Skip to main content

Biology and Evolutionary Games

  • Living reference work entry
  • First Online:
Handbook of Dynamic Game Theory
  • 730 Accesses

Abstract

This chapter surveys some evolutionary games used in biological sciences. These include the Hawk–Dove game, the Prisoner’s Dilemma, Rock–Paper–Scissors, the war of attrition, the Habitat Selection game, predator–prey games, and signaling games.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Argasinski K (2006) Dynamic multipopulation and density dependent evolutionary games related to replicator dynamics. A metasimplex concept. Math Biosci 202:88–114

    Article  MathSciNet  MATH  Google Scholar 

  • Axelrod R (1981) The emergence of cooperation among egoists. Am Political Sci Rev 75:306–318

    Article  Google Scholar 

  • Axelrod R (1984) The evolution of cooperation. Basic Books, New York

    MATH  Google Scholar 

  • Axelrod R, Hamilton WD (1981) The Evolution of cooperation. Science 211:1390–1396

    Article  MathSciNet  MATH  Google Scholar 

  • Ball MA, Parker GA (2007) Sperm competition games: the risk model can generate higher sperm allocation to virgin females. J Evol Biol 20:767–779

    Article  Google Scholar 

  • Bendorf J, Swistak P (1995) Types of evolutionary stability and the problem of cooperation. Proc Natl Acad Sci USA 92:3596–3600

    Article  MATH  Google Scholar 

  • Berec M, Křivan V, Berec L (2003) Are great tits parus major really optimal foragers? Can J Zool 81:780–788

    Article  Google Scholar 

  • Berec M, Křivan V, Berec L (2006) Asymmetric competition, body size and foraging tactics: testing an ideal free distribution in two competing fish species. Evol Ecol Res 8:929–942

    Google Scholar 

  • Bergstrom C, Lachmann M (1998) Signaling among relatives. III. Talk is cheap. Proc Natl Acad Sci USA 95:5100–5105

    Article  Google Scholar 

  • Bishop DT, Cannings C (1976) Models of animal conflict. Adv appl probab 8:616–621

    Article  MATH  Google Scholar 

  • Blanckenhorn WU, Morf C, Reuter M (2000) Are dung flies ideal-free distributed at their oviposition and mating site? Behaviour 137:233–248

    Article  Google Scholar 

  • Broom M, Rychtar J (2013) Game-theoretical models in biology. CRC Press/Taylor & Francis Group, Boca Raton

    MATH  Google Scholar 

  • Broom M, Cannings C, Vickers G (1997) Multi-player matrix games. Bull Austral Math Soc 59:931–952

    MATH  Google Scholar 

  • Broom M, Luther RM, Ruxton GD (2004) Resistance is useless? – extensions to the game theory of kleptoparasitism. Bull Math Biol 66:1645–1658

    Article  MathSciNet  MATH  Google Scholar 

  • Brown JS (1999) Vigilance, patch use and habitat selection: foraging under predation risk. Evol Ecol Res 1:49–71

    Google Scholar 

  • Brown JS, Vincent TL (1987) Predator-prey coevolution as an evolutionary game. Lect Notes Biomath 73:83–101

    Article  MathSciNet  MATH  Google Scholar 

  • Brown JS, Laundré JW, Gurung M (1999) The ecology of fear: optimal foraging, game theory, and trophic interactions. J Mammal 80:385–399

    Article  Google Scholar 

  • Brown JS, Kotler BP, Bouskila A (2001) Ecology of fear: Foraging games between predators and prey with pulsed resources. Ann Zool Fennici 38:71–87

    Google Scholar 

  • Cantrell RS, Cosner C, DeAngelis DL, Padron V (2007) The ideal free distribution as an evolutionarily stable strategy. J Biol Dyn 1:249–271

    Article  MathSciNet  MATH  Google Scholar 

  • Cantrell RS, Cosner C, Lou Y (2012) Evolutionary stability of ideal free dispersal strategies in patchy environments. J Math Biol 65:943–965. doi:10.1007/s00285-011-0486-5

    Article  MathSciNet  MATH  Google Scholar 

  • Charnov EL (1976) Optimal foraging: attack strategy of a mantid. Am Nat 110:141–151

    Article  Google Scholar 

  • Comins H, Hamilton W, May R (1980) Evolutionarily stable dispersal strategies. J Theor Biol 82:205–230

    Article  MathSciNet  Google Scholar 

  • Cosner C (2005) A dynamic model for the ideal-free distribution as a partial differential equation. Theor Popul Biol 67:101–108

    Article  MATH  Google Scholar 

  • Cressman R (2003) Evolutionary dynamics and extensive form games. The MIT Press, Cambridge, MA

    MATH  Google Scholar 

  • Cressman R, Křivan V (2006) Migration dynamics for the ideal free distribution. Am Nat 168:384–397

    Article  Google Scholar 

  • Cressman R, Tran T (2015) The ideal free distribution and evolutionary stability in habitat selection games with linear fitness and Allee effect. In: Cojocaru MG (ed) Interdisciplinary topics in applied mathematics, modeling and computational science. Springer proceedings in mathematics & statistics, vol 117. Springer, Cham, pp 457–464

    Chapter  Google Scholar 

  • Cressman R, Křivan V, Brown JS, Gáray J (2014) Game-theoretical methods for functional response and optimal foraging behavior. PLOS ONE 9:e88,773

    Article  Google Scholar 

  • Darwin C (1871) The descent of man and selection in relation to sex. John Murray, London

    Book  Google Scholar 

  • Dawkins R (1976) The selfish gene. Oxford University Press, Oxford

    Google Scholar 

  • Doncaster CP, Clobert J, Doligez B, Gustafsson L, Danchin E (1997) Balanced dispersal between spatially varying local populations: an alternative to the source-sink model. Am Nat 150:425–445

    Article  Google Scholar 

  • Dugatkin LA, Reeve HK (1998) Game theory & animal behavior. Oxford University Press, New York

    Google Scholar 

  • Durrett R (2014) Spatial evolutionary games with small selection coefficients. Electron J Probab 19:1–64

    MathSciNet  MATH  Google Scholar 

  • Fehr E, Gachter S (2002) Altruistic punishment in humans. Nature 415:137–140

    Article  Google Scholar 

  • Flood MM (1952) Some experimental games. Technical report RM-789-1, The RAND corporation, Santa Monica

    Google Scholar 

  • Flower T (2011) Fork-tailed drongos use deceptive mimicked alarm calls to steal food. Proc R Soc B 278:1548–1555

    Article  Google Scholar 

  • Fretwell DS, Lucas HL (1969) On territorial behavior and other factors influencing habitat distribution in birds. Acta Biotheor 19:16–32

    Article  Google Scholar 

  • Gatenby RA, Gillies R, Brown J (2010) The evolutionary dynamics of cancer prevention. Nat Rev Cancer 10:526–527

    Article  Google Scholar 

  • Gilpin ME (1975) Group selection in predator-prey communities. Princeton University Press, Princeton

    Google Scholar 

  • Gokhale CS, Traulsen A (2014) Evolutionary multiplayer games. Dyn Games Appl 4:468–488

    Article  MathSciNet  MATH  Google Scholar 

  • Grafen A (1990a) Biological signals as handicaps. J Theor Biol 144:517–546

    Article  MathSciNet  Google Scholar 

  • Grafen A (1990b) Do animals really recognize kin? Anim Behav 39:42–54

    Article  Google Scholar 

  • Haigh J (1975) Game theory and evolution. Adv Appl Probab 7:8–11

    Article  MATH  Google Scholar 

  • Hamilton WD (1964) The genetical evolution of social behavior. J Theor Biol 7:1–52

    Article  Google Scholar 

  • Hamilton WD (1967) Extraordinary sex ratios. Science 156:477–488

    Article  Google Scholar 

  • Hamilton WD, May RM (1977) Dispersal in stable environments. Nature 269:578–581

    Article  Google Scholar 

  • Hammerstein P, Parker GA (1982) The asymmetric war of attrition. J Theor Biol 96:647–682

    Article  MathSciNet  Google Scholar 

  • Hardin G (1968) The tragedy of the commons. Science 162:1243–1248

    Article  Google Scholar 

  • Hastings A (1983) Can spatial variation alone lead to selection for dispersal? Theor Popul Biol 24:244–251

    Article  MathSciNet  MATH  Google Scholar 

  • Hofbauer J, Sigmund K (1998) Evolutionary games and population dynamics. Cambridge University Press, Cambridge, UK

    Book  MATH  Google Scholar 

  • Holling CS (1959) Some characteristics of simple types of predation and parasitism. Can Entomol 91:385–398

    Article  Google Scholar 

  • Holt RD, Barfield M (2001) On the relationship between the ideal-free distribution and the evolution of dispersal. In: Danchin JCE, Dhondt A, Nichols J (eds) Dispersal. Oxford University Press, Oxford/New York, pp 83–95

    Google Scholar 

  • Houston AI, McNamara JM (1999) Models of adaptive behaviour. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Kerr B, Riley M, Feldman M, Bohannan B (2002) Local dispersal promotes biodiversity in a real-life game of rock-paper-scissors. Nature 418:171–174

    Article  Google Scholar 

  • Kokko H (2007) Modelling for field biologists and other interesting people. Cambridge University Press, Cambridge, UK

    Book  MATH  Google Scholar 

  • Komorita SS, Sheposh JP, Braver SL (1968) Power, use of power, and cooperative choice in a two-person game. J Personal Soc Psychol 8:134–142

    Article  Google Scholar 

  • Krebs JR, Erichsen JT, Webber MI, Charnov EL (1977) Optimal prey selection in the great tit (Parus major). Anim Behav 25:30–38

    Article  Google Scholar 

  • Křivan V (1997) Dynamic ideal free distribution: effects of optimal patch choice on predator-prey dynamics. Am Nat 149:164–178

    Article  Google Scholar 

  • Křivan V (2014) Competition in di- and tri-trophic food web modules. J Theor Biol 343:127–137

    Article  Google Scholar 

  • Křivan V, Sirot E (2002) Habitat selection by two competing species in a two-habitat environment. Am Nat 160:214–234

    Article  Google Scholar 

  • Křivan V, Cressman R, Schneider C (2008) The ideal free distribution: a review and synthesis of the game theoretic perspective. Theor Popul Biol 73:403–425

    Article  MATH  Google Scholar 

  • Lambert G, Liao D, Vyawahare S, Austin RH (2011) Anomalous spatial redistribution of competing bacteria under starvation conditions. J Bacteriol 193:1878–1883

    Article  Google Scholar 

  • Lieberman E, Hauert C, Nowak MA (2005) Evolutionary dynamics on graphs. Nature 433:312–316

    Article  Google Scholar 

  • Lorenz K (1963) Das sogenannte Böse zur Naturgeschichte der Aggression. Verlag Dr. G Borotha-Schoeler

    Google Scholar 

  • Mariani P, Křivan V, MacKenzie BR, Mullon C (2016) The migration game in habitat network: the case of tuna. Theor Ecol 9:219–232

    Article  Google Scholar 

  • Maynard Smith J (1974) The theory of games and the evolution of animal conflicts. J Theor Biol 47:209–221

    Article  MathSciNet  Google Scholar 

  • Maynard Smith J (1982) Evolution and the theory of games. Cambridge University Press, Cambridge, UK

    Book  MATH  Google Scholar 

  • Maynard Smith J (1991) Honest signalling: the Philip Sidney Game. Anim Behav 42:1034–1035

    Article  Google Scholar 

  • Maynard Smith J, Parker GA (1976) The logic of asymmetric contests. Anim Behav 24:159–175

    Article  Google Scholar 

  • Maynard Smith J, Price GR (1973) The logic of animal conflict. Nature 246:15–18

    Article  Google Scholar 

  • McNamara JM, Houston AI (1992) Risk-sensitive foraging: a review of the theory. Bull Math Biol 54:355–378

    Article  MATH  Google Scholar 

  • McPeek MA, Holt RD (1992) The evolution of dispersal in spatially and temporally varying environments. Am Nat 140:1010–1027

    Article  Google Scholar 

  • Mesterton-Gibbons M, Sherratt TN (2014) Bourgeois versus anti-Bourgeois: a model of infinite regress. Anim Behav 89:171–183

    Article  Google Scholar 

  • Milinski M (1979) An evolutionarily stable feeding strategy in sticklebacks. Zeitschrift für Tierpsychologie 51:36–40

    Article  Google Scholar 

  • Milinski M (1988) Games fish play: making decisions as a social forager. Trends Ecol Evol 3:325–330

    Article  Google Scholar 

  • Moran P (1958) Random processes in genetics. In: Mathematical proceedings of the Cambridge philosophical society, vol 54. Cambridge University Press, Cambridge, UK, pp 60–71

    Google Scholar 

  • Morris DW (1999) Has the ghost of competition passed? Evol Ecol Res 1:3–20

    Google Scholar 

  • Morris DW (2002) Measuring the Allee effect: positive density dependence in small mammals. Ecology 83:14–20

    Article  Google Scholar 

  • Nowak MA (2006) Five rules for the evolution of cooperation. Science 314:1560–1563

    Article  Google Scholar 

  • Nowak MA, May RM (1994) Superinfection and the evolution of parasite virulence. Proc R Soc Lond B 255:81–89

    Article  Google Scholar 

  • Parker GA (1978) Searching for mates. In: Krebs JR, Davies NB (eds) Behavioural ecology: an evolutionary approach. Blackwell, Oxford, pp 214–244

    Google Scholar 

  • Parker GA (1984) Evolutionarily stable strategies. In: Krebs JR, Davies NB (eds) Behavioural ecology: an evolutionary approach. Blackwell, Oxford, pp 30–61

    Google Scholar 

  • Parker GA, Thompson EA (1980) Dung fly struggles: a test of the war of attrition. Behav Ecol Sociobiol 7:37–44

    Article  Google Scholar 

  • Poundstone W (1992) Prisoner’s Dilemma. Oxford University Press, New York

    Google Scholar 

  • Selten R (1980) A note on evolutionarily stable strategies in asymmetrical animal conflicts. J Theor Biol 84:93–101

    Article  MathSciNet  Google Scholar 

  • Sherratt TN, Mesterton-Gibbons M (2015) The evolution of respect for property. J Evol Biol 28:1185–1202

    Article  Google Scholar 

  • Sigmund K (2007) Punish or perish? Retaliation and collaboration among humans. Trends Ecol Evol 22:593–600

    Article  Google Scholar 

  • Sinervo B, Lively CM (1996) The rock-paper-scissors game and the evolution of alternative male strategies. Nature 380:240–243

    Article  Google Scholar 

  • Sirot E (2012) Negotiation may lead selfish individuals to cooperate: the example of the collective vigilance game. Proc R Soc B 279:2862–2867

    Article  Google Scholar 

  • Spencer H (1864) The Principles of biology. Williams and Norgate, London

    Google Scholar 

  • Stephens DW, Krebs JR (1986) Foraging theory. Princeton University Press, Princeton

    Google Scholar 

  • Takeuchi Y (1996) Global dynamical properties of Lotka-Volterra systems. World Scientific Publishing Company, Singapore

    Book  MATH  Google Scholar 

  • Taylor PD, Jonker LB (1978) Evolutionary stable strategies and game dynamics. Math Biosci 40:145–156

    Article  MathSciNet  MATH  Google Scholar 

  • Vincent TL, Brown JS (2005) Evolutionary game theory, natural selection, and Darwinian dynamics. Cambridge University Press, Cambridge, UK

    Book  MATH  Google Scholar 

  • Webb JN, Houston AI, McNamara JM, Székely T (1999) Multiple patterns of parental care. Anim Behav 58:983–993

    Article  Google Scholar 

  • Wynne-Edwards VC (1962) Animal dispersion in relation to social behaviour. Oliver & Boyd, Edinburgh

    Google Scholar 

  • Xu F, Cressman R, Křivan V (2014) Evolution of mobility in predator-prey systems. Discret Contin Dyn Syst Ser B 19:3397–3432

    Article  MathSciNet  MATH  Google Scholar 

  • Zahavi A (1975) Mate selection–selection for a handicap. J Theor Biol 53:205–214

    Article  Google Scholar 

  • Zahavi A (1977) Cost of honesty–further remarks on handicap principle. J Theor Biol 67:603–605

    Article  Google Scholar 

Download references

Acknowledgements

This project has received funding from the European Union Horizon 2020 research and innovation programe under the Marie Sklodowska-Curie grant agreement No 690817. VK acknowledges support provided by the Institute of Entomology (RVO:60077344).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark Broom .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this entry

Cite this entry

Broom, M., Křivan, V. (2016). Biology and Evolutionary Games. In: Basar, T., Zaccour, G. (eds) Handbook of Dynamic Game Theory. Springer, Cham. https://doi.org/10.1007/978-3-319-27335-8_31-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-27335-8_31-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Online ISBN: 978-3-319-27335-8

  • eBook Packages: Springer Reference Religion and PhilosophyReference Module Humanities and Social SciencesReference Module Humanities

Publish with us

Policies and ethics