Skip to main content

Novel Single-Photon-Emitting Radiopharmaceuticals for Diagnostic Applications

  • Living reference work entry
  • Latest version View entry history
  • First Online:
Nuclear Oncology

Abstract

The armamentarium of approved radiopharmaceuticals for either diagnosis or therapy is at the core of the clinical practice of today’s nuclear medicine. Nevertheless, both because the currently approved agents do not meet all the clinical needs for radionuclide targeting and because advancing knowledge in the pathophysiology of tissues/organs opens in turn new opportunities, investigations continue at the preclinical and clinical validation level for the development of new radiopharmaceuticals, most of which are not approved yet for commercial use. Concerning in particular the diagnostic applications of nuclear medicine to oncology, ongoing investigations in the search for tumor-targeting agents with better specificity and sensitivity are countless, possibly within the scenario of theranostics – that is, with the dual potential for imaging and for therapy, depending on the specific radionuclide employed for radiolabeling. We will focus this chapter on the most promising imaging agents labeled with single-photon-emitting radionuclides based on some of the mechanisms that are typical for tumor cells/tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

BTAP:

Bis(thioacetamido)pentanoyl

CAIX:

Carbonic anhydrase IX

DOTA:

1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid

DTPA:

Diethylenetriaminepentaacetic acid

EGF:

Epidermal growth factor

EGFR:

Epidermal Growth Factor Receptor

FDA:

Food and Drug Administration

GMP:

Good manufacturing practice

GRPR:

gastrin-releasing peptide receptor

HER:

Human epidermal growth factor receptor

HPLC:

High-performance liquid chromatography

HYNIC:

6-Hydrazinopyridine-3-carboxylic acid, also known as hydrazidonicotinic acid/hydrazinonicotinamide

HYNIC-ALUG:

6-hydrazinonicotinate-aminocaproic-Lysine-Urea-Glutamate

Kd:

dissociation constant

mAbs:

monoclonal antibodies

MMP:

Metalloproteinases, a family of matrix enzymes

MRI:

Magnetic resonance imaging

NIRF:

Near-infrared fluorescence

pCa:

prostate cancer

PD:

Parkinson’s disease

PET:

Positron emission tomography

PSMA:

Prostate-specific membrane antigen

RCC:

Renal cell carcinoma

RGD:

Tripeptide composed of L-arginine, glycine, and L-aspartic acid (a sequence that is a common element in cellular recognition)

scFv:

single-chain antibody fragment

SPECT:

Single-photon emission tomography

TGF-α:

transforming growth factor alpha

TKI:

Tyrosine kinase inhibitor

TPPTS:

3,3,3″-Phosphanetriyltris(benzenesulfonic acid) trisodium salt, a ligand also known as sodium triphenylphosphine trisulfonate

VEGF:

Vascular endothelial growth factor

References

  1. Ravdin P. The use of HER2 testing in the management of breast cancer. Semin Oncol. 2000;27(5 Suppl 9):33–42.

    CAS  PubMed  Google Scholar 

  2. Roses AD. Pharmacogenetics and the practice of medicine. Nature. 2000;405(6788):857–65.

    Article  CAS  PubMed  Google Scholar 

  3. Cornelissen B. Imaging the inside of a tumour: a review of radionuclide imaging and theranostics targeting intracellular epitopes. J Labelled Comp Radiopharm. 2014;57(4):310–6.

    Article  CAS  PubMed  Google Scholar 

  4. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–74.

    Article  CAS  PubMed  Google Scholar 

  5. Cavallo F, De Giovanni C, Nanni P, et al. The immune hallmarks of cancer. Cancer Immunol Immunother. 2011;60(3):319–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. James ML, Gambhir SS. A molecular imaging primer: modalities, imaging agents, and applications. Physiol Rev. 2012;92(2):897–965.

    Article  CAS  PubMed  Google Scholar 

  7. Mariani G, Bruselli L, Duatti A. Is PET always an advantage versus planar and SPECT imaging? Eur J Nucl Med Mol Imaging. 2008;35(8):1560–5.

    Article  PubMed  Google Scholar 

  8. Pauwels EK, Bergstrom K, Mariani G, et al. Microdosing, imaging biomarkers and SPECT: a multi-sided tripod to accelerate drug development. Curr Pharm Des. 2009;15(9):928–34.

    Article  CAS  PubMed  Google Scholar 

  9. Mariani G, Strauss HW. Positron emission and single-photon emission imaging: synergy rather than competition. Eur J Nucl Med Mol Imaging. 2011;38(7):1189–90.

    Article  PubMed  Google Scholar 

  10. Vaupel P. Pathophysiology of solid tumors. In: Molls M, Vaupel P, Nieder C, Anscher MS, editors. The impact of tumor biology on cancer treatment and multidisciplinary strategies. Berlin, Heidelberg: Springer Berlin Heidelberg; 2009. p. 51–92.

    Chapter  Google Scholar 

  11. Bredow S, Lewin M, Hofmann B, et al. Imaging of tumour neovasculature by targeting the TGF-beta binding receptor endoglin. Eur J Cancer. 2000;36(5):675–81.

    Article  CAS  PubMed  Google Scholar 

  12. Zhou Y, Chakraborty S, Liu S. Radiolabeled cyclic RGD peptides as radiotracers for imaging tumors and thrombosis by SPECT. Theranostics. 2011;1:58–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Tsiapa I, Loudos G, Varvarigou A, et al. Biological evaluation of an ornithine-modified 99mTc-labeled RGD peptide as an angiogenesis imaging agent. Nucl Med Biol. 2013;40(2):262–72.

    Article  CAS  PubMed  Google Scholar 

  14. Kimura S, Umeda IO, Moriyama N, et al. Synthesis and evaluation of a novel 99mTc-labeled bioreductive probe for tumor hypoxia imaging. Bioorg Med Chem Lett. 2011;21(24):7359–62.

    Article  CAS  PubMed  Google Scholar 

  15. Umeda IO, Tani K, Tsuda K, et al. High resolution SPECT imaging for visualization of intratumoral heterogeneity using a SPECT/CT scanner dedicated for small animal imaging. Ann Nucl Med. 2012;26(1):67–76.

    Article  PubMed  Google Scholar 

  16. Weerakkody D, Moshnikova A, Thakur MS, et al. Family of pH (low) insertion peptides for tumor targeting. Proc Natl Acad Sci U S A. 2013;110(15):5834–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. von Forstner C, Zuhayra M, Ammerpohl O, et al. Expression of L amino acid transport system 1 and analysis of iodine-123-methyltyrosine tumor uptake in a pancreatic xenotransplantation model using fused high-resolution-micro-SPECT-MRI. Hepatobiliary Pancreat Dis Int. 2011;10(1):30–7.

    Article  Google Scholar 

  18. Kondo N, Temma T, Shimizu Y, et al. Miniaturized antibodies for imaging membrane type-1 matrix metalloproteinase in cancers. Cancer Sci. 2013;104(4):495–501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. LeBeau AM, Duriseti S, Murphy ST, et al. Targeting uPAR with antagonistic recombinant human antibodies in aggressive breast cancer. Cancer Res. 2013;73(7):2070–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Cai J, Li F. Single-photon emission computed tomography tracers for predicting and monitoring cancer therapy. Curr Pharm Biotechnol. 2013;14(7):693–707.

    Article  CAS  PubMed  Google Scholar 

  21. Schottelius M, Wester HJ. Molecular imaging targeting peptide receptors. Methods. 2009;48(2):161–77.

    Article  CAS  PubMed  Google Scholar 

  22. Heskamp S, van Laarhoven HW, Molkenboer-Kuenen JD, et al. Optimization of IGF-1R SPECT/CT imaging using 111In-labeled F(ab’)2 and Fab fragments of the monoclonal antibody R1507. Mol Pharm. 2012;9(8):2314–21.

    Article  CAS  PubMed  Google Scholar 

  23. Muller C. Folate based radiopharmaceuticals for imaging and therapy of cancer and inflammation. Curr Pharm Des. 2012;18(8):1058–83.

    Article  CAS  PubMed  Google Scholar 

  24. Kassis AI, Adelstein SJ, Mariani G. Radiolabeled nucleoside analogs in cancer diagnosis and therapy. Q J Nucl Med. 1996;40(3):301–19.

    CAS  PubMed  Google Scholar 

  25. Mariani G, Bodei L, Adelstein SJ, et al. Emerging roles for radiometabolic therapy of tumors based on auger electron emission. J Nucl Med. 2000;41(9):1519–21.

    CAS  PubMed  Google Scholar 

  26. Adelstein SJ, Kassis AI, Bodei L, et al. Radiotoxicity of iodine-125 and other auger-electron-emitting radionuclides: background to therapy. Cancer Biother Radiopharm. 2003;18(3):301–16.

    Article  CAS  PubMed  Google Scholar 

  27. Bodei L, Kassis AI, Adelstein SJ, et al. Radionuclide therapy with iodine-125 and other auger-electron-emitting radionuclides: experimental models and clinical applications. Cancer Biother Radiopharm. 2003;18(6):861–77.

    Article  CAS  PubMed  Google Scholar 

  28. Aloj L, Aurilio M, Rinaldi V, et al. Comparison of the binding and internalization properties of 12 DOTA-coupled and 111In-labelled CCK2/gastrin receptor binding peptides: a collaborative project under COST Action BM0607. Eur J Nucl Med Mol Imaging. 2011;38(8):1417–25.

    Article  CAS  PubMed  Google Scholar 

  29. Forrer F, Valkema R, Bernard B, et al. In vivo radionuclide uptake quantification using a multi-pinhole SPECT system to predict renal function in small animals. Eur J Nucl Med Mol Imaging. 2006;33(10):1214–7.

    Article  CAS  PubMed  Google Scholar 

  30. Behr TM, Béhé M, Becker W. Diagnostic applications of radiolabeled peptides in nuclear endocrinology. Q J Nucl Med. 1999;43(3):268–80.

    CAS  PubMed  Google Scholar 

  31. Behr TM, Béhé MP. Cholecystokinin-B/Gastrin receptor-targeting peptides for staging and therapy of medullary thyroid cancer and other cholecystokinin-B receptor-expressing malignancies. Semin Nucl Med. 2002;32(2):97–109.

    Article  PubMed  Google Scholar 

  32. Quinn T, Zhang X, Miao Y. Targeted melanoma imaging and therapy with radiolabeled alpha-melanocyte stimulating hormone peptide analogues. G Ital Dermatol Venereol. 2010;145(2):245–58.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Ambrosini V, Fani M, Fanti S, et al. Radiopeptide imaging and therapy in Europe. J Nucl Med. 2011;52(Suppl 2):42S–55S.

    Article  CAS  PubMed  Google Scholar 

  34. Graham MM, Menda Y. Radiopeptide imaging and therapy in the United States. J Nucl Med. 2011;52(Suppl 2):56S–63S.

    Article  CAS  PubMed  Google Scholar 

  35. Tang B, Yong X, Xie R, et al. Vasoactive intestinal peptide receptor-based imaging and treatment of tumors (Review). Int J Oncol. 2014;44(4):1023–31.

    Article  CAS  PubMed  Google Scholar 

  36. Hubalewska-Dydejczyk A, Sowa-Staszczak A, Tomaszuk M, et al. GLP-1 and exendin-4 for imaging endocrine pancreas. A review. Labelled glucagon-like peptide-1 analogues: past, present and future. Q J Nucl Med Mol Imaging. 2015;59(2):152–60.

    CAS  PubMed  Google Scholar 

  37. Wang F, Wang Z, Yao W, et al. Role of 99mTc-octreotide acetate scintigraphy in suspected lung cancer compared with 18F-FDG dual-head coincidence imaging. J Nucl Med. 2007;48(9):1442–8.

    Article  PubMed  Google Scholar 

  38. Czepczyński R, Parisella MG, Kosowicz J, et al. Somatostatin receptor scintigraphy using 99mTc-EDDA/HYNIC-TOC in patients with medullary thyroid carcinoma. Eur J Nucl Med Mol Imaging. 2007;34(10):1635–45.

    Article  PubMed  CAS  Google Scholar 

  39. Artiko V, Sobic-Saranovic D, Pavlovic S, et al. The clinical value of scintigraphy of neuroendocrine tumors using 99mTc-HYNIC-TOC. J Buon. 2012;17(3):537–42.

    CAS  PubMed  Google Scholar 

  40. Trogrlic M, Težak S. Incremental value of 99mTc-HYNIC-TOC SPECT/CT over whole-body planar scintigraphy and SPECT in patients with neuroendocrine tumours. Nuklearmedizin. 2017;56(3):97–107.

    Article  PubMed  Google Scholar 

  41. Yamaga LY, Neto GC, da Cunha ML, et al. 99mTc-HYNIC-TOC increased uptake can mimic malignancy in the pancreas uncinate process at somatostatin receptor SPECT/CT. Radiol Med 2016;121(3):225–228.

    Google Scholar 

  42. Cuccurullo V, Cascini GL, Tamburrini O, et al. Bone metastases radiopharmaceuticals: an overview. Curr Radiopharm. 2013;6(1):41–7.

    Article  CAS  PubMed  Google Scholar 

  43. Robu S, Schottelius M, Eiber M, et al. Preclinical evaluation and first patient application of 99mTc-PSMA-I&S for SPECT imaging and radioguided surgery in prostate cancer. J Nucl Med. 2017;58(2):235–42.

    Article  CAS  PubMed  Google Scholar 

  44. Maurer T, Robu S, Schottelius M, et al. Technetium-based prostate-specific membrane antigen-radioguided surgery in recurrent prostate cancer. Eur Urol. 2019;75(4):659–66.

    Article  PubMed  Google Scholar 

  45. Kratzik C, Dorudi S, Schatzl M, et al. 99mTc-PSMA imaging allows successful radioguided surgery in recurrent prostate cancer. Hell J Nucl Med 2018;21(3):202–204.

    Google Scholar 

  46. Honarvar H, Garousi J, Gunneriusson E, et al. Imaging of CAIX-expressing xenografts in vivo using 99mTc-HEHEHE-ZCAIX:1 affibody molecule. Int J Oncol. 2015;46(2):513–20.

    Article  CAS  PubMed  Google Scholar 

  47. Cazzamalli S, Ziffels B, Widmayer F, et al. Enhanced therapeutic activity of non-internalizing small-molecule-drug conjugates targeting carbonic anhydrase IX in combination with targeted interleukin-2. Clin Cancer Res. 2018;24(15):3656–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Yang MY, Chuang H, Chen RF, et al. Reversible phosphatidylserine expression on blood granulocytes related to membrane perturbation but not DNA strand breaks. J Leukoc Biol. 2002;71(2):231–7.

    CAS  PubMed  Google Scholar 

  49. Bouter A, Carmeille R, Gounou C, et al. Review: Annexin-A5 and cell membrane repair. Placenta. 2015;36(Suppl 1):S43–9.

    Article  CAS  PubMed  Google Scholar 

  50. Ogawa K, Aoki M. Radiolabeled apoptosis imaging agents for early detection of response to therapy. Sci World J. 2014;2014:732603.

    Article  Google Scholar 

  51. Blankenberg FG. In vivo detection of apoptosis. J Nucl Med. 2008;49(Suppl 2):81S–95S.

    Article  CAS  PubMed  Google Scholar 

  52. Kemerink GJ, Liu X, Kieffer D, et al. Safety, biodistribution, and dosimetry of 99mTc-HYNIC-annexin V, a novel human recombinant annexin V for human application. J Nucl Med. 2003;44(6):947–52.

    CAS  PubMed  Google Scholar 

  53. Tait JF, Smith C, Blankenberg FG. Structural requirements for in vivo detection of cell death with 99mTc-annexin V. J Nucl Med. 2005;46(5):807–15.

