Skip to main content

Homography Estimation Between Omnidirectional Cameras Without Point Correspondences

  • Chapter
  • First Online:

Part of the book series: Studies in Systems, Decision and Control ((SSDC,volume 42))

Abstract

This chapter presents a novel approach for homography estimation between omnidirectional cameras. The solution is formulated in terms of a system of nonlinear equations. Each equation is generated by integrating a nonlinear function over corresponding image regions on the surface of the unit spheres representing the cameras. The method works without point correspondences or complex similarity metrics, using only a pair of corresponding planar regions extracted from the omnidirectional images. Relative pose of the cameras can be factorized from the estimated homography. The efficiency and robustness of the proposed method has been confirmed on both synthetic and real data.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Baker S, Nayar SK (1999) A theory of single-viewpoint catadioptric image formation. Int J Comput Vis 35(2):175–196

    Article  Google Scholar 

  • Basri R, Jacobs DW (1996) Recognition using region correspondences. Int J Comput Vis 25:141–162

    Google Scholar 

  • Caron G, Marchand E, Mouaddib EM (2011) Tracking planes in omnidirectional stereovision. In: IEEE international conference on robotics and automation. IEEE, pp 6306–6311

    Google Scholar 

  • Coughlan J, Yuille AL (1999) Manhattan world: compass direction from a single image by bayesian inference. In: The Proceedings of the Seventh IEEE International Conference on Computer Vision, 1999, vol 2, pp 941–947. doi:10.1109/ICCV.1999.790349

  • Domokos C, Nemeth J, Kato Z (2012) Nonlinear shape registration without correspondences. IEEE Trans Pattern Anal Mach Intell 34(5):943–958. doi:10.1109/TPAMI.2011.200

    Article  Google Scholar 

  • Faugeras O, Lustman F (1988) Motion and structure from motion in a piecewise planar environment. Technical Report RR-0856, INRIA, Sophia Antipolis, France. https://hal.inria.fr/inria-00075698

  • Furukawa Y, Curless B, Seitz S, Szeliski R (2009) Manhattan-world stereo. In: IEEE conference on computer vision and pattern recognition. IEEE Computer Society, Los Alamitos, pp 1422–1429. doi:10.1109/CVPRW.2009.5206867

  • Geyer C, Daniilidis K (2000) A unifying theory for central panoramic systems. In: European conference on computer vision (ECCV), pp 445–462

    Google Scholar 

  • Gutierrez D, Rituerto A, Montiel J, Guerrero J (2011) Adapting a real-time monocular visual slam from conventional to omnidirectional cameras. In: 2011 IEEE international conference on computer vision workshops (ICCV Workshops), pp 343–350. doi:10.1109/ICCVW.2011.6130262

  • Hartley R, Zisserman A (2003) Multiple view geometry in computer vision, 2nd edn. Cambridge University Press, New York

    Google Scholar 

  • Kannala J, Brandt SS (2006) A generic camera model and calibration method for conventional, wide-angle, and fish-eye lenses. IEEE Trans Pattern Anal Mach Intell 28(8):1335–1340

    Article  Google Scholar 

  • Lowe DG (2004) Distinctive image features from scale-invariant keypoints. Int J Comput Vis 60(2):91–110

    Article  Google Scholar 

  • Makadia A, Geyer C, Daniilidis K (2007) Correspondence-free structure from motion. Int J Comput Vis 75(3):311–327. doi:10.1007/s11263-007-0035-2

    Article  Google Scholar 

  • Mei C, Rives P (2007) Single view point omnidirectional camera calibration from planar grids. IEEE international conference on robotics and automation (ICRA). Roma, Italy, pp 3945–3950

    Google Scholar 

  • Mei C, Benhimane S, Malis E, Rives P (2008) Efficient homography-based tracking and 3-D reconstruction for single-viewpoint sensors. IEEE Trans Robot 24(6):1352–1364. doi:10.1109/TRO.2008.2007941

    Article  Google Scholar 

  • Mičušík B, Pajdla T (2004) Para-catadioptric camera auto-calibration from epipolar geometry. In: Hong KS, Zhang Z (eds) Proceedings of the asian conference on computer vision (ACCV). Asian Federation of Computer Vision Societies, Seoul, Korea South, vol 2, pp 748–753

    Google Scholar 

  • Molnár J, Frohlich R, Dmitry C, Kato Z (2014a) 3D reconstruction of planar patches seen by omnidirectional cameras. Proceedings of international conference on digital image computing: techniques and applications. IEEE, Wollongong, Australia, pp 1–8

    Google Scholar 

  • Molnár J, Huang R, Kato Z (2014b) 3D reconstruction of planar surface patches: A direct solution. In: Jawahar CV, Shan S (eds) Proceedings of ACCV workshop on big data in 3D computer vision, Lecture notes in computer science, vol 9008. Springer, Singapore, pp 286–300

    Google Scholar 

  • Nayar SK (1997) Catadioptric omnidirectional camera. In: Proceedings of the 1997 conference on computer vision and pattern recognition (CVPR ’97). IEEE Computer Society, Washington, USA, CVPR ’97, pp 482–488. http://dl.acm.org/citation.cfm?id=794189.794460

  • Puig L, Guerrero JJ (2011) Scale space for central catadioptric systems: Towards a generic camera feature extractor. In: Proceedings of international conference on computer vision. IEEE, pp 1599–1606

    Google Scholar 

  • Puig L, Guerrero JJ (2013) Omnidirectional vision systems: calibration, feature extraction and 3D information. Springer

    Google Scholar 

  • Puig L, Bastanlar Y, Sturm P, Guerrero J, Barreto J (2011) Calibration of central catadioptric cameras using a DLT-Like approach. Int J Compu Vis 93(1):101–114. doi:10.1007/s11263-010-0411-1, https://hal.inria.fr/inria-00590268

  • Saurer O, Fraundorfer F, Pollefeys M (2012) Homography based visual odometry with known vertical direction and weak Manhattan world assumption. In: IEEE/IROS workshop on visual control of mobile robots (ViCoMoR)

    Google Scholar 

  • Scaramuzza D, Martinelli A, Siegwart R (2006a) A flexible technique for accurate omnidirectional camera calibration and structure from motion. In: Proceedings of the fourth IEEE international conference on computer vision systems. IEEE Computer Society, Washington, USA, ICVS-06, pp 45–51

    Google Scholar 

  • Scaramuzza D, Martinelli A, Siegwart R (2006b) A toolbox for easily calibrating omnidirectional cameras. In: Proceedings of the IEEE/RSJ international conference on intelligent robots. IEEE, Beijing, pp 5695–5701

    Google Scholar 

  • Sturm P (2000) Algorithms for plane-based pose estimation. Proc Int Conf Comput Vis Pattern Recognit 1:706–711. doi:10.1109/CVPR.2000.855889

    Google Scholar 

  • Sturm P, Ramalingam S, Tardif JP, Gasparini S, Barreto J (2011) Camera models and fundamental concepts used in geometric computer vision. Found Trends Comput Graph Vis 6(1–2):1–183. doi:10.1561/0600000023, https://hal.inria.fr/inria-00590269

Download references

Acknowledgments

This research was partially supported by Domus MTA Hungary; and by the European Union and the State of Hungary, co-financed by the European Social Fund through projects FuturICT.hu (grant no.: TAMOP-4.2.2.C-11/1/KONV-2012-0013) and TAMOP-4.2.4.A/2-11-1-2012-0001 National Excellence Program. The authors would like to thank Levente Hajder for the Matlab implementation of the factorization method from Faugeras and Lustman (1988).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zoltan Kato .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Frohlich, R., Tamás, L., Kato, Z. (2015). Homography Estimation Between Omnidirectional Cameras Without Point Correspondences. In: Busoniu, L., Tamás, L. (eds) Handling Uncertainty and Networked Structure in Robot Control. Studies in Systems, Decision and Control, vol 42. Springer, Cham. https://doi.org/10.1007/978-3-319-26327-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-26327-4_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-26325-0

  • Online ISBN: 978-3-319-26327-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics