Skip to main content

Biological Methods of Wastewater Treatment

  • Chapter
  • First Online:
Cyanobacteria for Bioremediation of Wastewaters

Abstract

This chapter highlights the pros of biological purification methods, such as the possibility to be carried out in situ at the contaminated site, cost efficiency, the ability to regenerate the sorbent, as well as an overall environment friendly character. Biosorption and bioaccumulation processes rely on natural metabolic processes when toxic ions are taken up instead of essential ions. The mechanisms that ensure biosorption, physical adsorbtion, ion exchange, formation of metal complex compounds and precipitation are analyzed further in this chapter. Data demonstrating the biosorbtion ability of cyanobacteria (Nostoc muscorum, Spirulina platensis and Aphanothece flocculosa) towards certain metal ions (Cu2+, Cd2+, Cr3+, Cr6+, Co2+, Ni2+ and Fe3+) are also detailed. As the bioaccumulation mechanisms reduction, chelation and precipitation are described. Cyanobacteria are ideal biosorbents and bioaccumulators because of their omnipresence in water and soil ecosystems and flexible metabolism. The chapter contains numerous examples of the use of cyanobacteria as detoxifying agents, with major emphasis placed upon two genera – Arthrospira (Spirulina) and Nostoc.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahalya N, Ramachandra TV, Kanamadi RD (2004) Biosorption of heavy metals. Res J Chem Environ 7:71–79

    Google Scholar 

  • Aksu Z (2002) Determination of the equilibrium, kinetic and thermodynamic parameters of the batch biosorption of nickel (II) ions onto Chlorella vulgaris. Process Biochem 38:89–99

    Article  CAS  Google Scholar 

  • Al-Homaidan A, Al-Houri HJ, Al-Hazzani AA, Elgaaly G, Moubayedet NMS (2014) Biosorption of copper ions from aqueous solutions by Spirulina platensis biomass. Arab J Chem 7:57–62

    Article  CAS  Google Scholar 

  • Aneja RK, Chaudhary G, Singh Ahluwalia S, Goyal D (2010) Biosorption of Pb2+ and Zn2+ by non-living biomass of Spirulina sp. Indian J Microbiol 50:438–442

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Babak L, Šupinová P, Zichová M, Burdychová R, Vítová E (2012) Biosorption of Cu, Zn and Pb by thermophilic bacteria – effect of biomass concentration on biosorbtion capacity. Acta Universitatis Agriculturae Ey Silviculturae Mendelianae Brunensis LX 1(5):9–17

    Article  Google Scholar 

  • Baik W, Bae HJ, Cho KM, Hartmeier W (2002) Biosorption of heavy metals using whole mold mycelia and parts thereof. Bioresour Technol 81:167–170

    Article  PubMed  CAS  Google Scholar 

  • Beolchini F, Pagnanelli F, Toro L, Vegliò F (2006) Ionic strength effect on copper biosorption by Sphaerotilus natans: equilibrium study and dynamic modelling in membrane reactor. Water Res 40:144–152

    Article  PubMed  CAS  Google Scholar 

  • Cain A, Vannela R, Keith Woo L (2008) Cyanobacteria as a biosorbent for mercuric ion. Bioresour Technol 99:6578–6586

    Article  PubMed  CAS  Google Scholar 

  • Carpene E, Andreani G, Isani G (2007) Metallothione in functions and structural characteristics. J Trace Elem Med Biol 2(S1):35–39

    Article  Google Scholar 

  • Cavet JS, Borrelly GP, Robinson NJ (2003) Zn, Cu and Co in cyanobacteria: selective control of metal availability. FEMS Microbiol Rev 27:165–181.

    Google Scholar 

  • Cecal A, Humelnicu D, Rudic V, Cepoi L, Ganju D, Cojocari A (2012) Uptake of uranyl ions from uranium ores and sludges by means of Spirulina platensis, Porphyridium cruentum and Nostok linckia alga. Bioresour Technol 118:19–23

    Article  PubMed  CAS  Google Scholar 

  • Chen H, Pan SS (2005) Bioremediation potential of spirulina: toxicity and biosorption studies of lead. J Zhejiang Univ (Sci) 6B(3):171–174

    Article  CAS  Google Scholar 

  • Chojnacka K (2009) Biosorption and bioaccumulation in practice. Nova Science Publishers, Inc., New York. ISBN: 978-1-60876-408-2 (e-book) 137 p

    Google Scholar 

  • Chojnacka K, Noworyta A (2004) Evaluation of Spirulina sp. growth in photoautotrophic, heterotrophic and mixotrophic cultures. Enzym Microb Technol 34:461–465

    Article  CAS  Google Scholar 

  • Chojnacka K, Chojnacki A, Górecka H (2005) Biosorption of Cr3+, Cd2+ and Cu2+ ions by blue–green algae Spirulina sp.: kinetics, equilibrium and the mechanism of the process. Chemosphere 59:75–84

    Article  PubMed  CAS  Google Scholar 

  • Converti A, Lodi A, Solisio C, Soletto D, Del Borghi M, Carvalho JCM (2006) Spirulina platensis biomass as adsorbent for copper removal. Cienc Tecnol Aliment 5:85–88

    Article  CAS  Google Scholar 

  • da Costa AC, de França FP (2003) Cadmium interaction with microalgal cells, cyanobacterial cells, and seaweeds; toxicology and biotechnological potential for wastewater treatment. Mar Biotechnol 5(2):149–156

    Article  PubMed  Google Scholar 

  • Das K et al (2008) Biosorption of heavy metals – an overview. Indian J Biotechnol 7:159–169

    CAS  Google Scholar 

  • De Philippis R, Colica G, Micheletti E (2011) Exopolysaccharide-producing cyanobacteria in heavy metal removal from water: molecular basis and practical applicability of the biosorption process. Appl Microbiol Biotechnol 92:697–708

    Article  PubMed  CAS  Google Scholar 

  • Dheetcha A, Mishra S (2008) Biosequestering potential of Spirulina platensis for uranium. Curr Microbiol 57(5):508–514

    Article  PubMed  CAS  Google Scholar 

  • Dixit S, Singh DP (2013) Phycoremediation of lead and cadmium by employing Nostoc muscorum as biosorbent and optimization of its biosorption potential. Int J Phytoremediation 15:801–813

    Article  PubMed  CAS  Google Scholar 

  • Dixit S, Singh DP (2014) Role of free living, immobilized and non-viable biomass of Nostoc muscorum in removal of heavy metals: an impact of physiological state of biosorbent. Cell Mol Biol (Noisy-le-grand) 60(5):110–118

    Google Scholar 

  • El-Sheekh MM, El-Shouny WA, Osman ME, El-Gammal EW (2005) Growth and heavy metals removal efficiency of Nostoc muscorum and Anabaena subcylindrica in sewage and industrial wastewater effluents. Environ Toxicol Pharmacol 19:357–365

    Article  PubMed  CAS  Google Scholar 

  • Fang L, Zhou C, Cai P, Chen W, Rong X, Dai K, Liang W, Gu JD, Huang Q (2011) Binding characteristics of copper and cadmium by cyanobacterium Spirulina platensis. J Hazard Mater 190:810–815

    Article  PubMed  CAS  Google Scholar 

  • Finocchio E, Lodi A, Solisio C, Converti A (2010) Chromium (VI) removal by methylated biomass of Spirulina platensis: the effect of methylation process. Chem Eng J 156:264–269

    Article  CAS  Google Scholar 

  • Gavrilescu M (2004) Removal of heavy metals from the environment by biosorption. Eng Life Sci 4:219–232

    Article  CAS  Google Scholar 

  • Gelagutashvili E (2013) Comparative study on heavy metals biosorption by different types of bacteria open. J Metal 3:62–67

    Google Scholar 

  • Gokhale SV, Jyoti KK, Lele SS (2008) Kinetic and equilibrium modeling of chromium (VI) biosorption on fresh and spent Spirulina platensis/Chlorella vulgaris biomass. Bioresour Technol 99:3600–3608

    Article  PubMed  CAS  Google Scholar 

  • Gong R, Ding Y, Liu H, Chen Q, Liu Z (2005) Lead biosorption and desorption by intact and pretreated Spirulina maxima biomass. Chemosphere 58:125–130

    Article  PubMed  CAS  Google Scholar 

  • Gupta VK, Rastogi A (2008) Sorption and desorption studies of chromium(VI) from nonviable cyanobacterium Nostoc muscorum biomass. J Hazard Mater 154:347–354

    Article  PubMed  CAS  Google Scholar 

  • Harada E, von Roepenack-Lahaye E, Clemens S (2004) A cyanobacterial protein with similarity to phytochelatin synthases catalyzes the conversion of glutathione to gamma-glutamylcysteine and lacks phytochelatin synthase activity. Phytochemistry 65(24):3179–3185

    Article  PubMed  CAS  Google Scholar 

  • Hiren D, Ray A, Kothari IL (2007) Biosorption of cadmium by live and dead spirulina: IR spectroscopic, kinetics, and SEM studies. Curr Microbiol 54:213–218

    Article  Google Scholar 

  • Huijuan M, Xia Y, Chen H (2012) Bioremediation of surface water co-contaminated with zinc (II) and linear alkylbenzene sulfonates by Spirulina platensis. Phys Chem Earth A/B/C 47–48:152–155

    Google Scholar 

  • Juwarkar AA, Yadav SK (2010) Bioaccumulation and biotransformation of heavy metals. In: Fulekar MH (ed) Bioremediation technology SE - 9. Springer Netherlands, pp 266–284

    Chapter  Google Scholar 

  • Kamer I, Douek J, Tom M, Rinkevich B (2003) Metallothionein induction in the RTH-149 cell line as an indicator for heavy metal bioavailability in a brackish environment: assessment by RT-competitive PCR. Arch Environ Contam Toxicol 45(1):86–91

    Article  PubMed  CAS  Google Scholar 

  • Kotrba P (2011) Microbial biosorption of metals – general introduction. In: Kotrba P, Mackova M, Macek T (eds) Microbial biosorption of metals. Springer Science + Business Media B.V, Berlin, pp 1–6

    Chapter  Google Scholar 

  • Kwak HW, Kim MK, Lee JY, Yun H, Kim MH, Young Hwan Park YH, Lee KH (2015) Preparation of bead-type biosorbent from water-soluble Spirulina platensis extracts for chromium (VI) removal. Algal Res 7:92–99

    Article  Google Scholar 

  • Li ZY, Guo SY, Li L (2006) Study on the process, thermodynamical isotherm and mechanism of Cr(III) uptake by Spirulina platensis. J Food Eng 75:129–136

    Article  CAS  Google Scholar 

  • Lodi A, Soletto D, Solisio C, Converti A (2008) Chromium(III) removal by Spirulina platensisbiomass. Chem Eng J136:151–155

    Article  Google Scholar 

  • Maeda S, Kumeda K, Maeda M, Higashi S, Takeshita T et al (1987) Bioaccumulation of arsenic by freshwater algae (Nostoc sp.) and the application to the removal of inorganic arsenic from an aqueous phase. Appl Organomet Chem 1:363–370

    Article  CAS  Google Scholar 

  • Magro CD, Deon MC, De Rossi A, Reinehr CO, Hemkemeier M, Colla LM (2012) Chromium (VI) biosorption and removal of chemical oxygen demand by Spirulina platensis from wastewater-supplemented culture medium. J Environ Sci Health A Tox Hazard Subst Environ Eng 47(12):1818–1824

    Article  PubMed  CAS  Google Scholar 

  • Manikandan A, Pakshirajan K, Syiem MS (2014) Cu(II) removal by biosorption using chemically modified biomass of Nostoc muscorum – a cyanobacterium isolated from a coal mining site. Int J Chem Technol Res 07:80–92

    CAS  Google Scholar 

  • Markou G, Mitrogiannis D, Çelekli A, Bozkurt H, Georgakakis D, Chrysikopoulos CV (2015) Biosorption of Cu2+ and Ni2+ by Arthrospira platensis with different biochemical compositions. Chem Eng 259:806–813

    Article  CAS  Google Scholar 

  • Micheletti E, Colica G, Viti C, Tamagnini P, De Philippis R (2008) Selectivity in the heavy metal removal by exopolysaccharideproducing cyanobacteria. J Appl Microbiol 105:88–94

    Article  PubMed  CAS  Google Scholar 

  • Mona S, Kaushik A, Kaushik CP (2011) Sequestration of Co(II) from aqueous solution using immobilized biomass of Nostoc linckia waste from a hydrogen bioreactor. Desalination 276:408–415

    Article  CAS  Google Scholar 

  • Nair A, Juwarkar AA, Devotta S (2008) Study of speciation of metals in an industrial sludge and evaluation of metal chelators for their removal. J Hazard Mater 52:545–553

    Article  Google Scholar 

  • Naja G, Volesky B (2011) The mechanism of metal cation and anion biosorption. In: Kotrba P, Mackova M, Macek T (eds) Microbial biosorption of metals. Springer Science + Business Media B.V, Berlin, pp 19–59

    Chapter  Google Scholar 

  • Opeolu B, Bamgbose O, Arowolo AT, Adetunji MT (2010) Utilization of biomaterials as adsorbents for heavy metals’ removal from aqueous matrices. Sci Res Essays 5:1780–1787

    Google Scholar 

  • Patova EN, Sivkov MD, Getzen MV (2000) The accumulation of heavy metals by terrestrial nitrogen-fixing alga Nostoc commune Vauch. in the East European Tundra. Int J Algae 3:11–18

    Article  Google Scholar 

  • Pereira S, Micheletti E, Zille A, Santos A, Moradas-Ferreira P, Tamagnini P, De Philippis R (2011) Using extracellular polymeric substances (EPS) – producing cyanobacteria for the bioremediation of heavy metals: do cations compete for the EPS functional groups and also accumulate inside the cell? Microbiology 157:451–458

    Article  PubMed  CAS  Google Scholar 

  • Pohl P, Schimmack W (2006) Adsorption of radionuclides (134Cs, 85Sr, 226Ra, 241Am) by extracted biomasses of cyanobacteria (Nostoc Carneum, N. Insulare, Oscillatoria Geminata and Spirulina Laxis-Sima) and phaeophyceae (Laminaria Digitata and L. Japonica; waste products from alginate production) at different pH. J Appl Phycol 18:135–143

    Article  CAS  Google Scholar 

  • Prasad BB, Pandey UC (2000) Separation and preconcentration of copper and cadmium ions from multielemental solutions using Nostoc muscorum-based biosorbents. World J Microb Biot 16:819–827

    Article  CAS  Google Scholar 

  • Rangsayatorn N, Upatham ES, Kruatrachue M, Pokethitiyook P, Lanza GR (2002) Phytoremediation potential of Spirulina (Arthrospira) platensis: biosorption and toxicity studies of cadmium. Environ Pollut 119(1):45–53

    Article  CAS  Google Scholar 

  • Rangsayatorn N, Pokethitiyook P, Upatham ES, Lanza GR (2004) Cadmium biosorption by cells of Spirulina platensis TISTR 8217 immobilized in alginate and silica gel. Environ Int 30:57–63

    Article  PubMed  CAS  Google Scholar 

  • Roy AS, Hazarika J, Manikandan NA, Pakshirajan K, Syiem MB (2015) Heavy metal removal from multicomponent system by the cyanobacterium Nostoc muscorum: kinetics and interaction study. Appl Biochem Biotechnol. doi:10.1007/sl 2010-015-1553-y

    Google Scholar 

  • Schiewer S, Wong MH (2000) Ionic strength effects in biosorption of metals by marine algae. Chemosphere 41:271–282

    Article  PubMed  CAS  Google Scholar 

  • Shailendra P, Beronda L (2011) Determining cell shape: adaptive regulation of cyanobacterial cellular differentiation and morphology. Trends Microbiol 19:278–285

    Article  Google Scholar 

  • Sharma NK, Tiwari SP, Tripathi K, Rai AK (2011) Sustainability and cyanobacteria (blue-green algae): facts and challenges. J Appl Phycol 23:1059–1081

    Article  CAS  Google Scholar 

  • Shashirekha V, Sridharan MR, Swamy M (2008) Biosorption of trivalent chromium by free and immobilized blue green algae: kinetics and equilibrium studies. J Environ Sci Health A Tox Hazard Subst Environ Eng 43(4):390–401

    Article  PubMed  CAS  Google Scholar 

  • Shnyukova EI (2005) Accumulation of metal ions by exopolysaccharides of Nostoc linckia (Roth) Born. et Flach. (Cyanophyta). Int J Algae 7:23–32

    Article  Google Scholar 

  • Sigel A, Sigel H, Sigel RKO (eds) (2009) Metallothioneins and related chelators (metal ions in life sciences). Royal Society of Chemistry, Cambridge

    Google Scholar 

  • Solisio C, Lodi A, Soletto D, Converti A (2006) Copper removal by dry and re-hydrated biomass of Spirulina platensis. Bioresour Technol 97:1756–1760

    Article  PubMed  CAS  Google Scholar 

  • Solisio C, Lodi A, Soletto D, Converti A (2008) Cadmium biosorption on Spirulina platensis biomass. Bioresour Technol 99:5933–5937

    Article  PubMed  CAS  Google Scholar 

  • Tekaya N, Gammoudi I, Braiek M, Tarbague H, Moroté F, Raimbault V, Sakly N, Rebière D, Hatem Ben Ouada H, Lagarde F, Ben Ouada H, Cohen-Bouhacina T, Dejous C, Jaffrezic Renault N (2013) Acoustic, electrochemical and microscopic characterization of interaction of Arthrospira platensis biofilm and heavy metal ions. J Environ Chem Eng 1:609–619

    Article  CAS  Google Scholar 

  • Vannela R, Verma S (2006) Co2+, Cu2+ and Zn2+ accumulation by cyanobacterium Spirulina platensis. Biotechnol Prog 22:1282–1293

    Article  PubMed  CAS  Google Scholar 

  • Vieira R, Volesky B (2000) Biosorption: a solution to pollution? Int Microbiol 3:17–24

    PubMed  CAS  Google Scholar 

  • Vijayaraghavan K, Yun Y-S (2008) Bacterial biosorbent and biosorbtion. Biotechnol Adv 26:266–291

    Article  PubMed  CAS  Google Scholar 

  • Vonshak A, Suk Man Cheung SM, Chen F (2000) Mixotrophic growth modifies the response of Spirulina (Arthrospira) platensis (Cyanobacteria) cells to light. J Phycol 36:675–679

    Article  CAS  Google Scholar 

  • Wang HY, Yang F, Zheng WJ, Bai Y (2007) Growth and Cd uptake of Spirulina in water body containing CdCl2. Ying Yong Sheng Tai Xue Bao 18(8):1917–1920

    PubMed  CAS  Google Scholar 

  • Zabochnicka-Swiatek M, Krzywonos M (2014) Potential of biosorption and bioaccumulation processes for heavy metal removal. Pol J Environ Stud 23:551–561

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liliana Cepoi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Cepoi, L., Rudi, L., Chiriac, T., Codreanu, S., Valuţa, A. (2016). Biological Methods of Wastewater Treatment. In: Zinicovscaia, I., Cepoi, L. (eds) Cyanobacteria for Bioremediation of Wastewaters. Springer, Cham. https://doi.org/10.1007/978-3-319-26751-7_5

Download citation

Publish with us

Policies and ethics