    CAS  PubMed  Google Scholar 

  54. Belhocine T, Steinmetz N, Hustinx R, et al. Increased uptake of the apoptosis-imaging agent 99mTc recombinant human Annexin V in human tumors after one course of chemotherapy as a predictor of tumor response and patient prognosis. Clin Cancer Res. 2002;8(9):2766–74.

    CAS  PubMed  Google Scholar 

  55. Schaper FL, Reutelingsperger CP. 99mTc-HYNIC-annexin A5 in oncology: evaluating efficacy of anti-cancer therapies. Cancers (Basel) 2013;5(2):550-568.

    Google Scholar 

  56. Vangestel C, Peeters M, Mees G, et al. In vivo imaging of apoptosis in oncology: an update. Mol Imaging. 2011;10(5):340–58.

    Article  CAS  PubMed  Google Scholar 

  57. Vangestel C, Van de Wiele C, Van Damme N, et al. 99mTc-(CO)3 His-annexin A5 micro-SPECT demonstrates increased cell death by irinotecan during the vascular normalization window caused by bevacizumab. J Nucl Med 2011;52(11):1786-1794.

    Google Scholar 

  58. Lahorte CM, van de Wiele C, Bacher K, et al. Biodistribution and dosimetry study of 123I-rh-annexin V in mice and humans. Nucl Med Commun. 2003;24(8):871–80.

    CAS  PubMed  Google Scholar 

  59. Wang X, Feng H, Zhao S, et al. SPECT and PET radiopharmaceuticals for molecular imaging of apoptosis: from bench to clinic. Oncotarget. 2017;8(12):20476–95.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Wuest M, Perreault A, Richter S, Knight JC, Wuest F. Targeting phosphatidylserine for radionuclide-based molecular imaging of apoptosis. Apoptosis. 2019;24(3-4):221–44.

    Article  CAS  PubMed  Google Scholar 

  61. Marconescu A, Thorpe PE. Coincident exposure of phosphatidylethanolamine and anionic phospholipids on the surface of irradiated cells. Biochim Biophys Acta. 2008;1778(10):2217–24.

    Article  CAS  PubMed  Google Scholar 

  62. Bevers EM, Comfurius P, Dekkers DW, et al. Lipid translocation across the plasma membrane of mammalian cells. Biochim Biophys Acta. 1999;1439(3):317–30.

    Article  CAS  PubMed  Google Scholar 

  63. Chaffey N, Alberts B, Johnson A, et al. Molecular biology of the cell. Ann Bot 4th ed. 2003;91(3):401.

    Google Scholar 

  64. Emoto K, Toyama-Sorimachi N, Karasuyama H, et al. Exposure of phosphatidylethanolamine on the surface of apoptotic cells. Exp Cell Res. 1997;232(2):430–4.

    Article  CAS  PubMed  Google Scholar 

  65. Umeda M, Emoto K. Membrane phospholipid dynamics during cytokinesis: regulation of actin filament assembly by redistribution of membrane surface phospholipid. Chem Phys Lipids. 1999;101(1):81–91.

    Article  CAS  PubMed  Google Scholar 

  66. Mills JC, Stone NL, Erhardt J, et al. Apoptotic membrane blebbing is regulated by myosin light chain phosphorylation. J Cell Biol. 1998;140(3):627–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Hayashi F, Nagashima K, Terui Y, et al. The structure of PA48009: the revised structure of duramycin. J Antibiot (Tokyo). 1990;43(11):1421–30.

    Article  CAS  Google Scholar 

  68. Zimmermann N, Freund S, Fredenhagen A, et al. Solution structures of the lantibiotics duramycin B and C. Eur J Biochem. 1993;216(2):419–28.

    Article  CAS  PubMed  Google Scholar 

  69. Aoki Y, Uenaka T, Aoki J, et al. A novel peptide probe for studying the transbilayer movement of phosphatidylethanolamine. J Biochem. 1994;116(2):291–7.

    Article  CAS  PubMed  Google Scholar 

  70. Machaidze G, Ziegler A, Seelig J. Specific binding of Ro 09-0198 (cinnamycin) to phosphatidylethanolamine: a thermodynamic analysis. Biochemistry. 2002;41(6):1965–71.

    Article  CAS  PubMed  Google Scholar 

  71. Guder A, Wiedemann I, Sahl HG. Posttranslationally modified bacteriocins–the lantibiotics. Biopolymers. 2000;55(1):62–73.

    Article  CAS  PubMed  Google Scholar 

  72. Hosoda K, Ohya M, Kohno T, et al. Structure determination of an immunopotentiator peptide, cinnamycin, complexed with lysophosphatidylethanolamine by 1H-NMR1. J Biochem. 1996;119(2):226–30.

    Article  CAS  PubMed  Google Scholar 

  73. Kaletta C, Entian KD, Jung G. Prepeptide sequence of cinnamycin (Ro 09-0198): the first structural gene of a duramycin-type lantibiotic. Eur J Biochem. 1991;199(2):411–5.

    Article  CAS  PubMed  Google Scholar 

  74. Märki F, Hänni E, Fredenhagen A, et al. Mode of action of the lanthionine-containing peptide antibiotics duramycin, duramycin B and C, and cinnamycin as indirect inhibitors of phospholipase A2. Biochem Pharmacol. 1991;42(10):2027–35.

    Article  PubMed  Google Scholar 

  75. Iwamoto K, Hayakawa T, Murate M, et al. Curvature-dependent recognition of ethanolamine phospholipids by duramycin and cinnamycin. Biophys J. 2007;93(5):1608–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Seelig J. Thermodynamics of lipid-peptide interactions. Biochim Biophys Acta. 2004;1666(1-2):40–50.

    Article  CAS  PubMed  Google Scholar 

  77. Zhao M, Li Z, Bugenhagen S. 99mTc-labeled duramycin as a novel phosphatidylethanolamine-binding molecular probe. J Nucl Med 2008;49(8):1345-1352.

    Google Scholar 

  78. Zhao M, Li Z. A single-step kit formulation for the 99mTc-labeling of HYNIC-Duramycin. Nucl Med Biol. 2012;39(7):1006–11.

    Article  CAS  PubMed  Google Scholar 

  79. Audi S, Li Z, Capacete J, et al. Understanding the in vivo uptake kinetics of a phosphatidylethanolamine-binding agent 99mTc-Duramycin. Nucl Med Biol. 2012;39(6):821–5.

    Article  CAS  PubMed  Google Scholar 

  80. Wang L, Wang F, Fang W, et al. The feasibility of imaging myocardial ischemic/reperfusion injury using 99mTc-labeled duramycin in a porcine model. Nucl Med Biol. 2015;42(2):198–204.

    Article  PubMed  CAS  Google Scholar 

  81. Zhang Y, Stevenson GD, Barber C, et al. Imaging of rat cerebral ischemia-reperfusion injury using 99mTc-labeled duramycin. Nucl Med Biol. 2013;40(1):80–8.

    Article  PubMed  CAS  Google Scholar 

  82. Clough AV, Audi SH, Haworth ST, et al. Differential lung uptake of 99mTc-hexamethylpropyleneamine oxime and 99mTc-duramycin in the chronic hyperoxia rat model. J Nucl Med. 2012;53(12):1984–91.

    Article  CAS  PubMed  Google Scholar 

  83. Audi SH, Jacobs ER, Zhao M, et al. In vivo detection of hyperoxia-induced pulmonary endothelial cell death using 99mTc-duramycin. Nucl Med Biol. 2015;42(1):46–52.

    Article  CAS  PubMed  Google Scholar 

  84. Medhora M, Haworth S, Liu Y, et al. Biomarkers for radiation pneumonitis using noninvasive molecular imaging. J Nucl Med. 2016;57(8):1296–301.

    Article  CAS  PubMed  Google Scholar 

  85. Johnson SE, Li Z, Liu Y, et al. Whole-body imaging of high-dose ionizing irradiation-induced tissue injuries using 99mTc-duramycin. J Nucl Med. 2013;54(8):1397–403.

    Article  CAS  PubMed  Google Scholar 

  86. Elvas F, Vangestel C, Rapic S, et al. Characterization of [99mTc]duramycin as a SPECT imaging agent for early assessment of tumor apoptosis. Mol Imaging Biol. 2015;17(6):838–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Luo R, Niu L, Qiu F, et al. Monitoring apoptosis of breast cancer xenograft after paclitaxel treatment with 99mTc-labeled duramycin SPECT/CT. Mol Imaging. 2016;15.

    Google Scholar 

  88. Elvas F, Boddaert J, Vangestel C, et al. Tc-duramycin SPECT imaging of early tumor response to targeted therapy: a comparison with 18F-FDG PET. J Nucl Med. 2017;58(4):665–70.

    Article  CAS  PubMed  Google Scholar 

  89. Ferrara N. Vascular endothelial growth factor: basic science and clinical progress. Endocr Rev. 2004;25(4):581–611.

    Article  CAS  PubMed  Google Scholar 

  90. Underiner TL, Ruggeri B, Gingrich DE. Development of vascular endothelial growth factor receptor (VEGFR) kinase inhibitors as anti-angiogenic agents in cancer therapy. Curr Med Chem. 2004;11(6):731–45.

    Article  CAS  PubMed  Google Scholar 

  91. Hristov M, Erl W, Weber PC. Endothelial progenitor cells: mobilization, differentiation, and homing. Arterioscler Thromb Vasc Biol. 2003;23(7):1185–9.

    Article  CAS  PubMed  Google Scholar 

  92. Blankenberg FG, Backer MV, Levashova Z, et al. In vivo tumor angiogenesis imaging with site-specific labeled 99mTc-HYNIC-VEGF. Eur J Nucl Med Mol Imaging. 2006;33(7):841–8.

    Article  PubMed  Google Scholar 

  93. Dvorak HF. Vascular permeability factor/vascular endothelial growth factor: a critical cytokine in tumor angiogenesis and a potential target for diagnosis and therapy. J Clin Oncol. 2002;20(21):4368–80.

    Article  CAS  PubMed  Google Scholar 

  94. Blankenberg FG, Mandl S, Cao YA, et al. Tumor imaging using a standardized radiolabeled adapter protein docked to vascular endothelial growth factor. J Nucl Med. 2004;45(8):1373–80.

    CAS  PubMed  Google Scholar 

  95. Sivolapenko GB, Skarlos D, Pectasides D, et al. Imaging of metastatic melanoma utilising a technetium-99m labelled RGD-containing synthetic peptide. Eur J Nucl Med. 1998;25(10):1383–9.

    Article  CAS  PubMed  Google Scholar 

  96. Staszak K, Wieszczycka K, Bajek A, et al. Achievement in active agent structures as a power tools in tumor angiogenesis imaging. BBA Rev Cancer. 2021;1876(1):188560.

    CAS  Google Scholar 

  97. Aguilar-Cazares D, Chavez-Dominguez R, Carlos-Reyes A, et al. Contribution of Angiogenesis to Inflammation and Cancer. Front Oncol. 2019;9:1399.

    Article  PubMed  PubMed Central  Google Scholar 

  98. De Palma M, Biziato D, Petrova TV. Microenvironmental regulation of tumour angiogenesis. Nat Rev Cancer. 2017;17(8):457–74.

    Article  PubMed  CAS  Google Scholar 

  99. Saravanan S, Vimalraj S, Pavani K, et al. Intussusceptive angiogenesis as a key therapeutic target for cancer therapy. Life Sci. 2020;252:117670.

    Article  CAS  PubMed  Google Scholar 

  100. Al-Zoughbi W, Hoefler G. tumor macroenvironment: an update. Pathobiology. 2020;87(2):58–60.

    Article  PubMed  Google Scholar 

  101. García-Figueiras R, Padhani AR, Beer AJ, et al. Imaging of tumor angiogenesis for radiologists — Part 1: Biological and technical basis. Curr Probl Diagn Radiol. 2015;44(5):407–24.

    Article  PubMed  Google Scholar 

  102. Lindsey ML, Escobar GP, Dobrucki LW, et al. Matrix metalloproteinase-9 gene deletion facilitates angiogenesis after myocardial infarction. Am J Physiol Heart Circ Physiol. 2006;290(1):H232–9.

    Article  CAS  PubMed  Google Scholar 

  103. Bach-Gansmo T, Danielsson R, Saracco A, et al. Integrin receptor imaging of breast cancer: a proof-of-concept study to evaluate 99mTc-NC100692. J Nucl Med. 2006;47(9):1434–9.

    CAS  PubMed  Google Scholar 

  104. Bach-Gansmo T, Bogsrud TV, Skretting A. Integrin scintimammography using a dedicated breast imaging, solid-state gamma-camera and 99mTc-labelled NC100692. Clin Physiol Funct Imaging. 2008;28(4):235–9.

    Article  PubMed  Google Scholar 

  105. Axelsson R, Bach-Gansmo T, Castell-Conesa J, et al. An open-label, multicenter, phase 2a study to assess the feasibility of imaging metastases in late-stage cancer patients with the alpha v beta 3-selective angiogenesis imaging agent 99mTc-NC100692. Acta Radiol. 2010;51(1):40–6.

    Article  PubMed  Google Scholar 

  106. Dearling JL, Barnes JW, Panigrahy D, et al. Specific uptake of 99mTc-NC100692, an αvβ3-targeted imaging probe, in subcutaneous and orthotopic tumors. Nucl Med Biol. 2013;40(6):788–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Shi J, Wang L, Kim YS, et al. Improving tumor uptake and excretion kinetics of 99mTc-labeled cyclic arginine-glycine-aspartic (RGD) dimers with triglycine linkers. J Med Chem. 2008;51(24):7980–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Liu Z, Jia B, Shi J, et al. Tumor uptake of the RGD dimeric probe 99mTc-G3-2P4-RGD2 is correlated with integrin αvβ3 expressed on both tumor cells and neovasculature. Bioconjug Chem. 2010;21(3):548–55.

    Article  CAS  PubMed  Google Scholar 

  109. Zhou Y, Kim YS, Chakraborty S, et al. 99mTc-labeled cyclic RGD peptides for noninvasive monitoring of tumor integrin αvβ3 expression. Mol Imaging 2011;10(5):386-397.

    Google Scholar 

  110. Ma Q, Ji B, Jia B, et al. Differential diagnosis of solitary pulmonary nodules using 99mTc-3P4-RGD2 scintigraphy. Eur J Nucl Med Mol Imaging. 2011;38(12):2145–52.

    Article  PubMed  Google Scholar 

  111. Liu L, Song Y, Gao S, et al. 99mTc-3PRGD2 scintimammography in palpable and nonpalpable breast lesions. Mol Imaging. 2014;13(5).

    Google Scholar 

  112. Zhu Z, Miao W, Li Q, et al. 99mTc-3PRGD2 for integrin receptor imaging of lung cancer: a multicenter study. J Nucl Med 2012;53(5):716-722.

    Google Scholar 

  113. Zhao D, Jin X, Li F, et al. Integrin αvβ3 imaging of radioactive iodine-refractory thyroid cancer using 99mTc-3PRGD2. J Nucl Med. 2012;53(12):1872–7.

    Article  CAS  PubMed  Google Scholar 

  114. Miao W, Zheng S, Dai H, et al. Comparison of 99mTc-3PRGD2 integrin receptor imaging with 99mTc-MDP bone scan in diagnosis of bone metastasis in patients with lung cancer: a multicenter study. PLoS One. 2014;9(10):e111221.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  115. Ji S, Zhou Y, Voorbach MJ, et al. Monitoring tumor response to linifanib therapy with SPECT/CT using the integrin αvβ3-targeted radiotracer 99mTc-3P-RGD2. J Pharmacol Exp Ther. 2013;346(2):251–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Liu Z, Huang J, Dong C, et al. 99mTc-labeled RGD-BBN peptide for small-animal SPECT/CT of lung carcinoma. Mol Pharm 2012;9(5):1409-1417.

    Google Scholar 

  117. Chen Q, Ma Q, Chen M, et al. An exploratory study on 99mTc-RGD-BBN peptide scintimammography in the assessment of breast malignant lesions compared to 99mTc-3P4-RGD2. PLoS One. 2015;10(4):e0123401.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  118. Ji T, Sun Y, Chen B, et al. The diagnostic role of 99mTc-dual receptor targeted probe and targeted peptide bombesin (RGD-BBN) SPET/CT in the detection of malignant and benign breast tumors and axillary lymph nodes compared to ultrasound. Hell J Nucl Med. 2015;18(2):108–13.

    PubMed  Google Scholar 

  119. Bunschoten A, van Willigen DM, Buckle T, et al. Tailoring fluorescent dyes to optimize a hybrid RGD-tracer. Bioconjug Chem. 2016;27(5):1253–8.

    Article  CAS  PubMed  Google Scholar 

  120. Pini A, Viti F, Santucci A, et al. Design and use of a phage display library. Human antibodies with subnanomolar affinity against a marker of angiogenesis eluted from a two-dimensional gel. J Biol Chem. 1998;273(34):21769–76.

    Article  CAS  PubMed  Google Scholar 

  121. Tarli L, Balza E, Viti F, et al. A high-affinity human antibody that targets tumoral blood vessels. Blood. 1999;94(1):192–8.

    Article  CAS  PubMed  Google Scholar 

  122. Berndorff D, Borkowski S, Moosmayer D, et al. Imaging of tumor angiogenesis using 99mTc-labeled human recombinant anti-ED-B fibronectin antibody fragments. J Nucl Med. 2006;47(10):1707–16.

    CAS  PubMed  Google Scholar 

  123. Kaczmarek J, Castellani P, Nicolò G, et al. Distribution of oncofetal fibronectin isoforms in normal, hyperplastic and neoplastic human breast tissues. Int J Cancer. 1994;59(1):11–6.

    Article  CAS  PubMed  Google Scholar 

  124. Pujuguet P, Hammann A, Moutet M, et al. Expression of fibronectin ED-A+ and ED-B+ isoforms by human and experimental colorectal cancer. Contribution of cancer cells and tumor-associated myofibroblasts. Am J Pathol. 1996;148(2):579–92.

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Santimaria M, Moscatelli G, Viale GL, et al. Immunoscintigraphic detection of the ED-B domain of fibronectin, a marker of angiogenesis, in patients with cancer. Clin Cancer Res. 2003;9(2):571–9.

    CAS  PubMed  Google Scholar 

  126. Gomez DE, Alonso DF, Yoshiji H, et al. Tissue inhibitors of metalloproteinases: structure, regulation and biological functions. Eur J Cell Biol. 1997;74(2):111–22.

    CAS  PubMed  Google Scholar 

  127. Foda HD, Zucker S. Matrix metalloproteinases in cancer invasion, metastasis and angiogenesis. Drug Discov Today. 2001;6(9):478–82.

    Article  CAS  PubMed  Google Scholar 

  128. Matusiak N, van Waarde A, Bischoff R, et al. Probes for non-invasive matrix metalloproteinase-targeted imaging with PET and SPECT. Curr Pharm Des. 2013;19(25):4647–72.

    Article  CAS  PubMed  Google Scholar 

  129. Sihver W, Pietzsch J, Krause M, et al. Radiolabeled cetuximab conjugates for EGFR targeted cancer diagnostics and therapy. Pharmaceuticals (Basel). 2014;7(3):311–38.

    Article  CAS  Google Scholar 

  130. Salomon DS, Brandt R, Ciardiello F, et al. Epidermal growth factor-related peptides and their receptors in human malignancies. Crit Rev Oncol Hematol. 1995;19(3):183–232.

    Article  CAS  PubMed  Google Scholar 

  131. Harari PM. Epidermal growth factor receptor inhibition strategies in oncology. Endocr Relat Cancer. 2004;11(4):689–708.

    Article  CAS  PubMed  Google Scholar 

  132. Schechter NR, Yang DJ, Azhdarinia A, et al. Assessment of epidermal growth factor receptor with 99mTc-ethylenedicysteine-C225 monoclonal antibody. Anti-Cancer Drugs. 2003;14(1):49–56.

    Article  CAS  PubMed  Google Scholar 

  133. Schechter NR, Wendt RE, Yang DJ, et al. Radiation dosimetry of 99mTc-labeled C225 in patients with squamous cell carcinoma of the head and neck. J Nucl Med. 2004;45(10):1683–7.

    CAS  PubMed  Google Scholar 

  134. Price EW, Zeglis BM, Cawthray JF, et al. H4octapa-trastuzumab: versatile acyclic chelate system for 111In and 177Lu imaging and therapy. J Am Chem Soc. 2013;135(34):12707–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Razumienko EJ, Scollard DA, Reilly RM. Small-animal SPECT/CT of HER2 and HER3 expression in tumor xenografts in athymic mice using trastuzumab Fab-heregulin bispecific radioimmunoconjugates. J Nucl Med. 2012;53(12):1943–50.

    Article  CAS  PubMed  Google Scholar 

  136. Divgi CR, Welt S, Kris M, et al. Phase I and imaging trial of indium 111-labeled anti-epidermal growth factor receptor monoclonal antibody 225 in patients with squamous cell lung carcinoma. J Natl Cancer Inst. 1991;83(2):97–104.

    Article  CAS  PubMed  Google Scholar 

  137. Lam K, Scollard DA, Chan C, et al. Kit for the preparation of. Appl Radiat Isot. 2015;95:135–42.

    Article  CAS  PubMed  Google Scholar 

  138. McLarty K, Cornelissen B, Cai Z, et al. Micro-SPECT/CT with 111In-DTPA-pertuzumab sensitively detects trastuzumab-mediated HER2 downregulation and tumor response in athymic mice bearing MDA-MB-361 human breast cancer xenografts. J Nucl Med. 2009;50(8):1340–8.

    Article  CAS  PubMed  Google Scholar 

  139. Nilvebrant J, Hober S. The albumin-binding domain as a scaffold for protein engineering. Comput Struct Biotechnol J. 2013;6:e201303009.

    Article  PubMed  PubMed Central  Google Scholar 

  140. Nilvebrant J, Åstrand M, Georgieva-Kotseva M, et al. Engineering of bispecific affinity proteins with high affinity for ERBB2 and adaptable binding to albumin. PLoS One. 2014;9(8):e103094.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  141. Garousi J, Lindbo S, Nilvebrant J, et al. ADAPT, a novel scaffold protein-based probe for radionuclide imaging of molecular targets that are expressed in disseminated cancers. Cancer Res. 2015;75(20):4364–71.

    Article  CAS  PubMed  Google Scholar 

  142. Lindbo S, Garousi J, Åstrand M, et al. Influence of histidine-containing tags on the biodistribution of ADAPT scaffold proteins. Bioconjug Chem. 2016;27(3):716–26.

    Article  CAS  PubMed  Google Scholar 

  143. Bragina O, von Witting E, Garousi J, et al. Phase I Study of 99mTc-ADAPT6, a scaffold protein-based probe for visualization of HER2 expression in breast cancer. J Nucl Med. 2021;62(4):493–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Müller C, Forrer F, Schibli R, et al. SPECT study of folate receptor-positive malignant and normal tissues in mice using a novel 99mTc-radiofolate. J Nucl Med. 2008;49(2):310–7.

    Article  PubMed  CAS  Google Scholar 

  145. Reber J, Struthers H, Betzel T, et al. Radioiodinated folic acid conjugates: evaluation of a valuable concept to improve tumor-to-background contrast. Mol Pharm. 2012;9(5):1213–21.

    Article  CAS  PubMed  Google Scholar 

  146. Maurer AH, Elsinga P, Fanti S, et al. Imaging the folate receptor on cancer cells with 99mTc-etarfolatide: properties, clinical use, and future potential of folate receptor imaging. J Nucl Med. 2014;55(5):701–4.

    Article  CAS  PubMed  Google Scholar 

  147. Morris RT, Joyrich RN, Naumann RW, et al. Phase II study of treatment of advanced ovarian cancer with folate-receptor-targeted therapeutic (vintafolide) and companion SPECT-based imaging agent (99mTc-etarfolatide). Ann Oncol. 2014;25(4):852–8.

    Article  CAS  PubMed  Google Scholar 

  148. Yamada Y, Nakatani H, Yanaihara H, et al. Phase I clinical trial of 99mTc-etarfolatide, an imaging agent for folate receptor in healthy Japanese adults. Ann Nucl Med. 2015;29(9):792–8.

    Article  CAS  PubMed  Google Scholar 

  149. Guo W, Hinkle GH, Lee RJ. 99mTc-HYNIC-folate: a novel receptor-based targeted radiopharmaceutical for tumor imaging. J Nucl Med 1999;40(9):1563-1569.

    Google Scholar 

  150. Yamada Y, Nakatani H, Yanaihara H, Omote M. Phase I clinical trial of 99mTc-etarfolatide, an imaging agent for folate receptor in healthy Japanese adults. Ann Nucl Med. 2015;29(9):792–8.

    Google Scholar 

  151. Guo W, Hinkle GH, Lee RJ. 99mTc-HYNIC-folate: a novel receptor-based targeted radiopharmaceutical for tumor imaging. J Nucl Med. 1999;40(9):1563–9.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Orsini, F., Bartoli, F., Guidoccio, F., Puta, E., Erba, P.A., Mariani, G. (2022). Novel Single-Photon-Emitting Radiopharmaceuticals for Diagnostic Applications. In: Volterrani, D., Erba, P.A., Strauss, H.W., Mariani, G., Larson, S.M. (eds) Nuclear Oncology. Springer, Cham. https://doi.org/10.1007/978-3-319-26067-9_3-3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-26067-9_3-3

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-26067-9

  • Online ISBN: 978-3-319-26067-9

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Novel Single-Photon-Emitting Radiopharmaceuticals for Diagnostic Applications
    Published:
    09 July 2022

    DOI: https://doi.org/10.1007/978-3-319-26067-9_3-3

  2. Novel Single-Photon-Emitting Radiopharmaceuticals for Diagnostic Applications
    Published:
    02 April 2022

    DOI: https://doi.org/10.1007/978-3-319-26067-9_3-2

  3. Original

    Novel Single-Photon-Emitting Radiopharmaceuticals for Diagnostic Applications
    Published:
    13 October 2016

    DOI: https://doi.org/10.1007/978-3-319-26067-9_3-1