Skip to main content

Spectral Clustering Trough Topological Learning for Large Datasets

  • Conference paper
  • First Online:
  • 1709 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9490))

Abstract

This paper introduces a new approach for clustering large datasets based on spectral clustering and topological unsupervised learning. Spectral clustering method needs to construct an adjacency matrix and calculate the eigen-decomposition of the corresponding Laplacian matrix [4] which are computational expensive and is not easy to apply on large-scale data sets. Contrarily, the topological learning (i.e. SOM method) allows a projection of the dataset in low dimensional spaces that make it easy to use for very large datasets. The prototypes matrix weighted by the neighbourhood function will be used in this work to reduce the computational time of the clustering algorithm and to add the topological information to the final clustering result. We illustrate the power of this method with several real datasets. The results show a good quality of clustering results and a higher speed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Andreopoulos, B., An, A., Wang, X.: Bi-level clustering of mixed categorical and numerical biomedical data. Int. J. Data Min. Bioinform. 1(1), 19–56 (2006)

    Article  Google Scholar 

  2. Asuncion, A., Newman, D.: UCI Machine Learning Repository (2007). http://www.ics.uci.edu/~mlearn/MLRepository.html

  3. Chan, P.K., Schlag, M.D.F., Zien, J.Y.: Spectral K-way ratio-cut partitioning and clustering. IEEE Trans. Comput. Aaided Des. Integr. Circ.Syst. 13(9), 1088–1096 (1994). http://ieeexplore.ieee.org/xpl/abs_free.jsp?arNumber=310898

    Article  Google Scholar 

  4. Chung, F.R.K.: Spectral Graph Theory. American Mathematical Society, Providence (1997)

    MATH  Google Scholar 

  5. Ding, C.H.Q., He, X., Zha, H., Gu, M., Simon, H.: A min-max cut algorithm for graph partitioning and data clustering (2001)

    Google Scholar 

  6. Hagen, L., Member, S., Kahng, A.B.: New spectral methods for ratio cut partition and clustering. IEEE Trans. Comput. Aided Des., 1074–1085 (1992)

    Google Scholar 

  7. Jain, A.K., Murty, M.N., Flynn, P.J.: Data clustering: a review. ACM Comput. Surv. 31(3), 264–323 (1999)

    Article  Google Scholar 

  8. Jain, A.K., Dubes, R.C.: Algorithms for Clustering Data. Prentice-Hall Inc., Upper Saddle River (1988)

    MATH  Google Scholar 

  9. Jordan, M.I., Bach, F.R., Bach, F.R.: Learning spectral clustering. In: Advances in Neural Information Processing Systems 16. MIT Press (2003)

    Google Scholar 

  10. Khan, S.S., Kant, S.: Computation of initial modes for k-modes clustering algorithm using evidence accumulation. In: IJCAI, pp. 2784–2789 (2007)

    Google Scholar 

  11. Kohonen, T.: Self-Organizing Maps. Springer, Berlin (1995)

    Book  MATH  Google Scholar 

  12. Ng, A.Y., Jordan, M.I., Weiss, Y.: On spectral clustering: analysis and an algorithm. In: Advances in Neural Information Processing Systems, pp. 849–856. MIT Press (2001)

    Google Scholar 

  13. Rand, W.: Objective criteria for the evaluation of clustering methods. J. Am. Stat. Assoc. 66, 846–850 (1971)

    Article  Google Scholar 

  14. Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 22(8), 888–905 (2000). http://dx.doi.org/10.1109/34.868688

    Article  Google Scholar 

  15. Kohonen, T.: Self-Organizing Maps. Springer, Berlin (2001)

    Book  MATH  Google Scholar 

  16. Wang, Q., Ye, Y., Huang, J.Z.: Fuzzy K-means with variable weighting in high dimensional data analysis. In: International Conference on Web-Age Information Management, pp. 365–372 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nistor Grozavu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Rogovschi, N., Grozavu, N., Labiod, L. (2015). Spectral Clustering Trough Topological Learning for Large Datasets. In: Arik, S., Huang, T., Lai, W., Liu, Q. (eds) Neural Information Processing. ICONIP 2015. Lecture Notes in Computer Science(), vol 9490. Springer, Cham. https://doi.org/10.1007/978-3-319-26535-3_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-26535-3_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-26534-6

  • Online ISBN: 978-3-319-26535-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics