Skip to main content

An Adaptive Lattice Boltzmann Method for Predicting Wake Fields Behind Wind Turbines

  • Conference paper
  • First Online:

Part of the book series: Notes on Numerical Fluid Mechanics and Multidisciplinary Design ((NNFM,volume 132))

Abstract

The crucial components of a dynamically adaptive, parallel lattice Boltzmann method are described. By utilizing a level set approach for geometry embedding the method can handle rotating and moving structures effectively. The approach is validated for the canonical six degrees of freedom test case of a hinged wing. Subsequently, the wake field in an array of three Vestas V27 wind turbines at prescribed rotation rate and under constant inflow condition is simulated for two different scenarios. The results show that the low dissipation properties of the lattice Boltzmann scheme in combination with dynamic mesh adaptation are able to predict well-resolved vortex structures far downstream at moderate computational costs.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Berger, M., Colella, P.: Local adaptive mesh refinement for shock hydrodynamics. J. Comput. Phys. 82, 64–84 (1988)

    Article  MATH  Google Scholar 

  2. Chen, H., Filippova, O., Hoch, J., Molvig, K., Shock, R., Teixeira, C., Zhang, R.: Grid refinement in lattice Boltzmann methods based on volumetric formulation. Phys. A 362, 158–167 (2006)

    Article  Google Scholar 

  3. Deiterding, R.: A parallel adaptive method for simulating shock-induced combustion with detailed chemical kinetics in complex domains. Comput. Struct. 87, 769–783 (2009)

    Article  Google Scholar 

  4. Deiterding, R.: Block-structured adaptive mesh refinement—theory, implementation and application. Eur. Ser. Appl. Ind. Math. Proc. 34, 97–150 (2011)

    MathSciNet  MATH  Google Scholar 

  5. Deiterding, R., Wood, S.L.: Parallel adaptive fluid-structure interaction simulations of explosions impacting building structures. Comput. Fluids 88, 719–729 (2013)

    Article  Google Scholar 

  6. Eldredge, J.D., Toomey, J., Medina, A.: On the roles of chord-wise flexibility in a flapping wing with hovering kinematics. J. Fluid Mech. 659, 94–115 (2010)

    Article  MATH  Google Scholar 

  7. Hähnel, D.: Molekulare Gasdynamik. Springer, Berlin (2004)

    Google Scholar 

  8. Hou, S., Sterling, J., Chen, S., Doolen, G.D.: A lattice Boltzmann subgrid model for high Reynolds number flows. In: Lawniczak, A.T., Kapral, R. (eds.) Pattern Formation and Lattice Gas Automata, vol. 6, pp. 151–166. Fields Inst Comm (1996)

    Google Scholar 

  9. Malaspinas, O., Sagaut, P.: Wall model for the large-eddy simulation based on the lattice Boltzmann method. J. Comput. Phys. 275, 25–40 (2014)

    Article  MathSciNet  Google Scholar 

  10. Mauch, S.P.: Efficient algorithms for solving static Hamilton-Jacobi equations. Ph.D. thesis, California Institute of Technology (2003)

    Google Scholar 

  11. Schepers, J.G., Boorsma, K.: Final report of IEA task 29: Mexnext (phase 1)—Analysis of Mexico wind tunnel measurements. Tech. Rep. ECN-E-12-004, European Research Centre of the Netherlands (2012)

    Google Scholar 

  12. Toomey, J., Eldredge, J.D.: Numerical and experimental study of the fluid dynamics of a flapping wing with low order flexibility. Phys. Fluids (1994–present) 20(7), 073603 (2008)

    Google Scholar 

  13. Tsai, L.: Robot Analysis: The Mechanics of Serial and Parallel Manipulators. Wiley, New York (1999)

    Google Scholar 

  14. Weickert, M., Teike, G., Schmidt, O., Sommerfeld, M.: Investigation of the LES WALE turbulence model within the lattice Boltzmann framework. Comput. Math. Appl. 59, 2200–2214 (2010)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

Stephen L. Wood was supported by the TN-SCORE Energy Scholar program funded by NSF EPS-1004083 during this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralf Deiterding .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Deiterding, R., Wood, S.L. (2016). An Adaptive Lattice Boltzmann Method for Predicting Wake Fields Behind Wind Turbines. In: Dillmann, A., Heller, G., Krämer, E., Wagner, C., Breitsamter, C. (eds) New Results in Numerical and Experimental Fluid Mechanics X. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol 132. Springer, Cham. https://doi.org/10.1007/978-3-319-27279-5_74

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-27279-5_74

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-27278-8

  • Online ISBN: 978-3-319-27279-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics