Skip to main content

Integrability and Non Integrability of Some n Body Problems

  • Chapter
  • First Online:
  • 1083 Accesses

Part of the book series: Mathematics for Industry ((MFI,volume 23))

Abstract

We prove the non integrability of the colinear 3 and 4 body problem, for any positive masses. To deal with resistant cases, we present strong integrability criterions for 3 dimensional homogeneous potentials of degree \(-1\), and prove that such cases cannot appear in the 4 body problem. Following the same strategy, we present a simple proof of non integrability for the planar n body problem. Eventually, we present some integrable cases of the n body problem restricted to some invariant vector spaces.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Bruns H (1887) Acta Math 11

    Google Scholar 

  2. Poincaré H (1890) Sur le problème des trois corps et les équations de la dynamique. Acta Math. 13:A3–A270

    Google Scholar 

  3. Julliard Tosel E (1999) Non-intégrabilité algébrique et méromorphe de problèmes de n corps

    Google Scholar 

  4. Morales-Ruiz J, Simon S (2009) On the meromorphic non-integrability of some \(N\)-body problems. Discret Contin Dyn Syst (DCDS-A) 24:1225–1273

    Google Scholar 

  5. Boucher D (2000) Sur la non-intégrabilité du probleme plan des trois corps de masses égalesa un le long de la solution de lagrange. CR Acad Sci Paris 331:391–394

    Article  MathSciNet  Google Scholar 

  6. Tsygvintsev A (2007) On some exceptional cases in the integrability of the three-body problem. Celest Mech Dyn Astron 99:23–29

    Article  MathSciNet  MATH  Google Scholar 

  7. Nomikos D, Papageorgiou V (2009) Non-integrability of the anisotropic stormer problem and the isosceles three-body problem. Physica D: Nonlinear Phenom 238:273–289

    Article  MathSciNet  MATH  Google Scholar 

  8. Albouy A, Kaloshin V (2012) Finiteness of central configurations of five bodies in the plane. Ann Math 176:535–588

    Article  MathSciNet  MATH  Google Scholar 

  9. Morales-Ruiz J, Ramis J, Simó C (2007) Integrability of Hamiltonian systems and differential Galois groups of higher variational equations. Annales scientifiques de l’Ecole normale supérieure 40:845–884

    Article  MathSciNet  MATH  Google Scholar 

  10. Combot T (2013) A note on algebraic potentials and Morales-Ramis theory. Celest Mech Dyn Astron 1–22. doi:10.1007/s10569-013-9470-2

    Google Scholar 

  11. Din MSE (2003) Raglib: a library for real algebraic geometry. http://www-calfor.lip6.fr/safey/RAGLib/

  12. Bostan MS-E-D.A, Combot T (2014) Computing necessary integrability conditions for planar parametrized homogeneous potentials. In: ISSAC 2014

    Google Scholar 

  13. Moulton F (1910) The straight line solutions of the problem of n bodies. Ann Math 12:1–17

    Article  MathSciNet  MATH  Google Scholar 

  14. Roberts GE (1999) A continuum of relative equilibria in the five-body problem. Physica D: Nonlinear Phenom 127:141–145

    Article  MathSciNet  MATH  Google Scholar 

  15. Hampton M, Moeckel R (2006) Finiteness of relative equilibria of the four-body problem. Inventiones Mathematicae 163:289–312

    Article  MathSciNet  MATH  Google Scholar 

  16. Combot T (2011) Integrable homogeneous potentials of degree \(-\)1 in the plane with small eigenvalues, arXiv:1110.6130

  17. Combot T (2013) Integrability conditions at order \(2\) for homogeneous potentials of degree \(-\)1, Non-linearity, vol 26

    Google Scholar 

  18. Combot T, Koutschan C (2012) Third order integrability conditions for homogeneous potentials of degree \(-\)1. J Math Phys 53

    Google Scholar 

  19. Pacella F (1987) Central configurations of the n-body problem via equivariant morse theory. Arch Ration Mech Anal 97:59–74

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thierry Combot .

Editor information

Editors and Affiliations

Appendix A. Integrable Series Expansions at Order 4

Appendix A. Integrable Series Expansions at Order 4

The results are written in the following way. We give a series expansion of the form (9) of V, such that the k-th order variational equation of V near c has a virtually Abelian Galois group if and only if \((u_{3,0},u_{3,1},u_{3,2},u_{3,3})\in \mathcal {I}_k^{-1}(0)\). The sequence of ideals \(\mathcal {I}_k\) is growing, and we compute these conditions up to order 4. For the eigenvalues in (8), they are given below. Remark that the Hilbert dimension of the ideals \(\mathcal {I}_4\) greatly depend on eigenvalues, and that sometimes exceptional possible solutions appear in the 4-th order variational equation. In particular, the restriction of these series expansions to the planes in \((q_1,q_2)\) and \((q_1,q_3)\) does not always lead to integrable series expansion at order 4 on these planes.

figure a
figure b

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Combot, T. (2016). Integrability and Non Integrability of Some n Body Problems. In: Bonnard, B., Chyba, M. (eds) Recent Advances in Celestial and Space Mechanics. Mathematics for Industry, vol 23. Springer, Cham. https://doi.org/10.1007/978-3-319-27464-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-27464-5_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-27462-1

  • Online ISBN: 978-3-319-27464-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics