Skip to main content

Biodegradable Polymeric Materials

  • Chapter
  • First Online:
Regenerative Medicine - from Protocol to Patient

Abstract

The ability of polymers to be degraded in physiological environments makes them interesting candidates for various medical applications. Degradation and metabolisation or excretion of polymeric implants can avoid a second surgery for the removal of an implant. They follow a distinct pathway for degradation, depending on their structure. Biodegradable materials can serve as a temporary substitute of the extracellular matrix or as matrix in controlled drug release systems, which both can be utilized in Regenerative Therapies.

This chapter gives an overview about polymeric materials established in clinical use such as polyesters, polyurethanes, polyanhydrides, or carbohydrates. It describes further their synthesis and exemplary applications such as surgical sutures. Finally the importance of a continuing development of novel materials for future applications is pointed out, since the number of potential applications in the medical field is expanding rapidly.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmed FE, Lalia BS, Hashaikeh R (2015) A review on electrospinning for membrane fabrication: challenges and applications. Desalination 356:15–30. doi:10.1016/j.desal.2014.09.033

    Article  CAS  Google Scholar 

  • Ajioka M, Enomoto K, Suzuki K, Yamaguchi A (1995) Basic properties of polylactic acid produced by the direct condensation polymerization of lactic-acid. Bull Chem Soc Jpn 68(8):2125–2131. doi:10.1246/bcsj.68.2125

    Article  CAS  Google Scholar 

  • Allen CW (1981) Organofluorophosphazenes – a short review. Ind Eng Chem Prod Rd 20(1):77–79. doi:10.1021/i300001a006

    Article  CAS  Google Scholar 

  • Andrianov AK (2009) Polyphosphazenes for biomedical applications. Wiley-Blackwell, Hoboken doi:10.1002/9780470478882

    Google Scholar 

  • Bao RY, Yang W, Jiang WR, Liu ZY, Xie BH, Yang MB, Fu Q (2012) Stereocomplex formation of high-molecular-weight polylactide: a low temperature approach. Polymer 53(24):5449–5454. doi:10.1016/j.polymer.2012.09.043

    Article  CAS  Google Scholar 

  • Barker SA, Young NM (1966) Isolation of hyaluronic acid by gel filtration on agarose. Carbohydr Res 2:363–370

    Article  CAS  Google Scholar 

  • Behl M, Lendlein A (2007) Actively moving polymers. Soft Matter 3:58–67

    Article  CAS  Google Scholar 

  • Bera S, Jedlinski Z (1993) Block segmented polymers – a new method of synthesis of copoly(amide-ester) ester polymer. J Polym Sci Polym Chem 31(3):731–739. doi:10.1002/pola.1993.080310318

    Article  CAS  Google Scholar 

  • Boas NF (1949) Isolation of hyaluronic acid from the cocks comb. J Biol Chem 181(2):573–575

    CAS  PubMed  Google Scholar 

  • Brannon-Peppas L (1997) Polymers in controlled drug delivery. Med Plast Biomater:34

    Google Scholar 

  • Bucher JE, Slade WC (1909) The anhydrides of isophthalic and terephthalic acids. J Am Chem Soc 31:1319–1321

    Article  Google Scholar 

  • Cardy RH (1979) Carcinogenicity and chronic toxicity of 2,4-toluenediamine in F344 rats. J Natl Cancer Inst 62:1107–1116

    CAS  PubMed  Google Scholar 

  • Carothers WH, Hill JW (1932) Studies of polymerization and ring formation. XIII. Polyamides and mixed polyester—polyamides. J Am Chem Soc 54(4):1566–1569. doi:10.1021/ja01343a049

    Article  CAS  Google Scholar 

  • Chabot F, Vert M, Chapelle S, Granger P (1983) Configurational structures of lactic-acid stereocopolymers as determined by C-13-labeled (H-1)-NMR. Polymer 24(1):53–59. doi:10.1016/0032-3861(83)90080-0

    Article  CAS  Google Scholar 

  • Commandeur S, van Beusekom HM, van der Giessen WJ (2006) Polymers, drug release, and drug-eluting stents. J Interv Cardiol 19(6):500–506. doi:10.1111/j.1540-8183.2006.00198.x

    Article  PubMed  Google Scholar 

  • Crivello JV, Malik R, Lai YL (1996) Ketene acetal monomers: synthesis and characterization. J Polym Sci Polym Chem 34(15):3091–3102

    Article  CAS  Google Scholar 

  • Deasy PB, Finan MP, Meegan MJ (1989) Preparation and characterization of lactic/glycolic acid polymers and copolymers. J Microencapsul 6(3):369–378. doi:10.3109/02652048909019919

    Article  CAS  PubMed  Google Scholar 

  • Deng M, Nair LS, Nukavarapu SP, Kumbar SG, Jiang T, Weikel AL, Krogman NR, Allcock HR, Laurencin CT (2010) In situ porous structures: a unique polymer erosion mechanism in biodegradable dipeptide-based polyphosphazene and polyester blends producing matrices for regenerative engineering. Adv Funct Mater 20(17):2794–2806. doi:10.1002/adfm.201000968

    Article  CAS  Google Scholar 

  • Di Lullo GA, Sweeney SM, Körkkö J, Ala-Kokko L, San Antonio JD (2002) Mapping the ligand-binding sites and disease-associated mutations on the most abundant protein in the human, type I collagen. J Biol Chem 277(6):4223–4231

    Article  PubMed  CAS  Google Scholar 

  • Domb AJ, Amselem S, Langer RS, Maniar M (1994) In: Shalaby SW (ed) Biomedical polymers. Hanser Publishers, Munich, pp 17–32

    Google Scholar 

  • Ero-Phillips O, Jenkins M, Stamboulis A (2012) Tailoring crystallinity of electrospun plla fibres by control of electrospinning parameters. Polymers-Basel 4(3):1331–1348. doi:10.3390/polym4031331

    Article  CAS  Google Scholar 

  • Feng YK, Guo JT (2009) Biodegradable polydepsipeptides. Int J Mol Sci 10(2):589–615. doi:10.3390/ijms10020589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fine NA, Lehfeldt M, Gross JE, Downey S, Kind GM, Duda G, Kulber D, Horan R, Ippolito J, Jewell M (2015) SERI surgical scaffold, prospective clinical trial of a silk-derived biological scaffold in two-stage breast reconstruction: 1-year data. Plast Reconstr Surg 135(2):339–351. doi:10.1097/Prs.0000000000000987

    Article  CAS  PubMed  Google Scholar 

  • Friedlaender GE, Perry CR, Cole JD, Cook SD, Cierny G, Muschler GF, Zych GA, Calhoun JH, LaForte AJ, Yin S (2001) Osteogenic protein-1 (Bone morphogenetic protein-7) in the treatment of tibial nonunions: a prospective, randomized clinical trial comparing rhOP-1 with fresh bone autograft. J Bone Joint Surg-Am 83(1_suppl_2):S151

    Google Scholar 

  • Govender S, Csimma C, Genant HK, Valentin-Opran A (2002) Recombinant human bone morphogenetic protein-2 for treatment of open tibial fractures – a prospective, controlled, randomized study of four hundred and fifty patients. J Bone Joint Surg-Am 84A(12):2123–2134

    Google Scholar 

  • Greenstein G, Caton JG (1993) Biodegradable barriers and guided tissue regeneration. Periodontol 2000 1:36–45

    Article  Google Scholar 

  • Grigat E, Koch R, Timmermann R (1998) BAK 1095 and BAK 2195: completely biodegradable synthetic thermoplastics. Polym Degrad Stab 59(1–3):223–226

    Article  CAS  Google Scholar 

  • Gunatillake P, Mayadunne R, Adhikari R (2006) Recent developments in biodegradable synthetic polymers. Biotechnol Annu Rev 12:301–347. doi:10.1016/S1387-2656(06)12009-8

    Article  CAS  PubMed  Google Scholar 

  • Guo K, Chu CC (2007) Synthesis, characterization, and biodegradation of copolymers of unsaturated and saturated poly(ester amide)s. J Polym Sci Polym Chem 45(9):1595–1606. doi:10.1002/pola.21926

    Article  CAS  Google Scholar 

  • Han MG, Kim S, Liu SX (2008) Synthesis and degradation behavior of poly(ethyl cyanoacrylate). Polym Degrad Stab 93(7):1243–1251. doi:10.1016/j.polymdegradstab.2008.04.012

    Article  CAS  Google Scholar 

  • Heller J, Penhale DWH, Fritzinger BK, Rose JE, Helwing RF (1983) Controlled release of contraceptive steroids from biodegradable poly (ortho esters). Contracept Deliv Syst 4(1):43–53

    CAS  PubMed  Google Scholar 

  • Heller J, Ng SY, Fritzinger BK (1992) Synthesis and characterization of a new family of poly(Ortho ester)S. Macromolecules 25(13):3362–3364. doi:10.1021/ma00039a007

    Article  CAS  Google Scholar 

  • Heller J, Rime AF, Rao SS, Fritzinger BK, Ng SY (1995) Poly(ortho esters) for the pulsed and continuous delivery of peptides and proteins. In: Lee VHL, Hashida M, Mizushima Y (eds) Trends and future perspectives in peptide and protein drug delivery, vol 4, Drug targeting and delivery. Harwood Academic Publishers Gmbh, Chur, pp 39–56

    Google Scholar 

  • Heller J, Barr J, Ng SY, Abdellauoi KS, Gurny R (2002) Poly(ortho esters): synthesis, characterization, properties and uses. Adv Drug Deliv Rev 54(7):1015–1039

    Article  CAS  PubMed  Google Scholar 

  • Hodde J (2006) Extracellular matrix as a bioactive material for soft tissue reconstruction. ANZ J Surg 76(12):1096–1100. doi:10.1111/j.1445-2197.2006.03948.x

    Article  PubMed  Google Scholar 

  • Hoffman AS (2002) Hydrogels for biomedical applications. Adv Drug Deliv Rev 54(1):3–12

    Article  CAS  PubMed  Google Scholar 

  • Horton VL, Blegen PE, Barrows TH (1988) Comparison of bioabsorbable poly(ester-amide) monomers and polymers in vivo using radiolabeled homologs. In: Gebelijn CG, Dunn RL (eds) Progress in biomedical polymers. Plenum Press, New York, pp 263–282

    Google Scholar 

  • Hughes CS, Postovit LM, Lajoie GA (2010) Matrigel: a complex protein mixture required for optimal growth of cell culture. Proteomics 10(9):1886–1890. doi:10.1002/pmic.200900758

    Article  CAS  PubMed  Google Scholar 

  • Ikada Y, Jamshidi K, Tsuji H, Hyon SH (1987) Stereocomplex formation between enantiomeric poly(lactides). Macromolecules 20(4):904–906. doi:10.1021/ma00170a034

    Article  CAS  Google Scholar 

  • Jain JP, Modi S, Domb AJ, Kumar N (2005) Role of polyanhydrides as localized drug carriers. J Control Release 103(3):541–563. doi:10.1016/j.jconrel.2004.12.021

    Article  CAS  PubMed  Google Scholar 

  • Kaidar-Person O, Rosenthal RJ, Wexner SD, Szomstein S, Person B (2008) Compression anastomosis: history and clinical considerations. Am J Surg 195(6):818–826. doi:10.1016/j.amjsurg.2007.10.006

    Article  PubMed  Google Scholar 

  • Konan S, Haddad FS (2009) A clinical review of bioabsorbable interference screws and their adverse effects in anterior cruciate ligament reconstruction surgery. Knee 16(1):6–13. doi:10.1016/j.knee.2008.06.001

    Article  CAS  PubMed  Google Scholar 

  • Kricheldorf HR, Serra A (1985) Polylactones.6. Influence of various metal-salts on the optical purity of poly(L-lactide). Polym Bull 14(6):497–502

    Article  CAS  Google Scholar 

  • Kricheldorf HR, Stricker A (2000) Macrocycles. 13. Stannylenated glucose glycosides as cyclic initiators of epsilon-caprolactone and the synthesis of biodegradable networks. Macromolecules 33(3):696–701

    Article  CAS  Google Scholar 

  • Kroehne V, Heschel I, Schugner F, Lasrich D, Bartsch JW, Jockusch H (2008) Use of a novel collagen matrix with oriented pore structure for muscle cell differentiation in cell culture and in grafts. J Cell Mol Med 12(5a):1640–1648. doi:10.1111/j.1582-4934.2008.00238.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krogman NR, Singh A, Nair LS, Laurencin CT, Allcock HR (2007) Miscibility of bioerodible polyphosphazene/poly(lactide-co-glycolide) blends. Biomacromolecules 8(4):1306–1312. doi:10.1021/bm061064q

    Article  CAS  PubMed  Google Scholar 

  • Kulkarni A, Reiche J, Lendlein A (2007) Hydrolytic degradation of poly(rac-lactide) and poly[(rac-lactide)-co-glycolide] at the air-water interface. Surf Interface Anal 39(9):740–746

    Article  CAS  Google Scholar 

  • Kuppermann BD, Blumenkranz MS, Haller JA, Williams GA, Weinberg DV, Chou C, Whitcup SM, DDPIS G (2007) Randomized controlled study of an intravitreous dexamethasone drug delivery system in patients with persistent macular edema. Arch Ophthalmol-Chic 125(3):309–317. doi:10.1001/archopht.125.3.309

    Article  CAS  Google Scholar 

  • Lakshmi S, Katti DS, Laurencin CT (2003) Biodegradable polyphosphazenes for drug delivery applications. Adv Drug Deliv Rev 55(4):467–482. doi:10.1016/S0169-409x(03)00039-5

    Article  CAS  PubMed  Google Scholar 

  • Laurencin C, Sobrasua I, Langer R (1995) In: Hollinger J (ed) Biomedical applications of synthetic biodegradable polymers. CRC Press, Boca Raton, pp 59–101

    Google Scholar 

  • Leaper D, Assadian O, Hubner NO, McBain A, Barbolt T, Rothenburger S, Wilson P (2011) Antimicrobial sutures and prevention of surgical site infection: assessment of the safety of the antiseptic triclosan. Int Wound J 8(6):556–566. doi:10.1111/j.1742-481X.2011.00841.x

    Article  PubMed  Google Scholar 

  • Leenslag JW, Pennings AJ (1987) Synthesis of high-molecular-weight poly(L-lactide) initiated with Tin 2-ethylhexanoate. Makromolekulare Chemie-Macromol Chem Phys 188(8):1809–1814

    Article  CAS  Google Scholar 

  • Leenslag JW, Gogolewski S, Pennings AJ (1984) Resorbable materials of poly(L-lactide).5. Influence of secondary structure on the mechanical-properties and hydrolyzability of poly(L-lactide) fibers produced by a dry-spinning method. J Appl Polym Sci 29(9):2829–2842. doi:10.1002/app.1984.070290913

    Article  CAS  Google Scholar 

  • Lendlein A (1999) Polymere als Implantatwerkstoffe. Chemie in unserer Zeit 33:279–295

    Article  CAS  Google Scholar 

  • Lendlein A, Kelch S (2002) Shape-memory polymers. Angew Chem Int Ed 41(12):2034–2057

    Article  CAS  Google Scholar 

  • Lendlein A, Langer R (2002) Biodegradable, elastic shape-memory polymers for potential biomedical applications. Science 296(5573):1673–1676

    Article  PubMed  Google Scholar 

  • Lendlein A, Neuenschwander P, Suter UW (1998) Tissue-compatible multiblock copolymers for medical applications, controllable in degradation rate and mechanical properties. Macromol Chem Phys 199(12):2785–2796

    Article  CAS  Google Scholar 

  • Li X, Jastri BR (2006) Biodegradable polymeric delivery systems. In: Design of controlled release drug delivery systems. McGraw-Hill, New York, pp 271–304

    Google Scholar 

  • Li LC, Deng J, Stephens D (2002) Polyanhydride implant for antibiotic delivery – from the bench to the clinic. Adv Drug Deliv Rev 54(7):963–986

    Article  PubMed  Google Scholar 

  • Little U, Buchanan F, Harkin-Jones E, McCaigue M, Farrar D, Dickson G (2009) Accelerated degradation behaviour of poly(epsilon-caprolactone) via melt blending with poly(aspartic acid-co-lactide) (PAL). Polym Degrad Stab 94(2):213–220. doi:10.1016/j.polymdegradstab.2008.11.001

    Article  CAS  Google Scholar 

  • Martinez MB, Pinilla IM, Mata FZ, Perez JAG (1997) Hydrolytic degradation of poly(ester amides) derived from carbohydrates. Macromolecules 30(11):3197–3203

    Article  Google Scholar 

  • Masutani K, Kimura Y (2015) Chapter 1: PLA synthesis. From the monomer to the polymer. In: Poly(lactic acid) science and technology: processing, properties, additives and applications. The Royal Society of Chemistry, Cambridge, pp 1–36. doi:10.1039/9781782624806-00001

  • Meek MF, Coert JH (2008) US food and drug administration/conformit Europe- approved absorbable nerve conduits for clinical repair of peripheral and cranial nerves. Ann Plast Surg 60(4):466–472

    CAS  PubMed  Google Scholar 

  • Nair LS, Laurencin CT (2007) Biodegradable polymers as biomaterials. Prog Polym Sci 32(8–9):762–798. doi:10.1016/j.progpolymsci.2007.05.017

    Article  CAS  Google Scholar 

  • Ng SY, Vandamme T, Taylor MS, Heller J (1997) Synthesis and erosion studies of self-catalyzed poly(ortho ester)s. Macromolecules 30(4):770–772

    Article  CAS  Google Scholar 

  • Nieuwenhuis J (1992) Synthesis of polylactides, polyglycolides and their copolymers. Clin Mater 10(1–2):59–67

    Article  CAS  PubMed  Google Scholar 

  • Ormiston JA, Serruys PWS (2009) Bioabsorbable coronary stents. Circ-Cardiovasc Interv 2(3):255–260. doi:10.1161/Circinterventions.109.859173

    Article  CAS  PubMed  Google Scholar 

  • Paredes N, Rodriguez-Galan A, Puiggali J (1998) Synthesis and characterization of a family of biodegradable poly(ester amide)s derived from glycine. J Polym Sci Polym Chem 36(8):1271–1282

    Article  CAS  Google Scholar 

  • Pasternak B, Rehn M, Andersen L, Agren MS, Heegaard AM, Tengvall P, Aspenberg P (2008) Doxycycline-coated sutures improve mechanical strength of intestinal anastomoses. Int J Colorectal Dis 23(3):271–276. doi:10.1007/s00384-007-0401-0

    Article  PubMed  Google Scholar 

  • Peltoniemi H, Ashammakhi N, Kontio R, Waris T, Salo A, Lindqvist C, Gratz K, Suuronen R (2002) The use of bioabsorbable osteofixation devices in craniomaxillofacial surgery. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 94(1):5–14. doi:10.1067/moe.2002.122160

    Article  PubMed  Google Scholar 

  • Peppas NA (ed) (1987) Hydrogels in medicine and pharmacy. CRC-Press, Boca Raton

    Google Scholar 

  • Pham QP, Sharma U, Mikos AG (2006) Electrospinning of polymeric nanofibers for tissue engineering applications: a review. Tissue Eng 12(5):1197–1211. doi:10.1089/ten.2006.12.1197

    Article  CAS  PubMed  Google Scholar 

  • Pietrzak WS, Eppley BL (2000) Resorbable polymer fixation for craniomaxillofacial surgery: development and engineering paradigms. J Craniofac Surg 11(6):575–585. doi:10.1097/00001665-200011060-00011

    Article  CAS  PubMed  Google Scholar 

  • Pillai CKS, Sharma CP (2010) Review paper: absorbable polymeric surgical sutures: chemistry, production, properties, biodegradability, and performance. J Biomater Appl 25(4):291–366. doi:10.1177/0885328210384890

    Article  CAS  PubMed  Google Scholar 

  • Piskin E (1995) Biodegradable polymers as biomaterials. J Biomater Sci Polym Ed 6(9):775–795

    Article  CAS  PubMed  Google Scholar 

  • Purcell DB, Rudzki JR, Wright RW (2004) Bioabsorbable interference screws in ACL reconstruction. Oper Tech Sports Med 12(3):180–187. doi:10.1053/j.otsm.2004.07.014

    Article  Google Scholar 

  • Qiu Y, Park K (2001) Environment-sensitive hydrogels for drug delivery. Adv Drug Deliv Rev 53(3):321–339

    Article  CAS  PubMed  Google Scholar 

  • Schmidmaier G, Lucke M, Wildemann B, Haas NP, Raschke M (2006) Prophylaxis and treatment of implant-related infections by antibiotic-coated implants: a review. Injury 37(Suppl 2):S105–S112. doi:10.1016/j.injury.2006.04.016

    Article  PubMed  Google Scholar 

  • Serra T, Planell JA, Navarro M (2013) High-resolution PLA-based composite scaffolds via 3-D printing technology. Acta Biomater 9(3):5521–5530. doi:10.1016/j.actbio.2012.10.041

    Article  CAS  PubMed  Google Scholar 

  • Sethuraman S, Nair LS, El-Amin S, Nguyen MT, Singh A, Greish YE, Allcock HR, Brown PW, Laurencin CT (2011) Development and characterization of biodegradable nanocomposite injectables for orthopaedic applications based on polyphosphazenes. J Biomater Sci-Polym E 22(4–6):733–752. doi:10.1163/092050610x491670

    Article  CAS  Google Scholar 

  • Shalaby SW, Johnson A (1994) Biomedical polymers. Designed-to-degrade systems. Hanser Publishers, Munich

    Google Scholar 

  • Shih C, Fix J, Seward RL (1993) Invivo and invitro release of ivermectin from poly(ortho ester) matrices.1. Cross-linked matrix prepared from ketene acetal end-capped prepolymer. J Control Release 25(1–2):155–162. doi:10.1016/0168-3659(93)90104-D

    Article  CAS  Google Scholar 

  • Shrivastav A, Kim H-Y, Kim Y-R (2013) Advances in the applications of polyhydroxyalkanoate nanoparticles for novel drug delivery system. BioMed Res Int 2013:12. doi:10.1155/2013/581684

    Article  CAS  Google Scholar 

  • Sinha VR, Trehan A (2003) Biodegradable microspheres for protein delivery. J Control Release 90(3):261–280

    Article  CAS  PubMed  Google Scholar 

  • Södergård A, Stolt M (2010) Industrial production of high molecular weight poly(lactic acid). In: Poly(lactic acid). Wiley, Hoboken, pp 27–41. doi:10.1002/9780470649848.ch3

    Chapter  Google Scholar 

  • Spaans CJ, de Groot JH, Dekens FG, Pennings AJ (1998) High molecular weight polyurethanes and a polyurethane urea based on 1,4-butanediisocyanate. Polym Bull 41(2):131–138

    Article  CAS  Google Scholar 

  • Spotnitz WD, Burks S (2008) Hemostats, sealants, and adhesives: components of the surgical toolbox. Transfusion 48(7):1502–1516. doi:10.1111/j.1537-2995.2008.01703.x

    Article  PubMed  Google Scholar 

  • Sun DM, Zheng YM, Yin TY, Tang CJ, Yu QS, Wang GX (2014) Coronary drug-eluting stents: from design optimization to newer strategies. J Biomed Mater Res A 102(5):1625–1640. doi:10.1002/jbm.a.34806

    Article  PubMed  CAS  Google Scholar 

  • Syzcher M (ed) (1999) Syzcher’s handbook of polyurethanes. CRC-Press, Boca Raton

    Google Scholar 

  • Tang RP, Palumbo RN, Ji WH, Wang C (2009) Poly(Ortho ester amides): acid-labile temperature-responsive copolymers for potential biomedical applications. Biomacromolecules 10(4):722–727. doi:10.1021/bm9000475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • The European Society for Biomaterials (1991) 2nd consensus conference on definitions in biomaterials 7–8th September. J Mater Sci Mater Med 2(1):62. doi:10.1007/BF00701689

    Article  Google Scholar 

  • Toxicology Subgroup – Tripartite Subcommittee on Medical Devices (1986) Tripartite biocompatibility guidance for medical devices. FDA, Center for Devices and Radiological Health (CDRH), Rockville

    Google Scholar 

  • Tsuji H (2003) In vitro hydrolysis of blends from enantiomeric poly(lactide)s. Part 4: well-homo-crystallized blend and nonblended films. Biomaterials 24(4):537–547. doi:10.1016/S0142-9612(02)00365-4

    Article  CAS  PubMed  Google Scholar 

  • Tsuji H, Ishida T, Fukuda N (2003) Surface hydrophilicity and enzymatic hydrolyzability of biodegradable polyesters: 1. Effects of alkaline treatment. Polym Int 52(5):843–852. doi:10.1002/pi.1199

    Article  CAS  Google Scholar 

  • Tsuji H, Deguchi F, Sakamoto Y, Shimizu S (2012) Heterostereocomplex crystallization and homocrystallization from the melt in blends of substituted and unsubstituted poly(lactide)s. Macromol Chem Phys 213(24):2573–2581. doi:10.1002/macp.201200395

    Article  CAS  Google Scholar 

  • Ueda H, Tabata Y (2003) Polyhydroxyalkanonate derivatives in current clinical applications and trials. Adv Drug Deliv Rev 55(4):501–518

    Article  CAS  PubMed  Google Scholar 

  • Vaccaro AR, Chiba K, Heller JG, Patel TC, Thalgott JS, Truumees E, Fischgrund JS, Craig MR, Berta SC, Wang JC (2002) Bone grafting alternatives in spinal surgery. Spine J 2(3):206–215

    Article  PubMed  Google Scholar 

  • van Bakelen NB, Buijs GJ, Jansma J, de Visscher JG, Hoppenreijs TJ, Bergsma JE, Stegenga B, Bos RR (2013) Comparison of biodegradable and titanium fixation systems in maxillofacial surgery: a two-year multi-center randomized controlled trial. J Dent Res 92(12):1100–1105. doi:10.1177/0022034513508953

    Article  PubMed  CAS  Google Scholar 

  • Vera M, Puiggali J, Coudane J (2006) Microspheres from new biodegradable poly(ester amide)s with different ratios of L- and D-alanine for controlled drug delivery. J Microencapsul 23(6):686–697. doi:10.1080/02652040600787942

    Article  CAS  PubMed  Google Scholar 

  • Vert M (1986) Biomedical polymers from chiral lactides and functional lactones – properties and applications. Makromolekulare Chemie-Macromol Symp 6:109–122. doi:10.1002/masy.19860060113

    Article  CAS  Google Scholar 

  • Vert M (1989) Bioresorbable polymers for temporary therapeutic applications. Angew Makromol Chem 166:155–168. doi:10.1002/apmc.1989.051660111

    Article  Google Scholar 

  • Wang YQ, Liu SJ, Luo YL, Wang FJ, Liu HY, Li LF, Zhao XH, Huang L (2014) Safety and efficacy of degradable vs. permanent polymer drug-eluting stents: a meta-analysis of 18,395 patients from randomized trials. Int J Cardiol 173(1):100–109. doi:10.1016/j.ijcard.2014.02.023

    Article  PubMed  Google Scholar 

  • Weigel T, Schinkel G, Lendlein A (2006) Design and preparation of polymeric scaffolds for tissue engineering. Expert Rev Med Devices 3(6):835–851. doi:10.1586/17434440.3.6.835

    Article  CAS  PubMed  Google Scholar 

  • Wolff LF, Mullally B (2000) New clinical materials and techniques in guided tissue regeneration. Int Dent J 50(5):235–244

    Article  CAS  PubMed  Google Scholar 

  • Wu XS (1995) Synthesis and properties of biodegradable lactic/glycolic acid polymers. In: Wise DJT DL, Altobelli DE, Yaszemski MJ, Gresser DJ, Schwartz ER (eds) Encyclopaedic handbook of biomaterials and bioengineering, vol 2. Marcel Decker, New York, pp 1015–1054

    Google Scholar 

  • Xiong X, Mertsching H, Rupp S, Brunner H (2007) Isolated nature-identical collagen. Germany Patent

    Google Scholar 

  • Ye T, Zhou CR, Zeng QH, Yang JL, Han FX, Tian JH (2008) Enhanced cell affinity of poly(L-lactide) film by immobilizing phosphonized chitosan. Appl Surf Sci 255(2):446–448. doi:10.1016/j.apsusc.2008.06.073

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank the Deutsche Forschungsgemeinschaft (DFG, SFB 760) and the Bundesministerium für Bildung und Forschung (BMBF, FKZ1315848A) for supporting the interdisciplinary research in the field of tissue regeneration.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Lendlein .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Schroeter, M., Wildemann, B., Lendlein, A. (2016). Biodegradable Polymeric Materials. In: Steinhoff, G. (eds) Regenerative Medicine - from Protocol to Patient. Springer, Cham. https://doi.org/10.1007/978-3-319-28274-9_4

Download citation

Publish with us

Policies and ethics