Dai J, Ozden I, Brooks DI, Wagner F, May T, Agha NS, Brush B, Borton D, Nurmikko AV, Sheinberg DL. Modified toolbox for optogenetics in the nonhuman primate. Neurophotonics. 2015;2(3):031202. doi:10.1117/1.NPh.2.3.031202.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Gold JI, Shadlen MN. Representation of a perceptual decision in developing oculomotor commands. Nature. 2000;404(6776):390–4.

    Article  PubMed  CAS  Google Scholar 

  28. Vlachos A, Müller-Dahlhaus F, Rosskopp J, Lenz M, Ziemann U, Deller T. Repetitive magnetic stimulation induces functional and structural plasticity of excitatory postsynapses in mouse organotypic hippocampal slice cultures. J Neurosci. 2012;32(48):17514–23.

    Article  PubMed  CAS  Google Scholar 

  29. Demirtas-Tatlidede A, Vahabzadeh-Hagh AM, Pascual-Leone A. Can noninvasive brain stimulation enhance cognition in neuropsychiatric disorders? Neuropharmacology. 2013;64:566–78.

    Article  PubMed  CAS  Google Scholar 

  30. Slotema CW, Blom JD, Hoek HW, Sommer IE. Should we expand the toolbox of psychiatric treatment methods to include Repetitive Transcranial Magnetic Stimulation (rTMS)? A meta-analysis of the efficacy of rTMS in psychiatric disorders. J Clin Psychiatry. 2010 Jul;71(7):873–84.

    Article  PubMed  Google Scholar 

  31. Hallett M. Transcranial magnetic stimulation: a primer. Neuron. 2007;55:187–99.

    Article  PubMed  CAS  Google Scholar 

  32. Neuling T, Wagner S, Wolters CH, Zaehle T, Herrmann CS. Finite-element model predicts current density distribution for clinical applications of tDCS and tACS. Front Psych. 2012;3:83.

    Google Scholar 

  33. Davis NJ, Van Koningsbruggen MG. “Non-invasive” brain stimulation is not non-invasive. Front. Syst. Neurosci. 2013;7:76.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Bauer RH, Fuster JM. Delayed-matching and delayed-response deficit from cooling dorsolateral prefrontal cortex in monkeys. Q J Exp Psychol B. 1976;90:293–302.

    CAS  Google Scholar 

  35. Funahashi S, Bruce CJ, Goldman-Rakic PS. Mnemonic coding of visual space in the monkey’s dorsolateral prefrontal cortex. J Neurophysiol. 1989;61:331–49.

    PubMed  CAS  Google Scholar 

  36. Fuster JM, Alexander GE. Neuron activity related to short-term memory. Science. 1971;173:652–4.

    Article  PubMed  CAS  Google Scholar 

  37. Funahashi S, Bruce CJ, Goldman-Rakic PS. Dorsolateral prefrontal lesions and oculomotor delayedresponse performance: evidence for mnemonic “scotomas”. J Neurosci. 1993;13:1479–97.

    PubMed  CAS  Google Scholar 

  38. Miller EK, Li L, Desimone R. Activity of neurons in anterior inferior temporal cortex during a short-term memory task. J Neurosci. 1993;13:1460–78.

    PubMed  CAS  Google Scholar 

  39. Chafee MV, Goldman-Rakic PS. Matching patterns of activity in primate prefrontal area 8a and parietal area 7ip neurons during a spatial working memory task. J Neurophysiol. 1998;79:2919–40.

    PubMed  CAS  Google Scholar 

  40. Curtis CE, D’Esposito M. Persistent activity in the prefrontal cortex during working memory. Trends Cogn Sci. 2003;7:415–23.

    Article  PubMed  Google Scholar 

  41. Curtis CE, Rao VY, D’Esposito M. Maintenance of spatial and motor codes during oculomotor delayed response tasks. J Neurosci. 2004;24:3944–52.

    Article  PubMed  CAS  Google Scholar 

  42. D’Esposito M. From cognitive to neural models of working memory. Phil Trans R Soc B. 2007;362:761–72.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Gazzaley A, Rissman J, Desposito M. Functional connectivity during working memory maintenance. Cogn Affect Behav Neurosci. 2004;4:580–99.

    Article  PubMed  Google Scholar 

  44. George MS, Nahas Z, Kozel FA, Goldman J, Molloy M, Oliver N. Improvement of depression following transcranial magnetic stimulation. Curr Psychiatry Rep. 1999;1(2):114–24.

    Article  PubMed  CAS  Google Scholar 

  45. Mondino M et al. Can transcranial direct current stimulation (tDCS) alleviate symptoms and improve cognition in psychiatric disorders? World J Biol Psychiatry. 2014;15(4):261–75.

    Article  PubMed  Google Scholar 

  46. Casanova MF, Sokhadze E, Opris I, Wang Y, Li X. Autism spectrum disorders: linking neuropathological findings to treatment with transcranial magnetic stimulation. Acta Paediatr. 2015;104(4):346–55. doi:10.1111/apa.12943.

    Article  PubMed  Google Scholar 

  47. Sokhadze EM, El-Baz AS, Sears LL, Opris I, Casanova MF. rTMS neuromodulation improves electrocortical functional measures of information processing and behavioral responses in autism. Front Syst Neurosci. 2014;8:134. doi:10.3389/fnsys.2014.00134.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Fitzsimmons NA, Drake W, Hanson TL, Lebedev MA, Nicolelis MA. Primate reaching cued by multichannel spatiotemporal cortical microstimulation. J Neurosci. 2007;7(21):5593–602.

    Article  CAS  Google Scholar 

  49. Churchland MM, Shenoy KV. Delay of movement caused by disruption of cortical preparatory activity. J Neurophysiol. 2007;97(1):348–59.

    Article  PubMed  Google Scholar 

  50. Logothetis NK, Augath M, Murayama Y, Rauch A, Sultan F, Goense J, Oeltermann A, Merkle H. The effects of electrical microstimulation on cortical signal propagation. Nat Neurosci. 2010;13(10):1283–91.

    Article  PubMed  CAS  Google Scholar 

  51. Salzman CD, Newsome WT. Neural mechanisms for forming a perceptual decision. Science. 1994;264:231–7.

    Article  PubMed  CAS  Google Scholar 

  52. Berger TW, Hampson RE, Song D, Goonawardena A, Marmarelis VZ, Deadwyler SA. A cortical neural prosthesis for restoring and enhancing memory. J Neural Eng. 2011;8(4):046017.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Selimbeyoglu A, Parvizi J. Electrical stimulation of the human brain: perceptual and behavioral phenomena reported in the old and new literature. Front Hum Neurosci. 2010;4:1–11.

    Google Scholar 

  54. Ruffini G, Wendling F, Merlet I, Molaee-Ardekani B, Mekonnen A, Salvador R, Soria-Frisch A, Grau C, Dunne S, Miranda PC. Transcranial current brain stimulation (tCS): models and technologies. IEEE Trans Neural Syst Rehabil Eng. 2013;21(3):333–45.

    Article  PubMed  Google Scholar 

  55. Westerberg CE, Florczak SM, Weintraub S, Mesulam MM, Marshall L, Zee PC, Paller KA. Memory improvement via slow-oscillatory stimulation during sleep in older adults. Neurobiol Aging.2015 pii: S0197–4580(15)00295-X. doi: 10.1016/j.neurobiolaging.2015.05.014.

  56. Nitsche MA, Cohen LG, Wassermann EM, Priori A, Lang N, Antal A, Paulus W, Hummel F, Boggio PS, Fregni F, Pascual-Leone A. Transcranial direct current stimulation: State of the art 2008. Brain Stimul. 2008;1(3):206–23.

    Article  PubMed  Google Scholar 

  57. Carandini M, Churchland AK. Probing perceptual decisions in rodents. Nat Neurosci. 2013;16(7):824–31.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Hanks TD, Ditterich J, Shadlen MN. Microstimulation of macaque area LIP affects decision-making in a motion discrimination task. Nat Neurosci. 2006;9(5):682–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Cohen MR, Newsome WT. What electrical microstimulation has revealed about the neural basis of cognition. Curr Opin Neurobiol. 2004;14:169–77.

    Article  PubMed  CAS  Google Scholar 

  60. Hampson RE, Song D, Opris I, Santos LM, Shin DC, Gerhardt GA, Marmarelis VZ, Berger TW, Deadwyler SA. Facilitation of memory encoding in primate hippocampus by a neuroprosthesis that promotes task-specific neural firing. J Neural Eng. 2013;10(6):066013.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Opris I, Santos LM, Song D, Berger TW, Gerhardt GA, Hampson RE, Deadwyler SA. Prefrontal cortical microcircuits bind perception to executive control. Sci Rep. 2013;3:2285. doi:10.1038/srep02285.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Berthier ML, Pulvermüller F. Neuroscience insights improve neurorehabilitation of poststroke aphasia. Nat Rev Neurol. 2011;7(2):86–97. doi:10.1038/nrneurol.2010.201.

    Article  PubMed  Google Scholar 

  63. Galletta EE, Rao PR, Barrett AM. Transcranial magnetic stimulation (TMS): potential progress for language improvement in aphasia. Top Stroke Rehabil. 2011;18(2):87–91.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Hecht D, Walsh V, Lavidor M. Transcranial direct current stimulation facilitates decision making in a probabilistic guessing task. J Neurosci. 2010;30(12):4241–5.

    Article  PubMed  CAS  Google Scholar 

  65. Kuehne M, Heimrath K, Heinze HJ, Zaehle T. Transcranial direct current stimulation of the left dorsolateral prefrontal cortex shifts preference of moral judgments. PLoS One. 2015;10(5):e0127061. doi:10.1371/journal.pone.0127061.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Penolazzi B, Bergamaschi S, Pastore M, Villani D, Sartori G, Mondini S. Transcranial direct current stimulation and cognitive training in the rehabilitation of Alzheimer disease: A case study. Neuropsychol Rehabil. 2014;7:1–19.

    Google Scholar 

  67. Penfield W, Boldrey E. Somatic motor and sensory represen¬tation in the cerebral cortex of man as studied by electrical stimulation. Brain. 1937;60:389–443.

    Article  Google Scholar 

  68. Penfield W, Jasper HH. Epilepsy and the functional anatomy of the human brain. London: J. & A. Churchill; 1954.

    Google Scholar 

  69. Penfield W. Some mechanisms of consciousness discovered during electrical stimulation of the brain. Proc Natl Acad Sci U S A. 1958;44:51–66.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Penfield W. The electrode, the brain and the mind. Z Neurol. 1972;201:297–309.

    PubMed  CAS  Google Scholar 

  71. Minamoto T, Azuma M, Yaoi K, Ashizuka A, Mima T, Osaka M, Fukuyama H, Osaka N. The anodal tDCS over the left posterior parietal cortex enhances attention toward a focus word in a sentence. Front Hum Neurosci. 2014;8:992.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Jeon SY, Han SJ. Improvement of the working memory and naming by transcranial direct current stimulation. Ann Rehabil Med. 2012;36(5):585–95.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Boggio PS, Khoury LP, Martins DC, Martins OE, de Macedo EC, Fregni F. Temporal cortex direct current stimulation enhances performance on a visual recognition memory task in Alzheimer disease. J Neurol Neurosurg Psychiatry. 2009;80(4):444–7.

    Article  PubMed  CAS  Google Scholar 

  74. Giglia G, Brighina F, Rizzo S, Puma A, Indovino S, Maccora S, Baschi R, Cosentino G, Fierro B. Anodal transcranial direct current stimulation of the right dorsolateral prefrontal cortex enhances memory-guided responses in a visuospatial working memory task. Funct Neurol. 2014;29(3):189–93.

    PubMed  PubMed Central  Google Scholar 

  75. Metuki N, Sela T, Lavidor M. Enhancing cognitive control components of insight problems solving by anodal tDCS of the left dorsolateral prefrontal cortex. Brain Stimul. 2012;5(2):110–5.

    Article  PubMed  Google Scholar 

  76. Otal B, Olma MC, Flöel A, Wellwood I. Inhibitory non-invasive brain stimulation to homologous language regions as an adjunct to speech and language therapy in post-stroke aphasia: a meta-analysis. Front Hum Neurosci. 2015;9:236.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Elsner B, Kugler J, Pohl M, Mehrholz J. Transcranial direct current stimulation (tDCS) for improving aphasia in patients with aphasia after stroke. Cochrane Database Syst Rev. 2015;5:CD009760.

    Google Scholar 

  78. Santarnecchi E, Polizzotto NR, Godone M, Giovannelli F, Feurra M, Matzen L, Rossi A, Rossi S. Frequency-dependent enhancement of fluid intelligence induced by transcranial oscillatory potentials. Curr Biol. 2013;23(15):1449–53.

    Article  PubMed  CAS  Google Scholar 

  79. Grabner RH, Rütsche B, Ruff CC, Hauser TU. Transcranial direct current stimulation of the posterior parietal cortex modulates arithmetic learning. Eur J Neurosci. 2015; doi:10.1111/ejn.12947.

    PubMed  Google Scholar 

  80. Nitsche MA, Nitsche MS, Klein CC, Tergau F, Rothwell JC, Paulus W. Level of action of cathodal DC polarisation induced inhibition of the human motor cortex. Clin Neurophysiol. 2003;114(4):600–4.

    Article  PubMed  Google Scholar 

  81. Cerruti C, Schlaug G. Anodal transcranial direct current stimulation of the prefrontal cortex enhances complex verbal associative thought. J Cogn Neurosci. 2009;21(10):1980–7.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Bennabi D. Transcranial direct current stimulation for memory enhancement: from clinical research to animal models. Front Syst Neurosci. 2014;8:159.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Clemens B, Jung S, Zvyagintsev M, Domahs F, Willmes K. Modulating arithmetic fact retrieval: a single-blind, sham-controlled tDCS study with repeated fMRI measurements. Neuropsychologia. 2013;51(7):1279–86.

    Article  PubMed  Google Scholar 

  84. Underwood E. 2016. http://www.sciencemag.org/news/2016/04/cadaver-study-casts-doubts-how-zapping-brain-may-boost-mood-relieve-pain.

  85. Rossini P, Rossi S. Transcranial magnetic stimulation: diagnostic, therapeutic, and research potential. Neurology. 2007;68(7):484–8.

    Article  PubMed  Google Scholar 

  86. Zangen A, Roth Y, Voller B, Hallett M. Transcranial magnetic stimulation of deep brain regions: Evidence for efficacy of the H-Coil. Clin Neurophysiol. 2005;116(4):775–9.

    Article  PubMed  Google Scholar 

  87. Bersani FS, Minichino A, Enticott PG, et al. Deep transcranial magnetic stimulation as a treatment for psychiatric disorders: a comprehensive review. Eur Psychiatry (Review). 2013;28(1):30–9.

    Article  CAS  Google Scholar 

  88. Rapinesi C, Bersani FS, Kotzalidis GD, Imperatori C, Del Casale A, Di Pietro S, Ferri VR, Serata D, Raccah RN, Zangen A, Angeletti G, Girardi P. Maintenance deep transcranial magnetic stimulation sessions are associated with reduced depressive relapses in patients with unipolar or bipolar depression. Front Neurol. 2015;6:16.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Sokhadze E, Baruth JM, Sears L, Sokhadze GE, El-Baz AS, Casanova MF. Prefrontal neuromodulation using rTMS improves error monitoring and correction functions in autism. Appl Psychophysiol Biofeedback. 2012;37(2):91–102.

    Article  PubMed  Google Scholar 

  90. Di Lazzaro V, Ziemann U. The contribution of transcranial magnetic stimulation in the functional evaluation of microcircuits in human motor cortex. Front Neural Circuits. 2013;7:18. doi:10.3389/fncir.2013.00018.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Weise D, Mann J, Ridding M, Eskandar K, Huss M, Rumpf JJ, Di Lazzaro V, Mazzone P, Ranieri F, Classen J. Microcircuit mechanisms involved in paired associative stimulation-induced depression of corticospinal excitability. J Physiol. 2013;591(19):4903–20.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Opris I, Ferrera VP. Modifying cognition and behavior with electrical microstimulation: implications for cognitive prostheses. Neurosci Biobehav Rev. 2014;47:321–35.

    Article  PubMed  Google Scholar 

  93. Opris I, Barborica A, Ferrera VP. A gap effect during microstimulation in the prefrontal cortex of monkey. Exp Brain Res. 2001;138:1–7.

    Article  PubMed  CAS  Google Scholar 

  94. Balan P, Ferrera VP. Effects of gaze shifts on maintenance of spatial memory in macaque frontal eye field. J Neurosci. 2003;23:5446–54.

    PubMed  CAS  Google Scholar 

  95. Hanes DP, Schall JD. Neural control of voluntary movement initiation. Science. 1996;274:427–30.

    Article  PubMed  CAS  Google Scholar 

  96. Schall JD. On building a bridge between brain and behavior. Annu Rev Psychol. 2004; doi:10.1146/annurev.psych.55.090902.141907.

    PubMed  Google Scholar 

  97. Schlag Rey M, Schlag J, Dassonville P. How the frontal eye field can impose a saccade goal on superior colliculus neurons. J Neurophysiol. 1992;67:1003–5.

    PubMed  CAS  Google Scholar 

  98. White 3rd RL, Snyder LH. Subthreshold microstimulation in frontal eye fields updates spatial memories. Exp Brain Res. 2007;181(3):477–92.

    Article  PubMed  Google Scholar 

  99. Lenartowicz A, Escobedo-Quiroz R, Cohen JD. Updating of context in working memory: an event-related potential study. Cogn Affect Behav Neurosci. 2010;10(2):298–315.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Barborica A, Ferrera VP. Estimating invisible target speed from neuronal activity in monkey frontal eye field. Nat Neurosci. 2003;6:66–74.

    Article  PubMed  CAS  Google Scholar 

  101. Goldberg ME, Bruce CJ. Primate frontal eye fields . III. Maintenance of a spatially accurate saccade signal. J Neurophysiol. 1990;64(2):489–508.

    PubMed  CAS  Google Scholar 

  102. Lisberger SG, Ferrera VP. Vector averaging for smooth pursuit eye movements initiated by two moving targets in monkeys. J Neurosci. 1997;17(19):7490–502.

    PubMed  CAS  Google Scholar 

  103. Umeno MM, Goldberg ME. Spatial processing in the monkey frontal eye field I. Predictive visual responses. J Neurophysiol. 1997;78:1373–83.

    PubMed  CAS  Google Scholar 

  104. Quaia C, Optican LM, Goldberg ME. The maintenance of spatial accuracy by the perisaccadic remapping of visual receptive fields. Neural Netw. 1998;11:1229–40.

    Article  PubMed  Google Scholar 

  105. Mountcastle VB. Modality and topographic properties of single neurons of cat’s somatic sensory cortex. J Neurophysiol. 1957;20:408–34.

    PubMed  CAS  Google Scholar 

  106. Mountcastle VB. The columnar organization of the n eocortex. Brain. 1997;120:701–22.

    Article  PubMed  Google Scholar 

  107. Shepherd G, Grillner S. Handbook of brain microcircuits. New York: Oxford University Press; 2010.

    Book  Google Scholar 

  108. Opris I, Bruce CJ. Neural circuitry of judgment and decision mechanisms. Brain Res Brain Res Rev. 2005;48(3):509–26.

    Article  PubMed  Google Scholar 

  109. Szentagothai J. The ‘module-concept’ in cerebral cortex architecture. Brain Res. 1975;95:475–96.

    Article  PubMed  CAS  Google Scholar 

  110. Constantinople CM, Bruno RM. Deep cortical layers are activated directly by thalamus. Science. 2013;340(6140):1591–4.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  111. Buxhoeveden DP, Casanova MF. The minicolumn hypothesis in neuroscience. Brain. 2002;125:935–51.

    Article  PubMed  Google Scholar 

  112. Casanova MF, El-Baz A, Switala A. Laws of conservation as related to brain growth, aging, and evolution: symmetry of the minicolumn. Front Neuroanat. 2011;5:66.

    Article  PubMed  PubMed Central  Google Scholar 

  113. Moxon KA, Leiser SC, Gerhardt GA, Barbee KA, Chapin JK. Ceramic-based multisite electrode arrays for chronic single-neuron recording. IEEE Trans Biomed Eng. 2004;51:647–56.

    Article  PubMed  Google Scholar 

  114. Opris I, Hampson RE, Stanford TR, Gerhardt GA, Deadwyler SA. Neural activity in frontal cortical cell layers: evidence for columnar sensorimotor processing. J Cogn Neurosci. 2011;23:1507–21.

    Article  PubMed  Google Scholar 

  115. Opris I, Hampson RE, Gerhardt GA, Berger TW, Deadwyler SA. Columnar processing in primate pFC: Evidence for executive control microcircuits. J Cogn Neuro. 2012a;24(12):2334–47.

    Article  Google Scholar 

  116. Opris I, Fuqua JL, Huettl P, Gerhardt GA, Berger TW, Hampson RE, Deadwyler SA. Closing the loop in primate prefrontal cortex: Inter-laminar processing. Front Neural Circuits. 2012b;6:88. doi:10.3389/fncir.2012.00088.

    Article  PubMed  PubMed Central  Google Scholar 

  117. Hampson RE, Gerhardt GA, Marmarelis VZ, Song D, Opris I, Santos LM, Berger TW, Deadwyler SA. Facilitation and restoration of cognitive function in primate prefrontal cortex by a neuroprosthesis that utilizes minicolumn-specific neural firing. J Neural Eng. 2012;9(5):056012.

    Article  PubMed  PubMed Central  Google Scholar 

  118. Opris I, Santos LM, Gerhardt GA, Song D, Berger TW, Hampson RE, Deadwyler SA. Distributed encoding of spatial and object categories in primate hippocampal microcircuits. Front Neurosci. 2015;9:317. doi:10.3389/fnins.2015.00317.

    Article  PubMed  PubMed Central  Google Scholar 

  119. Opris I, Casanova MF. Prefrontal cortical minicolumn: from executive control to disrupted cognitive processing. Brain. 2914;137(7):1863–75. doi:10.1093/brain/awt359.

    Article  Google Scholar 

  120. Opris I, Fuqua JL, Gerhardt GA, Hampson RE, Deadwyler SA. Prefrontal cortical recordings with biomorphic MEAs reveal complex columnar-laminar microcircuits for BCI/BMI implementation. J Neurosci Methods. 2015;244:104–13.

    Article  PubMed  Google Scholar 

  121. Opris I, Gerhardt GA, Hampson RE, Deadwyler SA. Disruption of columnar and laminar cognitive processing in primate prefrontal cortex following cocaine exposure. Front Syst Neurosci. 2015;9:79. doi:10.3389/fnsys.2015.00079.

    Article  PubMed  PubMed Central  Google Scholar 

  122. Riddle DR, Lichtenwalner RJ. In: Riddle DR, editor. Neurogenesis in the adult and aging brain brain aging: models, methods, and mechanisms (frontiers in neuroscience). Boca Raton: CRC Press; 2007.

    Chapter  Google Scholar 

  123. Blanke O, Landis T, Seeck M. Electrical cortical stimulation of the human prefrontal cortex evokes complex visual hallucinations. Epilepsy Behav. 2000;1:356–61.

    Article  PubMed  CAS  Google Scholar 

  124. Lobel E, Kahane P, Leonards U, Grosbras M, Lehericy S, Le Bihan D, Berthoz A. Localization of human frontal eye fields: anatomical and functional findings of functional magnetic resonance imaging and intracerebral electrical stimulation. J Neurosurg. 2001;95:804–15.

    Article  PubMed  CAS  Google Scholar 

  125. Jacobs JV, Lou JS, Kraakevik JA, Horak FB. The supplementary motor area contributes to the timing of the anticipatory postural adjustment during step initiation in participants with and without Parkinson’s disease. Neuroscience. 2009;164(2):877–85.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  126. Bolzoni F, Bruttini C, Esposti R, Castellani C, Cavallari P. Transcranial direct current stimulation of SMA modulates anticipatory postural adjustments without affecting the primary movement. Behav Brain Res. 2015;291:407–13.

    Article  PubMed  Google Scholar 

  127. Chassagnon S, Minotti L, Kremer S, Hoffmann D, Kahane P. Somatosensory, motor, and reaching/grasping responses to direct electrical stimulation of the human cingulate motor areas. J Neurosurg. 2008;109(4):593–604.

    Article  PubMed  Google Scholar 

  128. Talairach J, Bancaud J, Geier S, Bordas-Ferrer M, Bonis A, Szikla G, Rusu M. The cingulate gyrus and human behaviour. Electroencephalogr Clin Neurophysiol. 1973;34:45–52.

    Article  PubMed  CAS  Google Scholar 

  129. Desmurget M, Reilly KT, Richard N, Szathmari A, Mottolese C, Sirigu A. Movement intention after parietal cortex stimulation in humans. Science. 2009;324(5928):811–3.

    Article  PubMed  CAS  Google Scholar 

  130. Rochas V, Gelmini L, Krolak-Salmon P, Poulet E, Saoud M, Brunelin J, Bediou B. Disrupting pre-SMA activity impairs facial happiness recognition: an event-related TMS study. Cereb Cortex. 2013;23(7):1517–25. doi:10.1093/cercor/bhs133.

    Article  PubMed  Google Scholar 

  131. Osaka N, Osaka M, Kondo H, Morishita M, Fukuyama H, Shibasaki H. An emotion-based facial expression word activates laughter module in the human brain: a functional magnetic resonance imaging study. Neurosci Lett. 2003;340(2):127–30.

    Article  PubMed  CAS  Google Scholar 

  132. Sperli F, Spinelli L, Pollo C, Seeck M. Contralateral smile and laughter, but no mirth, induced by electrical stimulation of the cingulate cortex. Epilepsia. 2006;47(2):440–3.

    Article  PubMed  Google Scholar 

  133. Choi JC, Kim J, Kang E, Lee JM, Cha J, Kim YJ, Lee HG, Choi JH, Yi DJ. Brain mechanisms of pain relief by transcutaneous electrical nerve stimulation: A functional magnetic resonance imaging study. Eur J Pain. 2015; doi:10.1002/ejp.696.

    Google Scholar 

  134. Tsubokawa T, Katayama Y, Ueno Y, Moriyasu N. Evidence for involvement of the frontal cortex in pain-related cerebral events in cats: increase in local cerebral blood flow by noxious stimuli. Brain Res. 1981;217(1):179–85.

    Article  PubMed  CAS  Google Scholar 

  135. Cohen Kadosh R, Soskic S, Iuculano T, Kanai R, Walsh V. Modulating neuronal activity produces specific and long-lasting changes in numerical competence. Curr Biol. 2010;20(22):2016–20. doi:10.1016/j.cub.2010.10.007.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  136. Coffman BA, Clark VP, Parasuraman R. Battery powered thought: enhancement of attention, learning, and memory in healthy adults using transcranial direct current stimulation. Neuroimage. 2014;85(Pt 3):895–908.

    Article  PubMed  Google Scholar 

  137. Bennabi D, Pedron S, Haffen E, Monnin J, Peterschmitt Y, Van Waes V. Transcranial direct current stimulation for memory enhancement: from clinical research to animal models. Front Syst Neurosci. 2014;8:159.

    Article  PubMed  PubMed Central  Google Scholar 

  138. Chi RP, Snyder AW. Brain stimulation enables the solution of an inherently difficult problem. Neurosci Lett. 2012;515(2):121–4. doi:10.1016/j.neulet.2012.03.012.

    Article  PubMed  CAS  Google Scholar 

  139. Wokke ME, Talsma LJ, Vissers ME. Biasing neural network dynamics using non-invasive brain stimulation. Front Syst Neurosci. 2015;8:246. doi:10.3389/fnsys.2014.00246.

    Article  PubMed  PubMed Central  Google Scholar 

  140. Fregni F, Boggio PS, Nitsche M, Pascual-Leone A. Transcranial direct current stimulation. Br J Psychiatry. 2005;186:446–7.

    Article  PubMed  CAS  Google Scholar 

  141. Keeser D, Meindl T, Bor J, Palm U, Pogarell O, Mulert C, Brunelin J, Möller HJ, Reiser M, Padberg F. Prefrontal transcranial direct current stimulation changes connectivity of resting-state networks during fMRI. J Neurosci. 2011a;31(43):15284–93.

    Article  PubMed  CAS  Google Scholar 

  142. Keeser D, Padberg F, Reisinger E, Pogarell O, Kirsch V, Palm U, Karch S, Möller HJ, Nitsche MA, Mulert C. Prefrontal direct current stimulation modulates resting EEG and event-related potentials in healthy subjects: a standardized low resolution tomography (sLORETA) study. Neuroimage. 2011b;55(2):644–57.

    Article  PubMed  CAS  Google Scholar 

  143. Padberg F, George MS. Repetitive transcranial magnetic stimulation of the prefrontal cortex in depression. Exp Neurol. 2009;219(1):2–13.

    Article  PubMed  Google Scholar 

  144. Salinas FS, Narayama S, Zhang W, Fox PT, Szabó SA. Repetitive transcranial magnetic stimulation elicits rate-dependent brain network responses in non-human primates. Brain Stimul. 2013; doi:10.1016/j.brs.2013.03.002.

    PubMed Central  Google Scholar 

  145. Broadbent HJ, Van Den Eynde F, Guillaume S, Hanif EL, Stahl D, David AS, Campbell IC, Schmidt U. Blinding success of rTMS applied to the dorsolateral prefrontal cortex in randomised sham-controlled trials: a systematic review. World J Biol Psychiatry. 2011;12(4):240.

    Article  PubMed  Google Scholar 

  146. Chi RP, Snyder AW. Facilitate insight by non-invasive brain stimulation. PLoS One. 2011;6(2):e16655.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  147. George MS, Taylor JJ, Short B. Treating the depressions with superficial brain stimulation methods. Handb Clin Neurol. 2013;116:399–413.

    Article  PubMed  Google Scholar 

  148. Hovington CL, McGirr A, Lepage M, Berlim MT. Repetitive transcranial magnetic stimulation (rTMS) for treating major depression and schizophrenia: a systematic review of recent meta-analyses. Ann Med. 2013;45(4):308–21.

    Article  PubMed  Google Scholar 

  149. Sokhadze E, El-Baz A, Baruth J, Mathai G, Sears L, Casanova M. Effects of low frequency repetitive transcranial magnetic stimulation (rTMS) on gamma frequency oscillations and event-related potentials during processing of illusory figures in autism. J Autism Dev Disord. 2009;39:619–34.

    Article  PubMed  Google Scholar 

  150. Casanova M, Baruth J, El-Baz A, Tasman A, Sears L, Sokhadze E. Repetitive transcranial magnetic stimulation (rTMS) modulates event-related potential (ERP) indices of attention in autism. Transl Neurosci. 2012;3(2):170–80.

    Article  PubMed  PubMed Central  Google Scholar 

  151. Baruth J, Casanova M, El-Baz A, Horrell T, Mathai G, Sears L, Sokhadze E. Low-frequency repetitive Transcranial Magnetic Stimulation modulates evoked-gamma frequency oscillations in autism spectrum disorders. J Neurother. 2010;14(3):179–94.

    Article  PubMed  PubMed Central  Google Scholar 

  152. George MS, Nahas Z, Lisanby SH, Schlaepfer T, Kozel FA, Greenberg BD. Transcranial magnetic stimulation. Neurosurg Clin N Am. 2003;14(2):283–301.

    Article  PubMed  Google Scholar 

  153. George MS. Transcranial magnetic stimulation for the treatment of depression. Expert Rev Neurother. 2010;10(11):1761–72. doi:10.1586/ern.10.95.

    Article  PubMed  Google Scholar 

  154. Aleman A. Use of repetitive transcranial magnetic stimulation for treatment in psychiatry. Clin Psychopharmacol Neurosci (Review). 2013;11(2):53–9.

    Article  Google Scholar 

  155. Lefaucheur JP et al. Evidence-based guidelines on the therapeutic use of repetitive transcranial magnetic stimulation (rTMS). Clin Neurophysiol. 2014;125(11):2150–206.

    Article  PubMed  Google Scholar 

  156. George MS, Post RM. Daily left prefrontal repetitive transcranial magnetic stimulation for acute treatment of medication-resistant depression. Am J Psychiatry. 2011;168(4):356–64.

    Article  PubMed  Google Scholar 

  157. Berlim MT, Van den Eynde F, Jeff Daskalakis Z. Clinically meaningful efficacy and acceptability of low-frequency repetitive transcranial magnetic stimulation (rTMS) for treating primary major depression: a meta-analysis of randomized, double-blind and sham-controlled trials. Neuropsychopharmacology. 2013;38(4):543–51.

    Article  PubMed  CAS  Google Scholar 

  158. Hamidi M, Slagter HA, Tononi G, Bradley Postle BR. Repetitive transcranial magnetic stimulation affects behavior by biasing endogenous cortical oscillations. Front Integr Neurosci. 2009;3:14.

    Article  PubMed  PubMed Central  Google Scholar 

  159. Rubenstein JLR, Merzenich MM. Model of autism: increased ratio of excitation/inhibition in key neural systems. Genes Brain Behav. 2003;2:255–67.

    Article  PubMed  CAS  Google Scholar 

  160. Vlamings PH, Jonkman LM, Hoeksma MR, van Engeland H, Kemner C. Reduced error monitoring in children with autism spectrum disorder: an ERP study. Eur J Neurosci. 2008;28:399–406. doi:10.1111/j.1460-9568.2008. 06336.

    Article  PubMed  Google Scholar 

  161. Bogte H, Flamma B, van der Meere J, van Engeland H. Post-error adaptation in adults with high functioning autism. Neuropsychologia. 2007;45(8):1707–14.

    Article  PubMed  Google Scholar 

  162. Henderson H, Schwartz C, Mundy P, Burnette C, Sutton S, Zahka N, Pradella A. Response monitoring, the error-related negativity, and differences in social behavior in autism. Brain Cogn. 2006;61(1):96–109.

    Article  PubMed  PubMed Central  Google Scholar 

  163. Daly JJ, Huggins JE. Brain-computer interface: current and emerging rehabilitation applications. Arch Phys Med Rehabil. 2015;96(3 Suppl):S1–7.

    Article  PubMed  PubMed Central  Google Scholar 

  164. Grau C, Ginhoux R, Riera A, Nguyen TL, Chauvat H, Berg M, Amengual JL, Pascual-Leone A, Ruffini G. Conscious brain-to-brain communication in humans using non-invasive technologies. PLoS One. 2014;9(8):e105225.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  165. Chen CH, Ho MS, Shyu KK, Hsu KC, Wang KW, Lee PL. A noninvasive brain computer interface using visually-induced near-infrared spectroscopy responses. Neurosci Lett. 2014;580:22–6.

    Article  PubMed  CAS  Google Scholar 

  166. Grosse-Wentrup M, Mattia D, Oweiss K. Using brain-computer interfaces to induce neural plasticity and restore function. J Neural Eng. 2011;8(2):025004.

    Article  PubMed  PubMed Central  Google Scholar 

  167. Lebedev MA, Nicolelis MA. Brain-machine interfaces: past, present and future. Trends Neurosci. 2006;29(9):536–46.

    Article  PubMed  CAS  Google Scholar 

  168. Opris I. Inter-laminar microcircuits across the neocortex: repair and augmentation. Front. Syst. Neurosci. 2013;7:80. doi:10.3389/fnsys.2013.00080.

    Article  PubMed  PubMed Central  Google Scholar 

  169. Andersen RA, Hwang EJ, Mulliken GH. Cognitive neural prosthetics. Annu Rev Psychol. 2010;61:169–90. C1-3

    Article  PubMed  PubMed Central  Google Scholar 

  170. Nicolelis MA. Actions from thoughts. Nature. 2001;409(6818):403–7.

    Article  PubMed  CAS  Google Scholar 

  171. Bach-y-Rita P, Kercel WS. Sensory substitution and the human-machine interface.Trends. Cognit Sci. 2003;7(12):541–6.

    Google Scholar 

  172. Kim SP, Sanchez JC, Rao YN, Erdogmus D, Carmena JM, Lebedev MA, Nicolelis MA, Principe JC. A comparison of optimal MIMO linear and nonlinear models for brain-machine interfaces. J Neural Eng. 2006;3(2):145–61.

    Article  PubMed  Google Scholar 

  173. Song D, Chan RH, Marmarelis VZ, Hampson RE, Deadwyler SA, Berger TW. Nonlinear modeling of neural population dynamics for hippocampal prostheses. Neural Netw. 2009;22(9):1340–51.

    Article  PubMed  PubMed Central  Google Scholar 

  174. Musallam S, Corneil BD, Greger B, Scherberger H, Andersen RA. Cognitive control signals for neural prosthetics. Science. 2004;305(5681):258–62.

    Article  PubMed  CAS  Google Scholar 

  175. Poli R, Valeriani D, Cinel C. Collaborative brain-computer interface for aiding decision-making. PLoS One. 2014;9(7):e102693.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  176. Garbayo E, Estella-Hermoso de Mendoza A, Blanco-Prieto MJ. Diagnostic and therapeutic uses of nanomaterials in the brain. Curr Med Chem. 2014;21(36):4100–31.

    Article  PubMed  CAS  Google Scholar 

  177. Gibney E. Injectable brain implant spies on individual neurons. Nature. 2015;522(7555):137–8.

    Article  PubMed  CAS  Google Scholar 

  178. Chhabra R, Tosi G, Grabrucker AM. Emerging use of nanotechnology in the treatment of neurological disorders. Curr Pharm Des. 2015;21:3111–30.

    Article  PubMed  CAS  Google Scholar 

  179. Angle MR, Cui B, Melosh NA. Nanotechnology and neurophysiology. Curr Opin Neurobiol. 2015;32:132–40.

    Article  PubMed  CAS  Google Scholar 

  180. Zhu W, O’Brien C, O’Brien JR. Zhang LG.3D nano/microfabrication techniques and nanobiomaterials for neural tissue regeneration. Nanomedicine (Lond). 2014;9(6):859–75.

    Article  CAS  Google Scholar 

  181. Monaco AM, Giugliano M. Carbon-based smart nanomaterials in biomedicine and neuroengineering. Beilstein J Nanotechnol. 2014;5:1849–63.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  182. Stieglitz T. Restoration of neurological functions by neuroprosthetic technologies: future prospects and trends towards micro-, nano-, and biohybrid systems. Acta Neurochir Suppl. 2007;97(Pt 1):435–42.

    PubMed  CAS  Google Scholar 

  183. Silva GA. Nanotechnology applications and approaches for neuroregeneration and drug delivery to the central nervous system. Ann N Y Acad Sci. 2010;1199:221–30.

    Article  PubMed  CAS  Google Scholar 

  184. Spira ME, Hai A. Multi-electrode array technologies for neuroscience and cardiology. Nat Nanotechnol. 2013;8(2):83–94.

    Article  PubMed  CAS  Google Scholar 

  185. Vidu R, Rahman M, Mahmoudi M, Enachescu M, Poteca TD, Opris I. Nanostructures: a platform for brain repair and augmentation. Front Syst Neurosci. 2014;8:91.

    Article  PubMed  PubMed Central  Google Scholar 

  186. Brunello CA, Jokinen V, Sakha P, Terazono H, Nomura F, Kaneko T, Lauri SE, Franssila S, Rivera C, Yasuda K, Huttunen HJ. Microtechnologies to fuel neurobiological research with nanometer precision. J Nanobiotechnology. 2013;11:11.

    Article  PubMed  PubMed Central  Google Scholar 

  187. Jiang C, Li L, Hao H. Carbon nanotube yarns for deep brain stimulation electrode. IEEE Trans Neural Syst Rehabil Eng. 2011 Dec;19(6):612–6.

    Article  PubMed  Google Scholar 

  188. Keefer EW, Botterman BR, Romero MI, Rossi AF, Gross GW. Carbon nanotube coating improves neuronal recordings. Nat Nanotechnol. 2008;3(7):434–9.

    Article  PubMed  CAS  Google Scholar 

  189. Suyatin DB, Wallman L, Thelin J, Prinz CN, Jorntell H, Samuelson L, et al. Nanowire-based electrode for acute in vivo neural recordings in the brain. PLoS One. 2013;8:e56673. doi:10.1371/journal.pone. 0056673.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  190. Hai A, Shappir J. Spira ME Long-term, multisite, parallel, in-cell recording and stimulation by an array of extracellular microelectrodes. J Neurophysiol. 2010 Jul;104(1):559–68.

    Article  PubMed  CAS  Google Scholar 

  191. Nam Y, Wheeler BC. In vitro microelectrode array technology and neural recordings. Crit Rev Biomed Eng. 2011;39(1):45–61.

    Article  PubMed  Google Scholar 

  192. Patrick E, Sankar V, Rowe W, Sanchez JC, Nishida T. An implantable integrated low-power amplifier-microelectrode array for brain-machine interfaces. Conf Proc IEEE Eng Med Biol Soc. 2010;2010:1816–9.

    PubMed  Google Scholar 

  193. Hwang JY, Shin US, Jang WC, Hyun JK, Wall IB, Kim HW. Biofunctionalized carbon nanotubes in neural regeneration: a mini-review. Nanoscale. 2013;5(2):487–97.

    Article  PubMed  CAS  Google Scholar 

  194. David-Pur M, Bareket-Keren L, Beit-Yaakov G, Raz-Prag D, Hanein Y. All-carbon-nanotube flexible multi-electrode array for neuronal recording and stimulation. Biomed Microdevices. 2014;16(1):43–53.

    Article  PubMed  CAS  Google Scholar 

  195. Xie C, Hanson L, Xie W, Lin Z, Cui B, Cui Y. Noninvasive neuron pinning with nanopillar arrays. Nano Lett. 2010;10:4020–4.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  196. Suzuki I, Fukuda M, Shirakawa K, Jiko H, Gotoh M. Carbon nanotube multi-electrode array chips for noninvasive real-time measurement of dopamine, action potentials, and postsynaptic potentials. Biosens Bioelectron. 2013;49:270–5.

    Article  PubMed  CAS  Google Scholar 

  197. Gacem K, Retrouvey J-M, Chabi D, Filoramo A, Zhao W, Klein J-O, et al. Neuromorphic function learning with carbon nanotube based synapses. Nanotechnology. 2013;24:384013.

    Article  PubMed  CAS  Google Scholar 

  198. Du J, Blanche TJ, Harrison RR, Lester HA, Masmanidis S. Multiplexed, high density electrophysiology with nanofabricated neural probes. PLoS One. 2011;6:e26204.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  199. Viventi J, Kim D-H, Vigeland L, Frechette ES, Blanco JA, Kim Y-S, et al. Flexible, foldable, actively multiplexed, high-density electrode array for mapping brain activity in vivo. Nat Neurosci. 2011;14:U1599–605.

    Article  CAS  Google Scholar 

  200. Wise KD. Integrated sensors, MEMS, and microsystems: reflections on a fantastic voyage. Sens Actuators A Phys. 2007;136:39–50.

    Article  CAS  Google Scholar 

  201. Chang-Hsiao C, Shih-Chang C, Yu-Tao L, Yen-Chung C, Shih-Rung Y, Da-Jeng Y. Three-dimensional flexible microprobe for recording the neural signal. J Micro. 2010;9:031007.

    Google Scholar 

  202. Amaral J, Pinto V, Costa T, Gaspar J, Ferreira R, Paz E, et al. Integration of TMR sensors in silicon microneedles for magnetic measurements of neurons. IEEE Trans Magn. 2013;49:3512–5.

    Article  CAS  Google Scholar 

  203. Malarkey EB, Parpura V. Carbon nanotubes in neuroscience. In: Czernicki Z, Baethmann A, Ito U, Katayama Y, Kuroiwa T, Mendelow D, editors. Brain Edema XIV. Vienna: Springer; 2010. p. 337–41.

    Chapter  Google Scholar 

  204. Stankova L, Fraczek-Szczypta A, Blazewicz M, Filova E, Blazewicz S, Lisa V, et al. Human osteoblast-like MG 63 cells on polysulfone modified with carbon nanotubes or carbon nanohorns. Carbon. 2014;67:578–91.

    Article  CAS  Google Scholar 

  205. Fabbro A, Bosi S, Ballerini L, Prato M. Carbon nanotubes: artificial nanomaterials to engineer single neurons and neuronal networks. ACS Chem Nerosci. 2012;3:611–8.

    Article  CAS  Google Scholar 

  206. Alivisatos AP, Andrews AM, Boyden ES, Chun M, Church GM, Deisseroth K, et al. Nanotools for neuroscience and brain activity mapping. ACS Nano. 2013;7:1850–66.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  207. Zorzos AN, Scholvin J, Boyden ES, Fonstad CG. Threedimensional multiwaveguide probe array for light delivery to distributed brain circuits. Opt Lett. 2012;37:4841–3.

    Article  PubMed  PubMed Central  Google Scholar 

  208. Bokara KK, Kim JY, Lee YI, Yun K, Webster TJ, Lee JE. Biocompatability of carbon nanotubes with stem cells to treat CNS injuries. Anat Cell Biol. 2013;46:85–92.

    Article  PubMed  PubMed Central  Google Scholar 

  209. Marmarelis VZ, Shin DC, Song D, Hampson RE, Deadwyler SA, Berger TW. On parsing the neural code in the prefrontal cortex of primates using principal dynamic modes. J Comput Neurosci. 2014;36:321–37.

    Article  PubMed  CAS  Google Scholar 

  210. Soekadar SR, Birbaumer N, Slutzky MW, Cohen LG. Brain-machine interfaces in neurorehabilitation of stroke. Neurobiol Dis. 2014. pii: S0969–9961(14)00371–4. doi: 10.1016/j.nbd.2014.11.025.

  211. Schwarz DA, Lebedev MA, Hanson TL, Dimitrov DF, Lehew G, Meloy J, Rajangam S, Subramanian V, Ifft PJ, Li Z, Ramakrishnan A, Tate A, Zhuang KZ, Nicolelis MA. Chronic, wireless recordings of large-scale brain activity in freely moving rhesus monkeys. Nat Methods. 2014;11(6):670–6. doi:10.1038/nmeth.2936.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  212. Zippo AG, Romanelli P, Torres Martinez NR, Caramenti GC, Benabid AL, Biella GE. A novel wireless recording and stimulating multichannel epicortical grid for supplementing or enhancing the sensory-motor functions in monkey (Macaca fascicularis). Front Syst Neurosci. 2015;9:73. doi:10.3389/fnsys.2015.00073.

    Article  PubMed  PubMed Central  Google Scholar 

  213. Suzuki T, Ando H, Yoshida T, Sawahata H, Kawasaki K, Hasegawa I, Matsushita K, Hirata M, Yoshimine T, Takizawa K. Super multi-channel recording systems with UWB wireless transmitter for BMI. Conf Proc IEEE Eng Med Biol Soc. 2014;2014:5208–11.

    PubMed  Google Scholar 

  214. Merolla PA, Arthur JV, Alvarez-Icaza R, Cassidy AS, Sawada J, Akopyan F, Jackson BL, Imam N, Guo C, Nakamura Y, Brezzo B, Vo I, Esser SK, Appuswamy R, Taba B, Amir A, Flickner MD, Risk WP, Manohar R, Modha DS. Artificial brains. A million spiking-neuron integrated circuit with a scalable communication network and interface. Science. 2014;345(6197):668–73.

    Article  PubMed  CAS  Google Scholar 

  215. Simonite T. New form of memory could advance. Brain-Inspired Computers. 2014. http://www.technologyreview.com/news/533526/new-form-of-memory-could-advance-brain-inspired-computers/.

  216. Wei W, Song Y, Fan X, et al. Simultaneous recording of brain extracellular glucose, spike and local field potential in real time using an implantable microelectrode array with nano-materials. Nanotechnology. 2016;27(2016):114001. doi:10.1088/0957-4484/27/11/114001.

    Article  PubMed  CAS  Google Scholar 

  217. Kuzum D, Rakesh G, Jeyasingh D, Lee B, Philip Wong H-S. Nanoelectronic programmable synapses based on phase change materials for brain-inspired computing. Nano Lett. 2016;12(5):2179–86. doi:10.1021/nl201040y.

    Article  CAS  Google Scholar 

  218. Scholvin J, Kinney JP, Bernstein JG, Moore-Kochlacs C, Kopell N, Fonstad CG, Boyden ES. Close-packed silicon microelectrodes for scalable spatially oversampled neural recording. IEEE Trans Biomed Eng. 2016;63(1):120–30.

    Article  PubMed  PubMed Central  Google Scholar 

  219. Park D-W, Schendel AA, Mikael S, Brodnick SK, Richner TJ, Ness JP, et al. Graphene-based carbon-layered electrode array technology for neural imaging and optogenetic applications. Nat Commun. 2014;5:5258. doi:10.1038/ncomms6258.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  220. Kuzum D, Takano T, Shim E, Reed JC, Juul H, Richardson AG, et al. Transparent and flexible low noise graphene electrodes for simultaneous electrophysiology and neuroimaging. Nat Commun. 2014;5:5259. doi:10.1038/ncomms6259.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ioan Opris PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Opris, I. (2017). Electrical Stimulation for Modification of Memory and Cognition. In: Majid, A. (eds) Electroceuticals. Springer, Cham. https://doi.org/10.1007/978-3-319-28612-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-28612-9_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-28610-5

  • Online ISBN: 978-3-319-28612-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics