Skip to main content

Life in Hypersaline Environments

  • Chapter
  • First Online:
Their World: A Diversity of Microbial Environments

Part of the book series: Advances in Environmental Microbiology ((AEM,volume 1))

Abstract

Many microorganisms are adapted to life at high-salt concentrations. Halophilic representatives are found in each of the three domains of life: Archaea, Bacteria, and Eukarya. Halophilic viruses exist as well. In NaCl-saturated brines such as found in the northern part of Great Salt Lake, Utah, in a few other natural salt lakes, and in saltern crystallizer ponds for the production of salt, we find members of all groups. Blooms of microorganisms have occasionally been observed in the magnesium- and calcium-rich waters of the Dead Sea. Dense communities of extremely halophilic Archaea (family Halobacteriaceae) and of the alga Dunaliella salina often impart a red color to salt-saturated brines. There are different strategies that enable halophilic or halotolerant microorganisms to grow in the presence of high-salt concentrations. A few groups (Archaea of the family Halobacteriaceae; the red extremely halophilic bacterium Salinibacter) maintain molar concentrations of salts (K+, Cl) intracellularly, and their proteins are functional in a high-salt environment. Other groups (most salt-adapted members of the Bacteria, halophilic algae, and fungi) accumulate organic solutes to provide osmotic balance of their cytoplasm with the hypersaline medium.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Alexander E, Stock A, Breiner H-W, Behnke A, Bunge J, Yakimov MM, Stoeck T (2009) Microbial eukaryotes in the hypersaline anoxic L’Atalante deep-sea basin. Environ Microbiol 11:360–381

    Article  CAS  PubMed  Google Scholar 

  • Andrei A-Ş, Banciu HL, Oren A (2012) Metabolic diversity in Archaea living in saline ecosystems. FEMS Microbiol Lett 330:1–9

    Article  CAS  PubMed  Google Scholar 

  • Antón J, Llobet-Brossa E, Rodríguez-Valera F, Amann R (1999) Fluorescence in situ hybridization analysis of the prokaryotic community inhabiting crystallizer ponds. Environ Microbiol 1:517–523

    Article  PubMed  Google Scholar 

  • Antón J, Rosselló-Mora R, Rodríguez-Valera F, Amann R (2000) Extremely halophilic Bacteria in crystallizer ponds from solar salterns. Appl Environ Microbiol 66:3052–3057

    Article  PubMed  PubMed Central  Google Scholar 

  • Antón J, Oren A, Benlloch S, Rodríguez-Valera F, Amann R, Rosselló-Mora R (2002) Salinibacter ruber gen. nov., sp. nov., a novel extreme halophilic member of the Bacteria from saltern crystallizer ponds. Int J Syst Evol Microbiol 52:485–491

    Article  PubMed  Google Scholar 

  • Antón J, Peña A, Santos F, Martínez-García M, Schmitt-Kopplin P, Rosselló-Mora R (2008) Distribution, abundance and diversity of the extremely halophilic bacterium Salinibacter ruber. Saline Syst 4:15

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Antunes A, Taborda M, Huber R, Moissl C, Nobre MF, da Costa MS (2008a) Halorhabdus tiamatea sp. nov., a non-pigmented, extremely halophilic archaeon from a deep-sea, hypersaline anoxic basin of the Red Sea, and emended description of the genus Halorhabdus. Int J Syst Evol Microbiol 58:215–220

    Article  CAS  PubMed  Google Scholar 

  • Antunes A, Rainey FA, Wanner G, Taborda M, Pätzold J, Nobre MF, da Costa MS, Huber R (2008b) A new lineage of halophilic, wall-less, contractile bacteria from a brine-filled deep on the Red Sea. J Bacteriol 190:3580–3587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Antunes A, Kamanda Ngugu D, Stingl U (2011) Microbiology of the Red Sea (and other) deep-sea anoxic brine lakes. Environ Microbiol Rep 3:416–433

    Article  PubMed  Google Scholar 

  • Atanasova NS, Roine E, Oren A, Bamford DH, Oksanen HM (2012) Global network of specific virus-host interactions in hypersaline environments. Environ Microbiol 14:426–440

    Article  CAS  PubMed  Google Scholar 

  • Baldwin RL (1996) How Hofmeister ion interactions affect protein stability. Biophys J 71:2056–2063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baronio M, Lattanzio VMT, Vaisman N, Oren A, Corcelli A (2010) The acylhalocapnines of halophilic bacteria: structural details of unusual sulfonate sphingoids. J Lipid Res 51:1878–1885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baxter BK, Litchfield CD, Sowers K, Griffith J, Arora DasSarma R, DasSarma S (2005) Microbial diversity of Great Salt Lake. In: Gunde-Cimerman N, Oren A, Plemenitaš A (eds) Adaptation to life at high salt concentrations in Archaea, Bacteria, and Eukarya. Springer, Dordrecht, pp 11–25

    Google Scholar 

  • Ben-Amotz A, Avron M (1973) The role of glycerol in the osmotic regulation of the halophilic alga Dunaliella parva. Plant Physiol 51:875–878

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benlloch S, Martínez-Murcia AJ, Rodríguez-Valera F (1995) Sequencing of bacterial and archaeal 16S rRNA genes directly amplified from a hypersaline environment. Syst Appl Microbiol 18:574–581

    Article  Google Scholar 

  • Benlloch S, Acinas SG, Martínez-Murcia AJ, Rodríguez-Valera F (1996) Description of prokaryotic biodiversity along the salinity gradient of a multipond saltern by direct PCR amplification of 16S rDNA. Hydrobiologia 329:19–31

    Article  CAS  Google Scholar 

  • Benlloch S, López-López A, Casamayor EO, Øvreås L, Goddard V, Dane FL, Smerdon G, Massana R, Joint I, Thingstad F, Pedrós-Alió C, Rodríguez-Valera F (2002) Prokaryotic genetic diversity throughout the salinity gradient of a coastal solar saltern. Environ Microbiol 4:349–360

    Article  PubMed  Google Scholar 

  • Bodaker I, Sharon I, Suzuki MT, Reingersch R, Shmoish M, Andreishcheva F, Sogin ML, Rosenberg M, Belkin S, Oren A, Béjà O (2010) Comparative community genomics in the Dead Sea: an increasingly extreme environment. ISME J 4:399–407

    Article  PubMed  Google Scholar 

  • Boetius A, Joye S (2009) Thriving in salt. Science 324:1523–1525

    Article  CAS  PubMed  Google Scholar 

  • Bolhuis H, te Poele EM, Rodríguez-Valera F (2004) Isolation and cultivation of Walsby’s square archaeon. Environ Microbiol 6:1287–1291

    Article  PubMed  Google Scholar 

  • Bolhuis H, Palm P, Wende A, Falb M, Rampp M, Rodriguez-Valera F, Pfeiffer F, Oesterhelt D (2006) The genome of the square archaeon Haloquadratum walsbyi: life at the limits of water activity. BMC Genomics 7:169

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Borin S, Brusetti L, Mapelli F, D’Auria G, Brusa T, Marzorati M, Rizzi A, Yakimov M, Marty D, de Lange GJ, van der Wielen P, Bolhuis H, McGenity TJ, Polymenakou PN, Malinverno E, Giuliano L, Corselli C, Daffonchio D (2009) Sulfur cycling and methanogenesis primarily drive microbial colonization of the highly sulfidic Urania deep hypersaline basin. Proc Natl Acad Sci USA 106:9151–9156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Borowitzka LJ (1981) The microflora. Adaptations to life in extremely saline lakes. Hydrobiologia 81:33–46

    Article  Google Scholar 

  • Bowers KJ, Wiegel J (2011) Temperature and pH optima of extremely halophilic archaea: a mini-review. Extremophiles 15:119–128

    Article  CAS  PubMed  Google Scholar 

  • Bowers KJ, Mesbah NM, Wiegel J (2009) Biodiversity of polyextremophilic Bacteria: does combining the extremes of high salt, alkaline pH and elevated temperature approach a physico-chemical boundary for life? Saline Syst 5:9

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Brandt KK, Ingvorsen K (1997) Desulfobacter halotolerans sp. nov., a halotolerant acetate-oxidizing sulfate-reducing bacterium isolated from sediments of Great Salt Lake, Utah. Syst Appl Microbiol 20:366–373

    Article  Google Scholar 

  • Brandt KK, Vester F, Jensen AN, Ingvorsen K (2001) Sulfate reduction dynamics and enumeration of sulfate-reducing bacteria in hypersaline sediments of the Great Salt Lake (Utah, USA). Microb Ecol 41:1–11

    CAS  PubMed  Google Scholar 

  • Brito-Echeverría J, López-López A, Yarza P, Antón J, Rosselló-Móra R (2009) Occurrence of Halococcus spp. in the nostrils salt glands of the seabird Calonextris diomedea. Extremophiles 13:557–565

    Article  PubMed  Google Scholar 

  • Brown AD (1976) Microbial water stress. Bacteriol Rev 40:803–846

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brown AD (1990) Microbial water stress physiology. Principles and perspectives. Wiley, Chichester

    Google Scholar 

  • Buchalo AS, Nevo E, Wasser SP, Oren A, Molitoris HP (1998) Fungal life in the extremely hypersaline water of the Dead Sea: first records. Proc R Soc Lond B 265:1461–1465

    Article  CAS  Google Scholar 

  • Burns DG, Camakaris HM, Janssen PH, Dyall-Smith ML (2004a) Cultivation of Walsby’s square haloarchaeon. FEMS Microbiol Lett 238:469–473

    CAS  PubMed  Google Scholar 

  • Burns DG, Camakaris HM, Janssen PH, Dyall-Smith ML (2004b) Combined use of cultivation-dependent and cultivation-independent methods indicates that members of most haloarchaeal groups in an Australian crystallizer pond are cultivable. Appl Environ Microbiol 70:5258–5265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burns DG, Janssen PH, Itoh T, Kamekura M, Li Z, Jensen G, Rodríguez-Valera F, Bolhuis H, Dyall-Smith ML (2007) Haloquadratum walsbyi gen. nov., sp. nov., the square haloarchaeon of Walsby, isolated from saltern crystallizers in Australia and Spain. Int J Syst Evol Microbiol 57:387–392

    Article  CAS  PubMed  Google Scholar 

  • Butinar L, Santos S, Spencer-Martins I, Oren A, Gunde-Cimerman N (2005a) Yeast diversity in hypersaline habitats. FEMS Microbiol Lett 244:229–234

    Article  CAS  PubMed  Google Scholar 

  • Butinar L, Sonjak S, Zalar P, Plemenitaš A, Gunde-Cimerman N (2005b) Melanized halophilic fungi are eukaryotic members of microbial communities in hypersaline waters of solar salterns. Bot Mar 48:73–79

    Article  Google Scholar 

  • Canfield DE, Sørensen KB, Oren A (2004) Biogeochemistry of a gypsum-encrusted microbial ecosystem. Geobiology 2:133–150

    Article  CAS  Google Scholar 

  • Caumette P (1993) Ecology and physiology of phototrophic bacteria and sulfate-reducing bacteria in marine salterns. Experientia 49:473–481

    Article  CAS  Google Scholar 

  • Caumette P, Matheron R, Raymond N, Relexans J-C (1994) Microbial mats in the hypersaline ponds of Mediterranean salterns (Salins-de-Giraud, France). FEMS Microbiol Ecol 13:273–286

    Article  CAS  Google Scholar 

  • Cayol J-L, Ollivier B, Patel BKC, Prensier G, Guezennec J, Garcia J-L (1994) Isolation and characterization of Halothermothrix orenii gen. nov., sp. nov., a halophilic, thermophilic, fermentative, strictly anaerobic bacterium. Int J Syst Bacteriol 44:534–540

    Article  CAS  PubMed  Google Scholar 

  • Cayol J-L, Fardeau M-L, Garcia J-L, Ollivier B (2002) Evidence of interspecies hydrogen transfer from glycerol in saline environments. Extremophiles 6:131–134

    Article  CAS  PubMed  Google Scholar 

  • Cho BC (2005) Heterotrophic flagellates in hypersaline waters. In: Gunde-Cimerman N, Oren A, Plemenitaš A (eds) Adaptation to life at high salt concentrations in Archaea, Bacteria, and Eukarya. Springer, Dordrecht, pp 543–549

    Google Scholar 

  • Conrad R, Frenzel P, Cohen Y (1995) Methane emission from hypersaline microbial mats: lack of aerobic methane oxidation activity. FEMS Microbiol Ecol 16:297–305

    Article  CAS  Google Scholar 

  • Corcelli A, Lattanzio VMT, Mascolo G, Babudri F, Oren A, Kates M (2004) Novel sulfonolipid in the extremely halophilic bacterium Salinibacter ruber. Appl Environ Microbiol 70:6678–6685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Daffonchio D, Borin S, Brusa T, Brusetti L, van der Wielen PWJJ, Bolhuis H, Yakimov MM, D’Auria G, Giuliano L, Marty D, Tamburini C, McGenity TJ, Hallsworth JE, Sass AM, Timmis KN, Tselepides A, de Lange GJ, Hübner A, Thomson J, Varnavas SP, Gasparoni F, Gerber HW, Malinverno E, Corselli C, Biodeep Scientific Party (2006) Stratified prokaryote network in the oxic-anoxic transition of a deep-sea halocline. Nature 440:203–207

    Article  CAS  PubMed  Google Scholar 

  • Darwin C (1839) Journal of researches into the geology and natural history of the various countries visited by H.M.S. Beagle, under the command of Captain Fitzroy, R.N. from 1832 to 1836. Henry Colburn, London

    Google Scholar 

  • de los Ríos A, Valea S, Ascaso C, Davila A, Kastovsky J, Mckay CP, Gómez-Silva B, Wierzchos J (2010) Comparative analysis of the microbial communities inhabiting halite evaporates of the Atacama Desert. Int Microbiol 13:79–89

    Google Scholar 

  • Denner EBM, McGenity TJ, Busse H-J, Grant WD, Wanner G, Stan-Lotter H (1994) Halococcus salifodinae sp. nov., an archaeal isolate from an Austrian salt mine. Int J Syst Bacteriol 44:774–780

    Article  Google Scholar 

  • Deole R, Challacombe J, Raiford DW, Hoff WD (2013) An extremely halophilic proteobacterium combines a highly acidic proteome with a low cytoplasmic potassium content. J Biol Chem 288:581–588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Desmarais D, Jablonski PE, Fedarko NS, Roberts MF (1997) 2-Sulfotrehalose, a novel osmolyte in haloalkaliphilic Archaea. J Bacteriol 179:3146–3153

    CAS  PubMed  PubMed Central  Google Scholar 

  • Deutch CE (1994) Characterization of a novel salt-tolerant Bacillus sp. from the nasal cavities of desert iguanas. FEMS Microbiol Lett 121:55–60

    Article  CAS  Google Scholar 

  • Dyall-Smith ML, Pfeiffer F, Klee K, Palm P, Gross K, Schuster SC, Rampp M, Oesterhelt D (2011) Haloquadratum walsbyi: limited diversity in a global pond. PLoS One 6(6):e20968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eder W, Ludwig W, Huber R (1999) Novel 16S rRNA gene sequences retrieved from highly saline brine sediments of Kebrit Deep, Red Sea. Arch Microbiol 172:213–218

    Article  CAS  PubMed  Google Scholar 

  • Eder W, Jahnke LL, Schmidt M, Huber R (2001) Microbial diversity of the brine-seawater interface of the Kebrit Deep, Red Sea, studied via 16S rRNA gene sequences and cultivation methods. Appl Environ Microbiol 67:3077–3085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eder W, Schmidt M, Koch M, Garbe-Schönberg D, Huber R (2002) Prokaryotic phylogenetic diversity and corresponding geochemical data of the brine-seawater interface of the Shaban Deep, Red Sea. Environ Microbiol 4:758–763

    Article  CAS  PubMed  Google Scholar 

  • Eisenberg H, Wachtel EJ (1987) Structural studies of halophilic proteins, ribosomes, and organelles of bacteria adapted to extreme salt concentrations. Annu Rev Biophys Biophys Chem 16:69–92

    Article  CAS  PubMed  Google Scholar 

  • Eisenberg H, Mevarech M, Zaccai G (1992) Biochemical, structural, and molecular genetic aspects of halophilism. Adv Protein Chem 43:1–62

    Article  CAS  PubMed  Google Scholar 

  • Elevi Bardavid R, Oren A (2008) Dihydroxyacetone metabolism in Salinibacter ruber and in Haloquadratum walsbyi. Extremophiles 12:125–131

    Article  CAS  PubMed  Google Scholar 

  • Elevi Bardavid R, Oren A (2012a) Acid-shifted isoelectric point profiles of the proteins in a hypersaline microbial mat – an adaptation to life at high salt concentrations? Extremophiles 16:787–792

    Article  CAS  PubMed  Google Scholar 

  • Elevi Bardavid R, Oren A (2012b) The amino acid composition of proteins from anaerobic halophilic bacteria of the order Halanaerobiales. Extremophiles 16:567–572

    Article  CAS  PubMed  Google Scholar 

  • Elevi Bardavid R, Ionescu D, Oren A, Rainey FA, Hollen BJ, Bagaley DR, Small AM, McKay CM (2007) Selective enrichment, isolation and molecular detection of Salinibacter and related extremely halophilic Bacteria from hypersaline environments. Hydrobiologia 576:3–13

    Article  CAS  Google Scholar 

  • Elevi Bardavid R, Khristo P, Oren A (2008) Interrelationships between Dunaliella and halophilic prokaryotes in saltern crystallizer ponds. Extremophiles 12:5–14

    Article  PubMed  Google Scholar 

  • Falb M, Müller K, Königsmaier L, Oberwinkler T, Horn P, von Gronau S, Gonzalez O, Pfeiffer F, Bornberg-Bauer E, Oesterhelt D (2008) Metabolism of halophilic archaea. Extremophiles 12:177–196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fendrihan S, Musso M, Stan-Lotter H (2009) Raman spectroscopy as a potential method for the detection of extremely halophilic archaea embedded in halite in terrestrial and possibly extraterrestrial samples. J Raman Spectrosc 40:1996–2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fernandez AB, Ghai R, Martin-Cuadrado AB, Sanchez-Porro C, Rodriguez-Valera F, Ventosa A (2013) Metagenome sequencing of prokaryotic microbiota from two hypersaline ponds of a marine saltern in Santa Pola, Spain. Genome Announce 1:e00933

    Article  Google Scholar 

  • Filker S, Stock A, Breiner H-W, Edgcomb V, Orsi W, Yakimov MM, Stoeck T (2012) Environmental selection of protistan plankton communities in hypersaline anoxic deep-sea basins, Eastern Mediterranean Sea. Microbiol Open 2:54–63

    Article  CAS  Google Scholar 

  • Franzmann PD, Stackebrandt E, Sanderson K, Volkman JK, Cameron DE, Stevenson PL, McMeekin TA, Burton HR (1988) Halobacterium lacusprofundi sp. nov., a halophilic bacterium isolated from Deep Lake, Antarctica. Syst Appl Microbiol 11:20–27

    Article  CAS  Google Scholar 

  • Galinski EA (1993) Compatible solutes of halophilic eubacteria: molecular principles, water-solute interaction, stress protection. Experientia 49:487–496

    Article  CAS  Google Scholar 

  • Galinski EA (1995) Osmoadaptation in bacteria. Adv Microb Physiol 37:273–328

    Article  CAS  Google Scholar 

  • Ghai R, Fernández AB, Martin-Cuadrado A-B, Megumi Mizuno C, McMahon KD, Papke RT, Stepanauskas R, Rodriguez-Brito B, Rohwer F, Sánchez-Porro C, Ventosa A, Rodríguez-Valera F (2011) New abundant microbial groups in aquatic hypersaline environments. Sci Rep 1:135

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gostinčar C, Grube M, de Hoog GS, Zalar P, Gunde-Cimerman N (2009) Extremotolerance in fungi: evolution on the edge. FEMS Microbiol Ecol 71:2–11

    Article  CAS  Google Scholar 

  • Gostinčar G, Lenassi M, Gunde-Cimerman N, Plemenitaš A (2011) Fungal adaptation to extremely high salt concentrations. Adv Appl Microbiol 77:71–107

    Article  PubMed  CAS  Google Scholar 

  • Gramain A, Chong Diaz G, Demergasso C, Lowenstein TK, McGenity TJ (2011) Archaeal diversity along a subterranean salt core from the Salar Grande (Chile). Environ Microbiol 13:2105–2121

    Article  PubMed  Google Scholar 

  • Grant WD (2004) Life at low water activity. Philos Trans R Soc London B 359:1249–1267

    Article  CAS  Google Scholar 

  • Grant WD, Gemmell RT, McGenity TJ (1998) Halobacteria: the evidence for longevity. Extremophiles 2:279–287

    Article  CAS  PubMed  Google Scholar 

  • Graur D, Pupko T (2001) The Permian bacterium that isn’t. Mol Biol Evol 18:1143–1146

    Article  CAS  PubMed  Google Scholar 

  • Guixa-Boixareu N, Calderón-Paz JI, Heldal M, Bratbak G, Pedrós-Alió C (1996) Viral lysis and bacterivory as prokaryotic loss factors along a salinity gradient. Aquat Microb Ecol 11:215–227

    Article  Google Scholar 

  • Gunde-Cimerman N, Zalar P, de Hoog GS, Plemenitaš A (2000) Hypersaline water in salterns – natural ecological niches for halophilic black yeasts. FEMS Microbiol Ecol 32:235–240

    CAS  Google Scholar 

  • Gunde-Cimerman N, Ramos J, Plemenitaš A (2009) Halotolerant and halophilic fungi. Mycol Res 113:1231–1241

    Article  CAS  PubMed  Google Scholar 

  • Hagemann M (2011) Molecular biology of cyanobacterial salt acclimation. FEMS Microbiol Rev 35:87–123

    Article  CAS  PubMed  Google Scholar 

  • Hagemann M (2013) Genomics of salt acclimation: synthesis of compatible solutes among cyanobacteria. Adv Bot Res 65:27–55

    Article  CAS  Google Scholar 

  • Hallsworth JE, Yakimov MM, Golyshin PN, Gillion JLM, D’Auria G, de Lima AF, La Cono V, Genovese M, McKew BA, Hayes SL, Harris G, Giuliano L, Timmis KN, McGenity TJ (2007) Limits of life in MgCl2-containing environments: chaotropicity defines the window. Environ Microbiol 9:801–813

    Article  CAS  PubMed  Google Scholar 

  • Hartmann R, Sickinger H-D, Oesterhelt D (1980) Anaerobic growth of halobacteria. Proc Natl Acad Sci USA 77:3821–3825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hauer G, Rogerson A (2005) Heterotrophic protozoa from hypersaline environments. In: Gunde-Cimerman N, Oren A, Plemenitaš A (eds) Adaptation to life at high salt concentrations in Archaea, Bacteria, and Eukarya. Springer, Dordrecht, pp 522–539

    Google Scholar 

  • Heidelberg KB, Nelson WC, Holm JB, Eisenkolb N, Andrade K, Emerson JB (2013) Characterization of eukaryotic microbial diversity in hypersaline Lake Tyrrell, Australia. Front Microbiol 4:115

    Article  PubMed  PubMed Central  Google Scholar 

  • Hofmeister F (1888) Zur Lehre von der Wirkung der Salze. Zweite Mittheilung. Arch Exp Pathol Pharmakol 24:247–260

    Article  Google Scholar 

  • Imhoff JF, Sahl HG, Soliman GHS, Trüper HG (1979) The Wadi Natrun: chemical composition and microbial mass development in alkaline brines of eutrophic desert lakes. Geomicrobiol J 1:219–234

    Article  CAS  Google Scholar 

  • Ionescu D, Lipski A, Altendorf K, Oren A (2007) Characterization of the endoevaporitic microbial communities in a hypersaline gypsum crust by fatty acid analysis. Hydrobiologia 576:15–26

    Article  CAS  Google Scholar 

  • Ionescu D, Siebert C, Polerecky L, Munwes YY, Lott C, Häusler S, Bižić-Ionescu M, Quast C, Peplies J, Glöckner FO, Ramette A, Rödiger T, Dittmar T, Oren A, Geyer S, Stärk H-J, Sauter M, Licha T, Laronne JB, de Beer D (2012) Microbial and chemical characterization of submarine freshwater springs in the Dead Sea, harboring rich microbial communities. PLoS One 7:e38319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jannasch HW (1957) Die bakterielle Rotfärbung der Salzseen des Wadi Natrun (Ägypten). Arch Hydrobiol 53:425–433

    Google Scholar 

  • Javor BJ (1983) Planktonic standing crop and nutrients in a saltern ecosystem. Limnol Oceanogr 28:153–159

    Article  CAS  Google Scholar 

  • Javor B (1989) Hypersaline environments. Microbiology and biogeochemistry. Springer, Berlin

    Book  Google Scholar 

  • Javor BJ (2002) Industrial microbiology of solar salt production. J Ind Microbiol Biotechnol 28:42–47

    Article  CAS  PubMed  Google Scholar 

  • Jiang S, Steward G, Jellison R, Chu W, Choi S (2004) Abundance, distribution, and diversity of viruses in alkaline, hypersaline Mono Lake, California. Microb Ecol 47:9–17

    Article  CAS  PubMed  Google Scholar 

  • Joye SB, Samarkin VA, Orcutt BM, MacDonald IR, Hinrichs K-U, Elvert M, Teske AP, Lloyd KG, Lever MA, Montoya JP, Meile CD (2009) Metabolic variability in seafloor brines revealed by carbon and sulphur dynamics. Nat Geosci 2:349–354

    Article  CAS  Google Scholar 

  • Kivisto AT, Karp MT (2011) Halophilic anaerobic fermentative bacteria. J Biotechnol 152:114–124

    Article  PubMed  CAS  Google Scholar 

  • Kjeldsen KU, Loy A, Jakobsen TF, Thomsen TR, Wagner M, Ingvorsen K (2006) Diversity of sulfate-reducing bacteria from an extreme hypersaline sediment, Great Salt Lake (Utah). FEMS Microbiol Ecol 60:287–298

    Article  CAS  Google Scholar 

  • Kjeldsen KU, Jakobsen TF, Glastrup J, Ingvorsen K (2010) Desulfosalsimonas propionicica gen. nov., sp. nov., a halophilic, sulfate-reducing member of the family Desulfobacteraceae isolated from a salt-lake sediment. Int J Syst Evol Microbiol 60:1060–1065

    Article  CAS  PubMed  Google Scholar 

  • Kunin V, Raes J, Harris JK, Spear JR, Walker JJ, Ivanova N, von Mering C, Bebout BM, Pace NR, Bork P, Hugenholtz P (2008) Millimeter scale genetic gradients and community-level molecular convergence in a hypersaline microbial mat. Mol Syst Biol 4:198

    Article  PubMed  PubMed Central  Google Scholar 

  • Kushner DJ (1978) Life in high salt and solute concentrations: halophilic bacteria. In: Kushner DJ (ed) Microbial life in extreme environments. Academic Press, London, pp 317–368

    Google Scholar 

  • La Cono V, Smedile F, Bortoluzzi G, Arcadi E, Maimone, Messina E, Borghini M, Oliveri E, Mazzola S, L’Haridon S, Toffin L, Genovese L, Ferrer M, Giuliano L, Golyshin PN, Yakimov MM (2011) Unveiling microbial life in new deep-sea hypersaline Lake Thetis. Part I: Prokaryotes and environmental settings. Environ Microbiol 13:2250–2268

    Article  PubMed  Google Scholar 

  • Lai M-C, Sowers KR, Robertson DE, Roberts MF, Gunsalus RP (1991) Distribution of compatible solutes in the halophilic methanogenic archaebacteria. J Bacteriol 173:5352–5358

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lanyi JK (1974) Salt-dependent properties of proteins from extremely halophilic bacteria. Bacteriol Rev 38:272–290

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lanyi JK (2005) Xanthorhodopsin: a proton pump with a light-harvesting carotenoid antenna. Science 309:2061–2064

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Larsen H (1973) The halobacteria’s confusion to biology. Antonie van Leeuwenhoek 39:383–396

    Article  CAS  PubMed  Google Scholar 

  • Legault BA, Lopez-Lopez A, Alba-Casado JC, Doolittle WF, Bolhuis H, Rodríguez-Valera F, Papke RT (2006) Environmental genomics of “Haloquadratum walsbyi” in a saltern crystallizer indicates a large pool of accessory genes in an otherwise coherent species. BMC Genomics 7:171

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lenassi M, Gostinčar C, Jackman S, Turk M, Sadowski I, Nislow C, Jones S, Birol I, Gunde-Cimerman N, Plemenitaš A (2013) Whole genome duplication and enrichment of metal cation transporters revealed by de novo genome sequencing of extremely halotolerant black yeast Hortaea werneckii. PLoS One 8:e71328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lentzen G, Schwarz T (2006) Extremolytes: natural compounds from extremophiles for versatile applications. Appl Microbiol Biotechnol 72:623–634

    Article  CAS  PubMed  Google Scholar 

  • Litchfield CD, Oren A (2001) Polar lipids and pigments as biomarkers for the study of the microbial community structure of solar salterns. Hydrobiologia 466:81–89

    Article  CAS  Google Scholar 

  • Lopalco P, Lobasso S, Baronio M, Angelini R, Corcelli A (2011) Impact of lipidomics on the microbial world of hypersaline environments. In: Ventosa A, Oren A, Ma Y (eds) Halophiles and hypersaline environments. Springer, Berlin, pp 123–135

    Chapter  Google Scholar 

  • Lowenstein TK, Schubert BA, Timofeeff MN (2011) Microbial communities in fluid inclusions and long-term survival in halite. GSA Today Jan:4–9

    Article  Google Scholar 

  • Lutnæs BF, Oren A, Liaaen-Jensen S (2002) New C40-carotenoid acyl glycoside as principal carotenoid of Salinibacter ruber, an extremely halophilic eubacterium. J Nat Prod 65:1340–1343

    Article  PubMed  CAS  Google Scholar 

  • Mackay MA, Norton RS, Borowitzka LJ (1984) Organic osmoregulatory solutes in cyanobacteria. J Gen Microbiol 130:2177–2191

    CAS  Google Scholar 

  • Madern D, Ebel C, Zaccai G (2000) Halophilic adaptation of enzymes. Extremophiles 4:91–98

    Article  CAS  PubMed  Google Scholar 

  • Manikandan M, Kannan V, Pašić L (2009) Diversity of microorganisms in solar salterns of Tamil Nadu, India. World J Microbiol Biotechnol 25:1007–1017

    Article  Google Scholar 

  • Mapelli F, Borin S, Daffoncio D (2012) Microbial diversity in deep hypersaline anoxic basins. In: Stan-Lotter H, Fendrihan S (eds) Adaptation of microbial life to environmental extremes: novel research results and application. Springer, New York, pp 21–36

    Chapter  Google Scholar 

  • Maturrano L, Santos F, Rosselló-Mora R, Antón J (2006) Microbial diversity in Maras salterns, a hypersaline environment in the Peruvian Andes. Appl Environ Microbiol 72:3887–3895

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McGenity TJ, Oren A (2012) Hypersaline environments. In: Bell EM (ed) Life at extremes. Environments, organisms and strategies for survival. CABI International, London, pp 402–437

    Chapter  Google Scholar 

  • McGenity TJ, Gemmell RT, Grant WD, Stan-Lotter H (2000) Origins of halophilic microorganisms in ancient salt deposits. Environ Microbiol 2:243–250

    Article  CAS  PubMed  Google Scholar 

  • Mesbah NM, Wiegel J (2008) Life at extreme limits. The anaerobic halophilic alkalithermophiles. Ann NY Acad Sci 1125:44–57

    Article  CAS  PubMed  Google Scholar 

  • Mesbah NM, Wiegel J (2009) Natronovirga wadinatrunensis gen. nov., sp. nov. and Natranaerobius trueperi sp. nov., halophilic alkalithermophilic micro-organisms from soda lakes of the Wadi An Natrun, Egypt. Int J Syst Evol Microbiol 59:2042–2048

    Article  PubMed  Google Scholar 

  • Mesbah NM, Wiegel J (2012) Life under multiple extreme conditions: diversity and physiology of the halophilic alkalithermophiles. Appl Environ Microbiol 78:4074–4082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mesbah NM, Abou-El-Ela SH, Wiegel J (2007a) Novel and unexpected prokaryotic diversity in water and sediments of the alkaline, hypersaline lakes of the Wadi An Natrun, Egypt. Microb Ecol 54:598–617

    Article  CAS  PubMed  Google Scholar 

  • Mesbah NM, Hedrick DB, Peacock AD, Rohde M, Wiegel J (2007b) Natranaerobius thermophilus gen. nov., sp. nov., a halophilic alkalithermophilic bacterium from soda lakes of the Wadi An Natrun, Egypt, and proposal of Natranaerobiaceae fam. nov. and Natranaerobiales ord. nov. Int J Syst Evol Microbiol 57:2507–2512

    Article  CAS  PubMed  Google Scholar 

  • Meuser JE, Baxter BK, Spear JR, Peters JW, Posewitz MC, Boyd ES (2013) Contrasting patterns of community assembly in the stratified water column of Great Salt Lake, Utah. Microb Ecol 66:268–280

    Article  CAS  PubMed  Google Scholar 

  • Mevarech M, Frolow F, Gloss LM (2000) Halophilic enzymes: proteins with a grain of salt. Biophys Chem 86:155–164

    Article  CAS  PubMed  Google Scholar 

  • Mikucki JA, Pearson A, Johnston DT, Turchyn AV, Farquhar J, Schrag DP, Anbar AA, Priscu JC, Lee PA (2009) A contemporary microbially maintained subglacial ferrous “ocean”. Science 324:397–400

    Article  CAS  PubMed  Google Scholar 

  • Minegishi H, Echigo A, Nagaoka S, Kamekura M, Usami R (2010) Halarchaeum acidiphilum gen. nov., sp. nov., a moderately acidophilic haloarchaeon isolated from commercial solar salt. Int J Syst Evol Microbiol 60:2513–2516

    Article  CAS  PubMed  Google Scholar 

  • Mongodin MEF, Nelson KE, Duagherty S, DeBoy RT, Wister J, Khouri H, Weidman J, Balsh DA, Papke RT, Sanchez Perez G, Sharma AK, Nesbo CL, MacLeod D, Bapteste E, Doolittle WF, Charlebois RL, Legault B, Rodríguez-Valera F (2005) The genome of Salinibacter ruber: convergence and gene exchange among hyperhalophilic bacteria and archaea. Proc Natl Acad Sci USA 102:18147–18152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mouné S, Caumette P, Matheron R, Willison JC (2002) Molecular sequence analysis of prokaryotic diversity in the anoxic sediments underlying cyanobacterial mats of two hypersaline ponds in Mediterranean salterns. FEMS Microbiol Ecol 44:117–130

    Article  CAS  Google Scholar 

  • Mullakhanbhai MF, Larsen H (1975) Halobacterium volcanii, spec. nov., a Dead Sea halobacterium with a moderate salt requirement. Arch Microbiol 104:207–214

    Article  CAS  PubMed  Google Scholar 

  • Narasingarao P, Podell S, Ugalde JA, Brochier-Armanet C, Emerson JB, Brocks JJ, Heidelberg KB, Banfield JF, Allen EE (2012) De novo assembly reveals abundant novel major lineage of Archaea in hypersaline microbial communities. ISME J 6:81–93

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nickle DC, Learn GH, Rain MW, Mullins JI, Miller JE (2002) Curiously modern DNA for a “250 million-year-old” bacterium. J Mol Evol 54:134–137

    Article  CAS  PubMed  Google Scholar 

  • Norton CF, Grant WD (1988) Survival of halobacteria within fluid inclusions in salt crystals. J Gen Microbiol 134:1365–1373

    Google Scholar 

  • Norton CF, McGenity TJ, Grant WD (1993) Archaeal halophiles (halobacteria) from two British salt mines. J Gen Microbiol 139:1077–1081

    Article  CAS  Google Scholar 

  • Oh D, Porter K, Russ B, Burns D, Dyall-Smith M (2009) Diversity of Haloquadratum and other haloarchaea in three, geographically distant, Australian saltern crystallizer ponds. Extremophiles 14:161–169

    Article  PubMed  PubMed Central  Google Scholar 

  • Ollivier B, Hatchikian CE, Prensier G, Guezennec J, Garcia J-L (1991) Desulfohalobium retbaense gen. nov. sp. nov., a halophilic sulfate-reducing bacterium from sediments of a hypersaline lake in Senegal. Int J Syst Bacteriol 41:74–81

    Article  CAS  Google Scholar 

  • Orellana MV, Pang WL, Durand PM, Whitehead M, Baliga MS (2013) A role for programmed cell death in the microbial loop. PLoS One 8:e62595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oremland RS, King GM (1989) Methanogenesis in hypersaline environments. In: Cohen Y, Rosenberg E (eds) Microbial mats. Physiological ecology of benthic microbial communities. American Society for Microbiology, Washington, DC, pp 180–190

    Google Scholar 

  • Oremland RS, Kulp TR, Switzer Blum J, Hoeft SE, Baesman S, Miller LG, Stolz JF (2005) A microbial arsenic cycle in a salt-saturated extreme environment. Science 308:1305–1308

    Article  CAS  PubMed  Google Scholar 

  • Oren A (1983) Halobacterium sodomense sp. nov., a Dead Sea halobacterium with an extremely high magnesium requirement. Int J Syst Bacteriol 33:381–386

    Article  Google Scholar 

  • Oren A (1986) Intracellular salt concentrations of the anaerobic halophilic eubacteria Haloanaerobium praevalens and Halobacteroides halobius. Can J Microbiol 32:4–9

    Article  CAS  Google Scholar 

  • Oren A (1988) The microbial ecology of the Dead Sea. In: Marshall KC (ed) Advances in microbial ecology, vol 10. Plenum, New York, pp 193–229

    Chapter  Google Scholar 

  • Oren A (1990) Formation and breakdown of glycine betaine and trimethylamine in hypersaline environments. Antonie van Leeuwenhoek 58:291–298

    Article  CAS  PubMed  Google Scholar 

  • Oren A (1993) The Dead Sea – alive again. Experientia 49:518–522

    Article  Google Scholar 

  • Oren A (1994a) Characterization of the halophilic archaeal community in saltern crystallizer ponds by means of polar lipid analysis. Int J Salt Lake Res 3:15–29

    Article  Google Scholar 

  • Oren A (1994b) The ecology of the extremely halophilic archaea. FEMS Microbiol Rev 13:415–440

    Article  CAS  Google Scholar 

  • Oren A (1995) The role of glycerol in the nutrition of halophilic archaeal communities: a study of respiratory electron transport. FEMS Microbiol Ecol 16:281–290

    Article  CAS  Google Scholar 

  • Oren A (1999a) Bioenergetic aspects of halophilism. Microbiol Mol Biol Rev 63:334–348

    CAS  PubMed  PubMed Central  Google Scholar 

  • Oren A (1999b) Microbiological studies in the Dead Sea: future challenges toward the understanding of life at the limit of salt concentrations. Hydrobiologia 405:1–9

    Article  CAS  Google Scholar 

  • Oren A (2001) The bioenergetic basis for the decrease in metabolic diversity at increasing salt concentrations: implications for the functioning of salt lake ecosystem. Hydrobiologia 466:61–72

    Article  CAS  Google Scholar 

  • Oren A (2002a) Halophilic microorganisms and their environments. Kluwer Scientific, Dordrecht

    Book  Google Scholar 

  • Oren A (2002b) Diversity of halophilic microorganisms: environments, phylogeny, physiology, and applications. J Ind Microbiol Biotechnol 28:56–63

    Article  CAS  PubMed  Google Scholar 

  • Oren A (2002c) Molecular ecology of extremely halophilic Archaea and Bacteria. FEMS Microbiol Ecol 39:1–7

    Article  CAS  PubMed  Google Scholar 

  • Oren A (2005) A hundred years of Dunaliella research – 1905-2005. Saline Syst 1:2

    Article  PubMed  PubMed Central  Google Scholar 

  • Oren A (2006a) Life at high salt concentrations. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E (eds) The prokaryotes. A handbook on the biology of bacteria, vol 2, 3rd edn. Springer, New York, pp 263–282

    Google Scholar 

  • Oren A (2006b) The order Halobacteriales. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E (eds) The prokaryotes. A handbook on the biology of bacteria, vol 3, 3rd edn. Springer, New York, pp 113–164

    Google Scholar 

  • Oren A (2006c) The order Haloanaerobiales. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E (eds) The prokaryotes. A handbook on the biology of bacteria, vol 4, 3rd edn. Springer, New York, pp 804–817

    Google Scholar 

  • Oren A (2007) Biodiversity in highly saline environments. In: Gerdes C, Glansdorff N (eds) Physiology and biochemistry of extremophiles. ASM Press, Washington, DC, pp 223–231

    Chapter  Google Scholar 

  • Oren A (2008) Microbial life at high salt concentrations: phylogenetic and metabolic diversity. Saline Syst 4:2

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Oren A (2009) Microbial diversity and microbial abundance in salt-saturated brines: why are the waters of hypersaline lakes red? In: Oren A, Naftz DL, Palacios P, Wurtsbaugh WA (eds) Saline lakes around the world: unique systems with unique values. The SJ and Jessie E Quinney Natural Resources Research Library, College of Natural Resources, Utah State University, Salt Lake City, UT, pp 247–255 (open access at http://www.cnr.usu.edu/quinney/htm/publications/nrei)

  • Oren A (2010) The dying Dead Sea: the microbiology of an increasingly extreme environment. Lakes Reservoirs Res Manage 15:215–222

    Article  CAS  Google Scholar 

  • Oren A (2011a) Thermodynamic limits to microbial life at high salt concentrations. Environ Microbiol 13:1908–1923

    Article  CAS  PubMed  Google Scholar 

  • Oren A (2011b) Diversity of halophiles. In: Horikoshi K (ed) Extremophiles handbook. Springer, Tokyo, pp 309–325

    Chapter  Google Scholar 

  • Oren A (2011c) Ecology of halophiles. In: Horikoshi K (ed) Extremophiles handbook. Springer, Tokyo, pp 343–361

    Chapter  Google Scholar 

  • Oren A (2012a) Approaches toward the study of halophilic microorganisms in their natural environments: who are they and what are they doing. In: Vreeland RH (ed) Advances in the understanding of halophilic microorganisms. Springer, Dordrecht, pp 1–33

    Chapter  Google Scholar 

  • Oren A (2012b) Metagenomics of salt lakes. In: Nelson K (ed) Encyclopedia of metagenomics. Springer, New York. http://www.springerreference.com/docs/edit/chapterdbid/303297.html

  • Oren A (2012c) Salts and brines. In: Whitton BA (ed) Ecology of cyanobacteria II. Their diversity in time and space, 2nd edn. Springer, Dordrecht, pp 401–426

    Google Scholar 

  • Oren A (2013a) Salinibacter: an extremely halophilic bacterium with archaeal properties. FEMS Microbiol Lett 342:1–9

    Article  CAS  PubMed  Google Scholar 

  • Oren A (2013b) Two centuries of microbiological research in the Wadi Natrun, Egypt: a model system for the study of the ecology, physiology, and taxonomy of haloalkaliphilic microorganisms. In: Seckbach J, Oren A, Stan-Lotter H (eds) Polyextremophiles – organisms living under multiple forms of stress. Springer, Dordrecht, pp 103–119

    Google Scholar 

  • Oren A, Dubinsky Z (1994) On the red coloration of saltern crystallizer ponds. II. Additional evidence for the contribution of halobacterial pigments. Int J Salt Lake Res 3:9–13

    Article  Google Scholar 

  • Oren A, Gurevich P (1993) Characterization of the dominant halophilic archaea in a bacterial bloom in the Dead Sea. FEMS Microbiol Ecol 12:249–256

    Article  CAS  Google Scholar 

  • Oren A, Gurevich P (1994) Production of D-lactate, acetate, and pyruvate from glycerol in communities of halophilic archaea in the Dead Sea and in saltern crystallizer ponds. FEMS Microbiol Ecol 14:147–156

    CAS  Google Scholar 

  • Oren A, Gurevich P (1995) Dynamics of a bloom of halophilic archaea in the Dead Sea. Hydrobiologia 315:149–158

    Article  Google Scholar 

  • Oren A, Mana L (2002) Amino acid composition of bulk protein and salt relationships of selected enzymes of Salinibacter ruber, an extremely halophilic bacterium. Extremophiles 6:217–223

    Article  CAS  PubMed  Google Scholar 

  • Oren A, Rodríguez-Valera F (2001) The contribution of Salinibacter species to the red coloration of saltern crystallizer ponds. FEMS Microbiol Ecol 36:123–130

    CAS  PubMed  Google Scholar 

  • Oren A, Shilo M (1981) Bacteriorhodopsin in a bloom of halobacteria in the Dead Sea. Arch Microbiol 130:185–187

    Article  CAS  Google Scholar 

  • Oren A, Gurevich P, Anati DA, Barkan E, Luz B (1995a) A bloom of Dunaliella parva in the Dead Sea in 1992: biological and biogeochemical aspects. Hydrobiologia 297:173–185

    Article  CAS  Google Scholar 

  • Oren A, Gurevich P, Gemmell RT, Teske A (1995b) Halobaculum gomorrense gen. nov., sp. nov., a novel extremely halophilic archaeon from the Dead Sea. Int J Syst Bacteriol 45:747–754

    Article  CAS  PubMed  Google Scholar 

  • Oren A, Kühl M, Karsten U (1995c) An endoevaporitic microbial mat within a gypsum crust: zonation of phototrophs, photopigments, and light penetration. Mar Ecol Prog Ser 128:151–159

    Article  Google Scholar 

  • Oren A, Duker S, Ritter S (1996) The polar lipid composition of Walsby’s square bacterium. FEMS Microbiol Lett 138:135–140

    Article  CAS  Google Scholar 

  • Oren A, Heldal M, Norland S (1997a) X-ray microanalysis of intracellular ions in the anaerobic halophilic eubacterium Haloanaerobium praevalens. Can J Microbiol 43:588–592

    Article  CAS  Google Scholar 

  • Oren A, Bratbak G, Heldal M (1997b) Occurrence of virus-like particles in the Dead Sea. Extremophiles 1:143–149

    Article  CAS  PubMed  Google Scholar 

  • Oren A, Rodríguez-Valera F, Antón J, Benlloch S, Rosselló-Mora R, Amann R, Coleman J, Russell NJ (2004) Red, extremely halophilic, but not archaeal: the physiology and ecology of Salinibacter ruber, a bacterium isolated from saltern crystallizer ponds. In: Ventosa A (ed) Halophilic microorganisms. Springer, Berlin, pp 63–76

    Chapter  Google Scholar 

  • Oren A, Pri-El N, Shapiro O, Siboni N (2006) Buoyancy studies in natural communities of square gas-vacuolate archaea in saltern crystallizer ponds. Saline Syst 2:4

    Article  PubMed  PubMed Central  Google Scholar 

  • Oren A, Sørensen KB, Canfield DE, Teske AP, Ionescu D, Lipski A, Altendorf K (2009a) Microbial communities and processes within a hypersaline gypsum crust in a saltern evaporation pond (Eilat, Israel). Hydrobiologia 626:15–26

    Article  CAS  Google Scholar 

  • Oren A, Baxter BK, Weimer BC (2009b) Microbial communities in salt lakes: phylogenetic diversity, metabolic diversity, and in situ activities. In: Oren A, Naftz DL, Palacios P, Wurtsbaugh WA (eds) Saline lakes around the world: unique systems with unique values. The SJ and Jessie E Quinney Natural Resources Research Library, College of Natural Resources, Utah State University, Salt Lake City, UT, pp 257–263

    Google Scholar 

  • Oren A, Elevi Bardavid R, Kandel N, Aizenshtat Z, Jehlicka J (2013) Glycine betaine is the main organic osmotic solute in a stratified microbial community in a hypersaline evaporitic gypsum crust. Extremophiles 17:445–451

    Article  CAS  PubMed  Google Scholar 

  • Osterrothová K, Jehlička J (2011) Investigation of biomolecules trapped in fluid inclusions inside halite crystals by Raman spectroscopy. Spectrochim Acta A 83:288–296

    Article  CAS  Google Scholar 

  • Øvreås L, Daae FL, Torsvik V, Rodríguez-Valera F (2003) Characterization of microbial diversity in hypersaline environments by melting profiles and reassociation kinetics in combination with terminal restriction fragment length polymorphism (T-RFLP). Microb Ecol 46:291–301

    Article  PubMed  CAS  Google Scholar 

  • Park JS, Kim H, Choi DH, Cho BC (2003) Active flagellates grazing on prokaryotes in high salinity waters of a solar saltern. Aquat Microb Ecol 33:173–179

    Article  Google Scholar 

  • Park S-J, Kang C-H, Rhee S-K (2006) Characterization of the microbial diversity in a Korean solar saltern by 16S rRNA gene analysis. J Microbiol Biotechnol 16:1640–1645

    CAS  Google Scholar 

  • Park JS, Simpson AGB, Lee WJ, Cho BC (2007) Ultrastructure and phylogenetic placement within Heterolobosea of the previously unclassified, extremely halophilic heterotrophic flagellate Pleurostomum flabellatum (Ruinen 1938). Protist 158:397–413

    Article  CAS  PubMed  Google Scholar 

  • Parnell JJ, Rompato G, Latta LC IV, Pfender ME, van Nostrand JD, He Z, Zhou J, Andersen G, Champine P, Ganesan B, Weimer BC (2010) Functional biogeography as evidence of gene transfer in hypersaline microbial communities. PLoS One 5:e12919

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Parnell JJ, Rompato G, Crowl TA, Weimer BC, Pfrender ME (2011) Phylogenetic distance in Great Salt Lake microbial communities. Aquat Microb Ecol 64:267–273

    Article  Google Scholar 

  • Pašić L, Galán Bartual S, Poklar Ulrih N, Grabnar M, Herzog Velikonja B (2005) Diversity of halophilic archaea in the crystallizers of an Adriatic solar saltern. FEMS Microbiol Ecol 54:491–498

    Article  PubMed  CAS  Google Scholar 

  • Pašić L, Poklar Ulrih N, Črnigoj M, Grabnar M, Herzog Velikonja B (2007) Haloarchaeal communities in the crystallizers of two Adriatic solar salterns. Can J Microbiol 53:8–18

    Article  PubMed  Google Scholar 

  • Pedrós-Alió C, Calderón-Paz JI, MacLean MH, Medina G, Marassé C, Gasol JM, Guixa-Boixereu N (2000a) The microbial food web along salinity gradients. FEMS Microbiol Ecol 32:143–155

    Article  PubMed  Google Scholar 

  • Pedrós-Alió C, Calderón-Paz JI, Gasol JM (2000b) Comparative analysis shows that bacterivory, not viral lysis, controls the abundance of heterotrophic prokaryotic plankton. FEMS Microbiol Ecol 32:157–165

    Article  PubMed  Google Scholar 

  • Peña A, Teeling H, Huerta-Cepas J, Santos F, Yarza P, Brito-Echeverría J, Lucio M, Schmitt-Kopplin P, Meseguer I, Schenowitz C, Dossat C, Barbe V, Dopazo J, Rosselló-Mora R, Schüler M, Oliver Glöckner M, Amann R, Gabaldón T, Antón J (2010) Fine-scale evolution: genomic, phenotypic and ecological differentiation in two coexisting Salinibacter ruber strains. ISME J 4:882–895

    Article  PubMed  CAS  Google Scholar 

  • Peña A, Teeling H, Huerta-Cepas J, Santos F, Meseguer I, Lucio M, Schmitt-Kopplin P, Dopazo J, Rosselló-Móra R, Schuler M, Oliver Glöckner F, Amann R, Gabaldón T, Antón J (2011) From genomics to microevolution and ecology: the case of Salinibacter ruber. In: Ventosa A, Oren A, Ma Y (eds) Halophiles and hypersaline environments. Springer, Berlin, pp 109–122

    Chapter  Google Scholar 

  • Pietilä MK, Roine E, Paulin L, Kalkkinen N, Bamford DH (2009) An ssDNA virus infecting archaea: a new lineage of viruses with a membrane envelope. Mol Microbiol 72:307–319

    Article  PubMed  CAS  Google Scholar 

  • Porter D, Roychoudhury AN, Cowan D (2007a) Dissimilatory sulfate reduction in hypersaline coastal pans: activity across a salinity gradient. Geochim Cosmochim Acta 71:5102–5116

    Article  CAS  Google Scholar 

  • Porter K, Russ BE, Dyall-Smith ML (2007b) Virus-host interactions in salt lakes. Curr Opin Microbiol 10:418–424

    Article  CAS  PubMed  Google Scholar 

  • Post FJ (1977) The microbial ecology of the Great Salt Lake. Microb Ecol 3:143–165

    Article  CAS  PubMed  Google Scholar 

  • Prášil O, Bína D, Medová H, Řeháková K, Zapomělová E, Veselá J, Oren A (2009) Emission spectroscopy and kinetic fluorometry studies of phototrophic microbial communities along a salinity gradient in solar saltern evaporation ponds of Eilat, Israel. Aquat Microb Ecol 56:285–296

    Article  Google Scholar 

  • Qvit-Raz N, Jurkevitch E, Belkin S (2008) Drop-size soda lakes: transient microbial habitats on a salt-secreting desert tree. Genetics 178:1615–1622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rainey FA, Zhilina TN, Boulygina ES, Stackebrandt E, Tourova TP, Zavarzin GA (1995) The taxonomic status of the fermentative halophilic anaerobic bacteria: description of Haloanaerobiales ord. nov., Halobacteroidaceae fam. nov., Orenia gen. nov. and further taxonomic rearrangements at the genus and species level. Anaerobe 1:185–199

    Article  CAS  PubMed  Google Scholar 

  • Reistad R (1970) On the composition and nature of the bulk protein of extremely halophilic bacteria. Arch Microbiol 71:353–360

    CAS  Google Scholar 

  • Rengpipat S, Lowe SE, Zeikus JG (1988) Effect of extreme salt concentrations on the physiology and biochemistry of Halobacteroides acetoethylicus. J Bacteriol 170:3065–3071

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rhodes ME, Fitz-Gibbon ST, Oren A, House CH (2010) Amino acid signatures of salinity on an environmental scale with a focus on the Dead Sea. Environ Microbiol 12:2613–2623

    Article  CAS  PubMed  Google Scholar 

  • Rhodes ME, Oren A, House CH (2012) Dynamics and persistence of Dead Sea microbial populations as shown by high throughput sequencing of rRNA. Appl Environ Microbiol 78:2489–2492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roberts MF (2005) Organic compatible solutes of halotolerant and halophilic microorganisms. Saline Syst 1:5

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rodriguez-Brito B, Li L, Wegley L, Furlam M, Angly F, Breitbart M, Buchanan J, Desnues C, Dinsdale E, Edwards R, Felts B, Haynes M, Liu H, Lipson D, Mahaffy J, Martin-Cuadrado AB, Mira A, Nulton J, Pašić L, Rayhawk S, Rodriguez-Mueller J, Rodriguez-Valera F, Salamon P, Srinagesh S, Thingstad TF, Tran T, Thurber RV, Willner D, Youle M, Rohwer F (2010) Viral and microbial community dynamics in four aquatic environments. ISME J 4:739–751

    Article  PubMed  Google Scholar 

  • Rosselló-Mora R, Lee N, Antón J, Wagner M (2003) Substrate uptake in extremely halophilic microbial communities revealed by microautoradiography and fluorescence in situ hybridization. Extremophiles 7:409–413

    Article  PubMed  CAS  Google Scholar 

  • Roychoudhury AN, Cowan D, Porter D, Valverde A (2013) Dissimilatory sulphate reduction in hypersaline coastal pans: an integrated microbiological and geochemical study. Geobiology 11:224–233

    Article  CAS  PubMed  Google Scholar 

  • Sabet S (2012) Halophilic viruses. In: Vreeland RH (ed) Advances in understanding of the biology of halophilic microorganisms. Springer, Dordrecht, pp 81–116

    Chapter  Google Scholar 

  • Sabet S, Diallo L, Hays L, Jung W, Dillon JG (2009) Characterization of halophiles isolated from solar salterns in Baja California, Mexico. Extremophiles 13:643–656

    Article  PubMed  Google Scholar 

  • Sankaranarayanan K, Timofeeff MN, Spathis R, Lowenstein TK, Koji Lum J (2011) Ancient microbes from halite fluid inclusions: optimized surface sterilization and DNA extraction. PloS One 6:e20683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Santos F, Meyerdierks A, Peña A, Rosselló-Mora R, Amann R, Antón J (2007) Metagenomic approach to the study of halophages: the environmental halophage 1. Environ Microbiol 9:1711–1723

    Article  CAS  PubMed  Google Scholar 

  • Santos F, Moreno-Paz M, Meseguer I, López C, Rosselló-Mora R, Parro V, Antón J (2011) Metatranscriptomic analysis of extremely halophilic viral communities. ISME J 5:1621–1633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Santos F, Yarza P, Parro V, Meseguer I, Rosselló-Móra R, Antón J (2012) Viruses from hypersaline environments: a culture-independent approach. Appl Environ Microbiol 78:1635–1643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sass AM, Sass H, Coolen MJL, Cypionka H, Overmann J (2001) Microbial communities in the chemocline of a hypersaline deep-sea basin (Urania Basin, Mediterranean Sea). Appl Environ Microbiol 67:5392–5402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schubert BA, Lowenstein TK, Timofeeff MN (2009a) Microscopic identification of prokaryotes in modern and ancient halite, Saline Valley and Death Valley, California. Astrobiology 9:467–482

    Article  CAS  PubMed  Google Scholar 

  • Schubert BA, Lowenstein TK, Timofeeff MN, Parker MA (2009b) How do prokaryotes survive in fluid inclusions in halite for 30 k.y.? Geology 37:1059–1062

    Article  Google Scholar 

  • Schubert BA, Lowenstein TK, Timofeeff MN, Parker MA (2010a) Halophilic Archaea cultured from ancient halite, Death Valley, California. Environ Microbiol 12:440–454

    Article  CAS  PubMed  Google Scholar 

  • Schubert BA, Timofeeff MN, Polle JEW, Lowenstein TK (2010b) Dunaliella cells in fluid inclusions in halite: significance for long-term survival of prokaryotes. Geomicrobiol J 27:61–75

    Article  CAS  Google Scholar 

  • Sher J, Elevi R, Mana L, Oren A (2004) Glycerol metabolism in the extremely halophilic bacterium Salinibacter ruber. FEMS Microbiol Lett 232:211–215

    Article  CAS  PubMed  Google Scholar 

  • Sime-Ngando T, Lucas S, Robin A, Pause Tucker K, Colombet J, Forterre P, Breitbart M, Prangishvili D (2011) Diversity of virus-host systems in hypersaline Lake Retba, Senegal. Environ Microbiol 13:1956–1972

    Article  PubMed  Google Scholar 

  • Simon RD, Abeliovich A, Belkin S (1994) A novel terrestrial halophilic environment: the phylloplane of Atriplex halimus, a salt-excreting plant. FEMS Microbiol Ecol 14:99–110

    Article  Google Scholar 

  • Soliman GSH, Trüper HG (1982) Halobacterium pharaonis sp. nov., a new, extremely haloalkaliphilic archaebacterium with low magnesium requirement. Zbl Bakt Hyg I Abt Orig C 3:318–329

    CAS  Google Scholar 

  • Sørensen KB, Canfield DE, Teske AP, Oren A (2005) Community composition of a hypersaline endoevaporitic microbial mat. Appl Environ Microbiol 71:7352–7365

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sørensen K, Řeháková K, Zapomělová E, Oren A (2009) Distribution of benthic phototrophs, sulfate reducers, and methanogens in two adjacent salt ponds in Eilat, Israel. Aquat Microb Ecol 56:275–284

    Article  Google Scholar 

  • Stephens DW, Gillespie DM (1976) Phytoplankton production in the Great Salt Lake, Utah, and a laboratory study of algal response to enrichment. Limnol Oceanogr 21:74–87

    Article  CAS  Google Scholar 

  • Stock A, Breiner H-W, Pachiadaki M, Edgcomb V, Filker S, La Cono V, Yakimov MM, Stoeck T (2012) Microbial eukaryote life in the new hypersaline deep-sea basin Thetis. Extremophiles 16:21–34

    Article  PubMed  Google Scholar 

  • Stock A, Edgcomb V, Orsi W, Filker S, Breiner H-W, Yakimov MM, Stoeck T (2013) Evidence for isolated evolution of deep-sea ciliate communities through geological separation and environmental selection. BMC Microbiol 13:150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Triado-Margarit X, Casamayor EO (2013) High genetic diversity and novelty in planktonic protists inhabiting inland and coastal high salinity water bodies. FEMS Microbiol Ecol 85:27–36

    Article  PubMed  Google Scholar 

  • van der Wielen PWJJ, Heijs SK (2007) Sulfate-reducing prokaryotic communities in two deep hypersaline anoxic basins in the Eastern Mediterranean deep sea. Environ Microbiol 9:1335–1340

    Article  PubMed  CAS  Google Scholar 

  • van der Wielen PWJJ, Bolhuis H, Borin S, Daffonchio D, Corselli C, Giuliano L, D’Auria G, de Lange GJ, Huebner A, Varnavas SP, Thomson J, Tamburini C, Marty D, McGenity TJ, Timmis KN, BioDeep Scientific Party (2005) The enigma of prokaryotic life in deep hypersaline anoxic basins. Science 307:121–123

    Article  PubMed  CAS  Google Scholar 

  • Ventosa A, Nieto JJ, Oren A (1998) Biology of moderately aerobic bacteria. Microbiol Mol Biol Rev 62:504–544

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vítek P, Jehlička J, Edwards HGM, Hutchinson I, Ascaso C, Wierzchos J (2012) The miniaturized Raman system and detection of traces of life in halite from the Atacama desert: some considerations for the search for life signatures on Mars. Astrobiology 12:1095–1099

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vreeland RH, Piselli AF Jr, McDonnough S, Meyers SS (1998) Distribution and diversity of halophilic bacteria in a subsurface salt formation. Extremophiles 2:321–331

    Article  CAS  PubMed  Google Scholar 

  • Vreeland RH, Rosenzweig WD, Powers DW (2000) Isolation of a 250 million-year-old halotolerant bacterium from a primary salt crystal. Nature 407:897–900

    Article  CAS  PubMed  Google Scholar 

  • Vreeland RH, Jones J, Monson A, Rosenzweig WD, Lowenstein TK, Timofeeff M, Satterfield C, Cho BC, Park JS, Wallace A, Grant WD (2007) Isolation of live Cretaceous (121–112 million years old) halophilic Archaea from primary salt crystals. Geomicrobiol J 24:275–282

    Article  CAS  Google Scholar 

  • Walsby AE (1971) The pressure relationships of gas vacuoles. Proc R Soc London B 178:301–326

    Article  Google Scholar 

  • Walsby AE (1980) A square bacterium. Nature 283:69–71

    Article  Google Scholar 

  • Walsby AE (2005) Archaea with square cells. Trends Microbiol 13:193–195

    Article  CAS  PubMed  Google Scholar 

  • Warkentin M, Schumann R, Oren A (2009) Community respiration studies in saltern crystallizer ponds. Aquat Microb Ecol 56:255–261

    Article  Google Scholar 

  • Weimer BC, Rompato G, Parnell J, Gann R, Balasubramanian G, Navas C, Gonzalez M, Clavel M, Albee-Scott S (2009) Microbial biodiversity of Great Salt Lake, Utah. In: Oren A, Naftz DL, Palacios P, Wurtsbaugh WA (eds) Saline lakes around the world: unique systems with unique values. The SJ and Jessie E Quinney Natural Resources Research Library, College of Natural Resources, Utah State University, Salt Lake City, UT, pp 15–22 (open access at http://www.cnr.usu.edu/quinney/htm/publications/nrei)

  • Welsh DT (2000) Ecological significance of compatible solute accumulation by micro-organisms: from single cells to global climate. FEMS Microbiol Rev 24:263–290

    Article  CAS  PubMed  Google Scholar 

  • Wierzchos J, Ascaso C, McKay CP (2006) Endolithic cyanobacteria in halite rocks from the hyperarid core of the Atacama Desert. Astrobiology 6:415–423

    Article  PubMed  Google Scholar 

  • Winters YD, Timofeeff MK, Lowenstein TK (2013) Identification of carotenoids in ancient salt from Death Valley, Saline Valley, and Searles Lake, California using laser Raman spectroscopy. Astrobiology 13:1065–1080

    Article  CAS  PubMed  Google Scholar 

  • Woelfel J, Sørensen K, Warkentin M, Forster S, Oren A, Schumann R (2009) Oxygen evolution in a hypersaline crust: photosynthesis quantification by in situ microelectrode profiling and planar optodes in incubation chambers. Aquat Microb Ecol 56:263–273

    Article  Google Scholar 

  • Wohlfarth A, Severin J, Galinski EA (1990) The spectrum of compatible solutes in heterotrophic halophilic eubacteria of the family Halomonadaceae. J Gen Microbiol 136:705–712

    Article  CAS  Google Scholar 

  • Zajc J, Zalar P, Plemenitas A, Gunde-Cimerman N (2011) The mycobiota of the salterns. In: Raghukumar C (ed) Biology of marine fungi. Springer, Berlin, pp 133–158

    Google Scholar 

  • Zajc J, Liu Y, Dai W, Yang Z, Hu J, Gostinčar C, Gunde-Cimerman N (2013) Genome and transcriptome sequencing of the halophilic fungus Wallemia ichthyophaga: haloadaptations present and absent. BMC Genomics 14:617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zalar P, Kocuvan MA, Plemenitaš A, Gunde-Cimerman N (2005) Halophilic black yeasts colonize wood immersed in hypersaline water. Bot Mar 48:323–326

    Article  Google Scholar 

  • Zhaxybayeva O, Stepanauskas R, Mohan NR, Papke RT (2013) Cell-sorting analysis of geographically separated hypersaline environments. Extremophiles 17:265–275

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aharon Oren .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Oren, A. (2016). Life in Hypersaline Environments. In: Hurst, C. (eds) Their World: A Diversity of Microbial Environments. Advances in Environmental Microbiology, vol 1. Springer, Cham. https://doi.org/10.1007/978-3-319-28071-4_8

Download citation

Publish with us

Policies and ethics