Skip to main content

Positron-Emitting Radiopharmaceuticals for Diagnostic Applications in Oncology

  • Living reference work entry
  • Latest version View entry history
  • First Online:
Nuclear Oncology

Abstract

Positron emission tomography is one of the most important tools in medical imaging with many applications in neurology, oncology, cardiology, neuroscience, and infection. Over the past 40 years, technological advances in radiochemistry have led to the development of many radiotracers at the present used in clinical routine.

In this chapter we will discuss the main physical property of PET radionuclide and the main pharmacokinetic characteristics of PET radiotracers commonly used in the clinical routine for molecular imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

APUD:

Amine precursor uptake and decarboxylation

DOPA:

Dihydroxy-6-fluorophenylalanine

DOTA:

1,4,7,10-Tetraazacyclododecane-1,4,7,10-tetraacetic acid

DTPA:

Diethylenetriaminepentaacetic acid

ETNIM:

Erythronitroimidazole

FCH:

Fluoromethylcholine

FDA:

United States Food and Drug Administration

FDG:

Fluoro-deoxy-glucose

FEC:

Fluoroethylcholine

FET:

Fluoroethyl-tyrosine

FETA:

Fluoroetanidazole

FLT:

Fluorothymidine

FMT:

Fluoro-methyltyrosine

keV:

Kilo-electron volt

MBq:

Mega-Becquerel

MET:

Methionine

MeV:

Mega-electron volt

MISO:

Misonidazole

NET:

Neuroendocrine tumor

GBq:

Giga-Becquerel

GLUT:

Glucose transporter family

PET:

Positron emission tomography

PSMA:

Prostate-specific membrane antigen

SSTR:

Somatostatin receptor

Suggested Readings

  1. Abrantes AM, Pires AS, Monteiro L, et al. Tumour functional imaging by PET. Biochim Biophys Acta Mol basis Dis. 2020;1866(6):165717.

    Article  CAS  PubMed  Google Scholar 

  2. Arabi M, Piert M. Hypoxia PET/CT imaging: implications for radiation oncology. Q J Nucl Med Mol Imaging. 2010;54:500–9.

    CAS  PubMed  Google Scholar 

  3. Boers J, de Vries EFJ, Glaudemans AWJM, Hospers GAP, Schröder CP. Application of PET tracers in molecular imaging for breast cancer. Curr Oncol Rep. 2020;22(8):85.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Caroli P, Nanni C, Rubello D, Alavi A, Fanti S. Non-FDG PET in the practice of oncology. Indian J Cancer. 2010;47:120–5.

    Article  CAS  PubMed  Google Scholar 

  5. Decazes P, Thureau S, Dubray B, Vera P. How to use PET/CT in the evaluation of response to radiotherapy. Q J Nucl Med Mol Imaging. 2018;62:152–64.

    Article  PubMed  Google Scholar 

  6. Ell PJ, Gambhir SS, editors. Nuclear medicine in clinical diagnosis and treatment. 3rd ed. New York, NY: Churchill Livingston; 2004.

    Google Scholar 

  7. Elsinga PH, Dierckx RA. Small molecule PET-radiopharmaceuticals. Curr Pharm Des. 2014;20:2268–74.

    Article  CAS  PubMed  Google Scholar 

  8. Evangelista L, Luigi M, Cascini GL. New issues for copper-64: from precursor to innovative PET tracers in clinical oncology. Curr Radiopharm. 2013;6:117–23.

    Article  CAS  PubMed  Google Scholar 

  9. Fraum TJ, Ludwig DR, Kim EH, Schroeder P, Hope TA, Ippolito JE. Prostate cancer PET tracers: essentials for the urologist. Can J Urol. 2018;25:9371–83.

    PubMed  Google Scholar 

  10. Herbert JC, Eckelman WC, Neumann RD, editors. Nuclear medicine – diagnosis and therapy. New York, NY: Thieme Medical Publishers; 1996.

    Google Scholar 

  11. IAEA. Good practice for introducing radiopharmaceuticals for clinical use. Vienna: International Atomic Energy Agency (IAEA); 2015.

    Google Scholar 

  12. IAEA. Operational guidance on hospital radiopharmacy. Vienna: International Atomic Energy Agency (IAEA); 2008.

    Google Scholar 

  13. Johnbeck CB, Knigge U, Kjær A. PET tracers for somatostatin receptor imaging of neuroendocrine tumors: current status and review of the literature. Future Oncol. 2014;10:2259–77.

    Article  CAS  PubMed  Google Scholar 

  14. Koopmans KP, Glaudemans AW. Other PET tracers for neuroendocrine tumors. PET Clin. 2014;9:57–62.

    Article  PubMed  Google Scholar 

  15. Kowalsky RJ, Weatherman KD, editors. Radiopharmaceuticals in nuclear pharmacy and nuclear medicine. 4th ed. American Pharmacists Association; 2020.

    Google Scholar 

  16. Lopci E, Fanti S. Non-FDG PET/CT. Recent Results Cancer Res. 2020;216:669–718.

    Article  CAS  PubMed  Google Scholar 

  17. Mantel E, Williams J. An introduction to newer PET diagnostic agents and related therapeutic radiopharmaceuticals. J Nucl Med Technol. 2019;47:203–9.

    Article  PubMed  Google Scholar 

  18. Núñez Miller R, Pozo MA. Non-FDG PET in oncology. Clin Transl Oncol. 2011;13:780–6.

    Article  PubMed  Google Scholar 

  19. Owunwanne A, Patel M, Sadek S, editors. The handbook of radiopharmaceuticals. New York, NY: Springer; 1995.

    Google Scholar 

  20. Price EW, Orvig C. Matching chelators to radiometals for radiopharmaceuticals. Chem Soc Rev. 2014;43:260–90.

    Article  CAS  PubMed  Google Scholar 

  21. Rösch F. Radiochemistry and radiopharmaceuticals chemistry for medicine. In: Choppin GR, Liljenzin J-O-E, Rydberg J, editors. Radiochemistry and nuclear chemistry. 4th ed. Cambridge, MA: Elsevier Academic Press; 2013.

    Google Scholar 

  22. Schlyer DJ. PET tracers and radiochemistry. Ann Acad Med Singap. 2004;33:146–54.

    CAS  PubMed  Google Scholar 

  23. Schuster DM, Nanni C, Fanti S. PET tracers beyond FDG in prostate cancer. Semin Nucl Med. 2016;46:507–21.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Sharma P, Kumar R, Alavi A. PET/computed tomography using new radiopharmaceuticals in targeted therapy. PET Clin. 2015;10:495–505.

    Article  PubMed  Google Scholar 

  25. Sharma S. PET radiopharmaceuticals for personalized medicine. Curr Drug Targets. 2016;17:1894–907.

    Article  CAS  PubMed  Google Scholar 

  26. Siva S, Udovicich C, Tran B, Zargar H, Murphy DG, Hofman MS. Expanding the role of small-molecule PSMA ligands beyond PET staging of prostate cancer. Nat Rev Urol. 2020;17:107–18.

    Article  PubMed  Google Scholar 

  27. Suchorska B, Albert NL, Tonn JC. Role of amino-tracer PET for decision-making in neuro-oncology. Curr Opin Neurol. 2018;31:720–6.

    Article  PubMed  Google Scholar 

  28. Tewson TJ, Krohn KA. PET radiopharmaceuticals: state-of-the-art and future prospects. Semin Nucl Med. 1998;28:221–34.

    Article  CAS  PubMed  Google Scholar 

  29. Theobald T, editor. Sampson’s textbook of radiopharmacy. 4th ed. London: Pharmaceutical Press; 2010.

    Google Scholar 

  30. Treglia G, Sadeghi R, Del Sole A, Giovanella L. Diagnostic performance of PET/CT with tracers other than F-18-FDG in oncology: an evidence-based review. Clin Transl Oncol. 2014;16:770–5.

    Article  CAS  PubMed  Google Scholar 

  31. Unterrainer M, Eze C, Ilhan H, et al. Recent advances of PET imaging in clinical radiation oncology. Radiat Oncol. 2020;15(1):88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Vallabhajosula S. Molecular imaging – radiopharmaceuticals for PET and SPECT. New York, NY: Springer; 2009.

    Google Scholar 

  33. Waldmann CM, Kopka K, Wagner S. 18F-Labeled small-molecule and low-molecular-weight PET tracers for the noninvasive detection of cancer. Recent Results Cancer Res 2020;216:283–318.

    Google Scholar 

  34. Welch MJ, Redvanly CS, editors. Handbook of radiopharmaceuticals: radiochemistry and applications. Hoboken, NJ: Wiley; 2003.

    Google Scholar 

  35. Werner JM, Lohmann P, Fink GR, Langen KJ, Galldiks N. Current landscape and emerging fields of PET imaging in patients with brain tumors. Molecules. 2020;25(6):1471.

    Article  CAS  PubMed Central  Google Scholar 

  36. Zhou Y, Li J, Xu X, Zhao M, Zhang B, Deng S, Wu Y. 64Cu-based radiopharmaceuticals in molecular imaging. Technol Cancer Res Treat 2019;18:1533033819830758.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Federica Orsini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Orsini, F., Lorenzoni, A., Puta, E., Mariani, G. (2022). Positron-Emitting Radiopharmaceuticals for Diagnostic Applications in Oncology. In: Volterrani, D., Erba, P.A., Strauss, H.W., Mariani, G., Larson, S.M. (eds) Nuclear Oncology. Springer, Cham. https://doi.org/10.1007/978-3-319-26067-9_33-2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-26067-9_33-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-26067-9

  • Online ISBN: 978-3-319-26067-9

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Positron-Emitting Radiopharmaceuticals for Diagnostic Applications in Oncology
    Published:
    19 April 2022

    DOI: https://doi.org/10.1007/978-3-319-26067-9_33-2

  2. Original

    Positron-Emitting Radiopharmaceuticals for Diagnostic Applications
    Published:
    04 November 2016

    DOI: https://doi.org/10.1007/978-3-319-26067-9_33-1