Skip to main content

Basic Vaccine Immunology

  • Chapter
  • First Online:
Introduction to Molecular Vaccinology
  • 1696 Accesses

Abstract

The most outstanding aspects of the immune responses following a vaccination are described here. But it is beyond the scope of this chapter to describe in detail all immunological functions. We focus on a more general description on what is known of the vaccine immunity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Thaa, B., Sinhadri, B.C., Tielesch, C., Krause, E., Veit, M.: Signal peptide cleavage from GP5 of PRRSV: a minor fraction of molecules retains the decoy epitope, a presumed molecular cause for viral persistence. PLoS One 8, e65548 (2013). doi:10.1371/journal.pone.0065548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Ito, H., Watanabe, S., Takada, A., Kawaoka, Y.: Ebola virus glycoprotein: proteolytic processing, acylation, cell tropism, and detection of neutralizing antibodies. J. Virol. 75, 1576–1580 (2001). doi:10.1128/JVI.75.3.1576-1580.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Oldstone, M.B.: Molecular mimicry and immune-mediated diseases. FASEB J. 12, 1255–1265 (1998)

    CAS  PubMed  Google Scholar 

  4. Jones, D.: Reverse vaccinology on the cusp. Nat. Rev. Drug Discov. 11, 175–176 (2012). doi:10.1038/nrd3679

    Article  CAS  PubMed  Google Scholar 

  5. Kratky, W., Reis e Sousa, C., Oxenius, A., Sporri, R.: Direct activation of antigen-presenting cells is required for CD8+ T cell priming and tumor vaccination. Proc. Natl. Acad. Sci. U. S. A. 108, 17414–17419 (2011). doi:10.1073/pnas.1108945108

    Google Scholar 

  6. Takeda, K., Akira, S.: Toll-like receptors in innate immunity. Int. Immunol. 17, 1–14 (2005). doi:10.1093/intimm/dxh186

    Article  CAS  PubMed  Google Scholar 

  7. Ziegler-Heitbrock, L., et al.: Nomenclature of monocytes and dendritic cells in blood. Blood 116, e74–e80 (2010). doi:10.1182/blood-2010-02-258558

    Article  CAS  PubMed  Google Scholar 

  8. Khazen, W., et al.: Expression of macrophage-selective markers in human and rodent adipocytes. FEBS Lett. 579, 5631–5634 (2005). doi:10.1016/j.febslet.2005.09.032

    Article  CAS  PubMed  Google Scholar 

  9. Ding, Q., et al.: Regulatory B cells are identified by expression of TIM-1 and can be induced through TIM-1 ligation to promote tolerance in mice. J. Clin. Invest. 121, 3645–3656 (2011). doi:10.1172/JCI46274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Gottfried-Blackmore, A., et al.: Acute in vivo exposure to interferon-gamma enables resident brain dendritic cells to become effective antigen presenting cells. Proc. Natl. Acad. Sci. U. S. A. 106, 20918–20923 (2009). doi:10.1073/pnas.0911509106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ochoa, M.T., Loncaric, A., Krutzik, S.R., Becker, T.C., Modlin, R.L.: “Dermal dendritic cells” comprise two distinct populations: CD1+ dendritic cells and CD209+ macrophages. J. Invest. Dermatol. 128, 2225–2231 (2008). doi:10.1038/jid.2008.56

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ouchi, T., et al.: Langerhans cell antigen capture through tight junctions confers preemptive immunity in experimental staphylococcal scalded skin syndrome. J. Exp. Med. 208, 2607–2613 (2011). doi:10.1084/jem.20111718

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zozulya, A.L., et al.: Intracerebral dendritic cells critically modulate encephalitogenic versus regulatory immune responses in the CNS. J. Neurosci. 29, 140–152 (2009). doi:10.1523/JNEUROSCI.2199-08.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Barchet, W., Cella, M., Colonna, M.: Plasmacytoid dendritic cells – virus experts of innate immunity. Semin. Immunol. 17, 253–261 (2005). doi:10.1016/j.smim.2005.05.008

    Article  CAS  PubMed  Google Scholar 

  15. Hart, D.N., McKenzie, J.L.: Interstitial dendritic cells. Int. Rev. Immunol. 6, 127–138 (1990)

    Article  CAS  PubMed  Google Scholar 

  16. Kushwah, R., Hu, J.: Complexity of dendritic cell subsets and their function in the host immune system. Immunology 133, 409–419 (2011). doi:10.1111/j.1365-2567.2011.03457.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Vremec, D., et al.: Production of interferons by dendritic cells, plasmacytoid cells, natural killer cells, and interferon-producing killer dendritic cells. Blood 109, 1165–1173 (2007). doi:10.1182/blood-2006-05-015354

    Article  CAS  PubMed  Google Scholar 

  18. Chopin, M., Allan, R.S., Belz, G.T.: Transcriptional regulation of dendritic cell diversity. Front Immunol. 3, 26 (2012). doi:10.3389/fimmu.2012.00026

    Article  PubMed  PubMed Central  Google Scholar 

  19. Cambi, A., Figdor, C.G.: Dual function of C-type lectin-like receptors in the immune system. Curr. Opin. Cell Biol. 15, 539–546 (2003)

    Article  CAS  PubMed  Google Scholar 

  20. Flacher, V., et al.: Epidermal Langerhans cells rapidly capture and present antigens from C-type lectin-targeting antibodies deposited in the dermis. J. Invest. Dermatol. 130, 755–762 (2010). doi:10.1038/jid.2009.343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Allan, R.S., et al.: Epidermal viral immunity induced by CD8alpha + dendritic cells but not by Langerhans cells. Science 301, 1925–1928 (2003). doi:10.1126/science.1087576

    Article  CAS  PubMed  Google Scholar 

  22. Oh, S., Perera, L.P., Burke, D.S., Waldmann, T.A., Berzofsky, J.A.: IL-15/IL-15Ralpha-mediated avidity maturation of memory CD8+ T cells. Proc. Natl. Acad. Sci. U. S. A. 101, 15154–15159 (2004). doi:10.1073/pnas.0406649101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Bevan, M.J.: Cross-priming for a secondary cytotoxic response to minor H antigens with H-2 congenic cells which do not cross-react in the cytotoxic assay. J. Exp. Med. 143, 1283–1288 (1976)

    Article  CAS  PubMed  Google Scholar 

  24. Snyder, C.M., Allan, J.E., Bonnett, E.L., Doom, C.M., Hill, A.B.: Cross-presentation of a spread-defective MCMV is sufficient to prime the majority of virus-specific CD8+ T cells. PLoS One 5, e9681 (2010). doi:10.1371/journal.pone.0009681

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Freigang, S., Egger, D., Bienz, K., Hengartner, H., Zinkernagel, R.M.: Endogenous neosynthesis vs. cross-presentation of viral antigens for cytotoxic T cell priming. Proc. Natl. Acad. Sci. U. S. A. 100, 13477–13482 (2003). doi:10.1073/pnas.1835685100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Henkart, P.A.: CTL effector functions. Semin. Immunol. 9, 85–86 (1997)

    Article  CAS  PubMed  Google Scholar 

  27. Nagata, S.: Fas-mediated apoptosis. Adv. Exp. Med. Biol. 406, 119–124 (1996)

    Article  CAS  PubMed  Google Scholar 

  28. Andersen, M.H., Schrama, D., Thor Straten, P., Becker, J.C.: Cytotoxic T cells. J. Invest. Dermatol. 126, 32–41 (2006). doi:10.1038/sj.jid.5700001

    Article  CAS  PubMed  Google Scholar 

  29. de Saint-Vis, B., et al.: The cytokine profile expressed by human dendritic cells is dependent on cell subtype and mode of activation. J. Immunol. 160, 1666–1676 (1998)

    PubMed  Google Scholar 

  30. Ueno, H., et al.: Harnessing human dendritic cell subsets for medicine. Immunol. Rev. 234, 199–212 (2010). doi:10.1111/j.0105-2896.2009.00884.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Matsuo, K., et al.: A low-invasive and effective transcutaneous immunization system using a novel dissolving microneedle array for soluble and particulate antigens. J. Control. Release 161, 10–17 (2012). doi:10.1016/j.jconrel.2012.01.033

    Article  CAS  PubMed  Google Scholar 

  32. Sheikh, N.A., et al.: Sipuleucel-T immune parameters correlate with survival: an analysis of the randomized phase 3 clinical trials in men with castration-resistant prostate cancer. Cancer Immunol. Immunother. (2012). doi:10.1007/s00262-012-1317-2

    PubMed  PubMed Central  Google Scholar 

  33. Dinarello, C.A.: Proinflammatory cytokines. Chest 118, 503–508 (2000)

    Article  CAS  PubMed  Google Scholar 

  34. Cyktor, J.C., Turner, J.: Interleukin-10 and immunity against prokaryotic and eukaryotic intracellular pathogens. Infect. Immun. 79, 2964–2973 (2011). doi:10.1128/IAI.00047-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Maynard, C.L., Weaver, C.T.: Diversity in the contribution of interleukin-10 to T-cell-mediated immune regulation. Immunol. Rev. 226, 219–233 (2008). doi:10.1111/j.1600-065X.2008.00711.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Brooks, D.G., McGavern, D.B., Oldstone, M.B.: Reprogramming of antiviral T cells prevents inactivation and restores T cell activity during persistent viral infection. J. Clin. Invest. 116, 1675–1685 (2006). doi:10.1172/JCI26856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Netea, M.G., et al.: Toll-like receptor 2 suppresses immunity against Candida albicans through induction of IL-10 and regulatory T cells. J. Immunol. 172, 3712–3718 (2004)

    Article  CAS  PubMed  Google Scholar 

  38. Stober, C.B., Lange, U.G., Roberts, M.T., Alcami, A., Blackwell, J.M.: IL-10 from regulatory T cells determines vaccine efficacy in murine Leishmania major infection. J. Immunol. 175, 2517–2524 (2005)

    Article  CAS  PubMed  Google Scholar 

  39. Verma, S., et al.: Quantification of parasite load in clinical samples of leishmaniasis patients: IL-10 level correlates with parasite load in visceral leishmaniasis. PLoS One 5, e10107 (2010). doi:10.1371/journal.pone.0010107

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Moore, K.W., et al.: Homology of cytokine synthesis inhibitory factor (IL-10) to the Epstein-Barr virus gene BCRFI. Science 248, 1230–1234 (1990)

    Article  CAS  PubMed  Google Scholar 

  41. Dolganiuc, A., et al.: Hepatitis C virus core and nonstructural protein 3 proteins induce pro- and anti-inflammatory cytokines and inhibit dendritic cell differentiation. J. Immunol. 170, 5615–5624 (2003)

    Article  CAS  PubMed  Google Scholar 

  42. Mahipal, A., et al.: Tumor-derived interleukin-10 as a prognostic factor in stage III patients undergoing adjuvant treatment with an autologous melanoma cell vaccine. Cancer Immunol. Immunother. 60, 1039–1045 (2011). doi:10.1007/s00262-011-1019-1

    Article  CAS  PubMed  Google Scholar 

  43. Chen, C.J., et al.: High expression of interleukin 10 might predict poor prognosis in early stage oral squamous cell carcinoma patients. Clin. Chim. Acta 415, 25–30 (2013). doi:10.1016/j.cca.2012.09.009

    Article  CAS  PubMed  Google Scholar 

  44. Lee, S.J., et al.: Identification of pro-inflammatory cytokines associated with muscle invasive bladder cancer; the roles of IL-5, IL-20, and IL-28A. PLoS One 7, e40267 (2012). doi:10.1371/journal.pone.0040267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Opal, S.M., DePalo, V.A.: Anti-inflammatory cytokines. Chest 117, 1162–1172 (2000)

    Article  CAS  PubMed  Google Scholar 

  46. Hao, N.B., et al.: Macrophages in tumor microenvironments and the progression of tumors. Clin. Dev. Immunol. 948098, 2012 (2012). doi:10.1155/2012/948098

    Google Scholar 

  47. Janeway Jr., C.A.: Approaching the asymptote? Evolution and revolution in immunology. Cold Spring Harb. Symp. Quant. Biol. 54(Pt 1), 1–13 (1989)

    Article  CAS  PubMed  Google Scholar 

  48. Krishnaswamy, J.K., Chu, T., Eisenbarth, S.C.: Beyond pattern recognition: NOD-like receptors in dendritic cells. Trends Immunol. (2013). doi:10.1016/j.it.2012.12.003

    PubMed  PubMed Central  Google Scholar 

  49. Ng, C.S., Kato, H., Fujita, T.: Recognition of viruses in the cytoplasm by RLRs and other helicases – how conformational changes, mitochondrial dynamics and ubiquitination control innate immune responses. Int. Immunol. 24, 739–749 (2012). doi:10.1093/intimm/dxs099

    Article  CAS  PubMed  Google Scholar 

  50. Palm, N.W., Medzhitov, R.: Pattern recognition receptors and control of adaptive immunity. Immunol. Rev. 227, 221–233 (2009). doi:10.1111/j.1600-065X.2008.00731.x

    Article  CAS  PubMed  Google Scholar 

  51. Akira, S.: Innate immunity and adjuvants. Philos. Trans. R. Soc. Lond. B Biol. Sci. 366, 2748–2755 (2011). doi:10.1098/rstb.2011.0106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Ablasser, A., et al.: RIG-I-dependent sensing of poly(dA:dT) through the induction of an RNA polymerase III-transcribed RNA intermediate. Nat. Immunol. 10, 1065–1072 (2009). doi:10.1038/ni.1779

    Article  CAS  PubMed  Google Scholar 

  53. Cridland, J.A., et al.: The mammalian PYHIN gene family: phylogeny, evolution and expression. BMC Evol. Biol. 12, 140 (2012). doi:10.1186/1471-2148-12-140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Lemaitre, B., Nicolas, E., Michaut, L., Reichhart, J.M., Hoffmann, J.A.: The dorsoventral regulatory gene cassette spatzle/Toll/cactus controls the potent antifungal response in Drosophila adults. Cell 86, 973–983 (1996)

    Article  CAS  PubMed  Google Scholar 

  55. Medzhitov, R., Preston-Hurlburt, P., Janeway Jr., C.A.: A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature 388, 394–397 (1997). doi:10.1038/41131

    Article  CAS  PubMed  Google Scholar 

  56. Hashimoto, C., Hudson, K.L., Anderson, K.V.: The Toll gene of Drosophila, required for dorsal-ventral embryonic polarity, appears to encode a transmembrane protein. Cell 52, 269–279 (1988)

    Article  CAS  PubMed  Google Scholar 

  57. Meylan, E., Tschopp, J., Karin, M.: Intracellular pattern recognition receptors in the host response. Nature 442, 39–44 (2006). doi:10.1038/nature04946

    Article  CAS  PubMed  Google Scholar 

  58. Lata, S., Raghava, G.P.: PRRDB: a comprehensive database of pattern-recognition receptors and their ligands. BMC Genomics 9, 180 (2008). doi:10.1186/1471-2164-9-180

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Fortis, A., Garcia-Macedo, R., Maldonado-Bernal, C., Alarcon-Aguilar, F., Cruz, M.: The role of innate immunity in obesity. Salud Publica Mex. 54, 171–177 (2012)

    Article  PubMed  Google Scholar 

  60. Benias, P.C., Gopal, K., Bodenheimer Jr., H., Theise, N.D.: Hepatic expression of toll-like receptors 3, 4, and 9 in primary biliary cirrhosis and chronic hepatitis C. Clin. Res. Hepatol. Gastroenterol. (2012). doi:10.1016/j.clinre.2012.07.001

    PubMed  Google Scholar 

  61. Zhu, W., et al.: Overexpression of toll-like receptor 3 in spleen is associated with experimental arthritis in rats. Scand. J. Immunol. 76, 263–270 (2012). doi:10.1111/j.1365-3083.2012.02724.x

    Article  CAS  PubMed  Google Scholar 

  62. Medzhitov, R.: Toll-like receptors and innate immunity. Nat. Rev. Immunol. 1, 135–145 (2001). doi:10.1038/35100529

    Article  CAS  PubMed  Google Scholar 

  63. Ohto, U., Fukase, K., Miyake, K., Satow, Y.: Crystal structures of human MD-2 and its complex with antiendotoxic lipid IVa. Science 316, 1632–1634 (2007). doi:10.1126/science.1139111

    Article  CAS  PubMed  Google Scholar 

  64. Bauer, S., et al.: Human TLR9 confers responsiveness to bacterial DNA via species-specific CpG motif recognition. Proc. Natl. Acad. Sci. U. S. A. 98, 9237–9242 (2001). doi:10.1073/pnas.161293498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Boivin, N., Menasria, R., Piret, J., Boivin, G.: Modulation of TLR9 response in a mouse model of herpes simplex virus encephalitis. Antiviral Res. 96, 414–421 (2012). doi:10.1016/j.antiviral.2012.09.022

    Article  CAS  PubMed  Google Scholar 

  66. Geeraedts, F., et al.: Superior immunogenicity of inactivated whole virus H5N1 influenza vaccine is primarily controlled by Toll-like receptor signalling. PLoS Pathog. 4, e1000138 (2008). doi:10.1371/journal.ppat.1000138

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Koyama, S., et al.: Plasmacytoid dendritic cells delineate immunogenicity of influenza vaccine subtypes. Sci. Transl. Med. 2, 25ra24 (2010). doi:10.1126/scitranslmed.3000759

    Google Scholar 

  68. Park, B.S., et al.: The structural basis of lipopolysaccharide recognition by the TLR4-MD-2 complex. Nature 458, 1191–1195 (2009). doi:10.1038/nature07830

    Article  CAS  PubMed  Google Scholar 

  69. Ng, A., Xavier, R.J.: Leucine-rich repeat (LRR) proteins: integrators of pattern recognition and signaling in immunity. Autophagy 7, 1082–1084 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Lloyd, D.H., Viac, J., Werling, D., Reme, C.A., Gatto, H.: Role of sugars in surface microbe-host interactions and immune reaction modulation. Vet. Dermatol. 18, 197–204 (2007). doi:10.1111/j.1365-3164.2007.00594.x

    Article  PubMed  Google Scholar 

  71. Dalpke, A., Helm, M.: RNA mediated Toll-like receptor stimulation in health and disease. RNA Biol. 9, 828–842 (2012). doi:10.4161/rna.20206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Heeg, K., Dalpke, A., Peter, M., Zimmermann, S.: Structural requirements for uptake and recognition of CpG oligonucleotides. Int. J. Med. Microbiol. 298, 33–38 (2008). doi:10.1016/j.ijmm.2007.07.007

    Article  CAS  PubMed  Google Scholar 

  73. Matzinger, P.: Tolerance, danger, and the extended family. Annu. Rev. Immunol. 12, 991–1045 (1994). doi:10.1146/annurev.iy.12.040194.005015

    Article  CAS  PubMed  Google Scholar 

  74. Rubartelli, A., Lotze, M.T.: Inside, outside, upside down: damage-associated molecular-pattern molecules (DAMPs) and redox. Trends Immunol. 28, 429–436 (2007). doi:10.1016/j.it.2007.08.004

    Article  CAS  PubMed  Google Scholar 

  75. Khanna, A.: Interleukin-18, a potential mediator of inflammation, oxidative stress, and allograft dysfunction. Transplantation 91, 590–591 (2011). doi:10.1097/TP.0b013e31820d3b82

    Article  PubMed  Google Scholar 

  76. Piccinini, A.M., Midwood, K.S.: DAMPening inflammation by modulating TLR signalling. Mediators Inflamm. (2010). doi:10.1155/2010/672395 (2010)

    PubMed  PubMed Central  Google Scholar 

  77. Yanai, H., et al.: HMGB proteins function as universal sentinels for nucleic-acid-mediated innate immune responses. Nature 462, 99–103 (2009). doi:10.1038/nature08512

    Article  CAS  PubMed  Google Scholar 

  78. Zhang, Q., et al.: Circulating mitochondrial DAMPs cause inflammatory responses to injury. Nature 464, 104–107 (2010). doi:10.1038/nature08780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Hirsiger, S., Simmen, H.P., Werner, C.M., Wanner, G.A., Rittirsch, D.: Danger signals activating the immune response after trauma. Mediators Inflamm. 2012, 315941 (2012). doi:10.1155/2012/315941

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Basu, S., Binder, R.J., Suto, R., Anderson, K.M., Srivastava, P.K.: Necrotic but not apoptotic cell death releases heat shock proteins, which deliver a partial maturation signal to dendritic cells and activate the NF-kappa B pathway. Int. Immunol. 12, 1539–1546 (2000)

    Article  CAS  PubMed  Google Scholar 

  81. Ichikawa, M., Williams, R., Wang, L., Vogl, T., Srikrishna, G.: S100A8/A9 activate key genes and pathways in colon tumor progression. Mol. Cancer Res. 9, 133–148 (2011). doi:10.1158/1541-7786.MCR-10-0394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Termeer, C., et al.: Oligosaccharides of Hyaluronan activate dendritic cells via toll-like receptor 4. J. Exp. Med. 195, 99–111 (2002)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. O’Neill, L.A., Fitzgerald, K.A., Bowie, A.G.: The Toll-IL-1 receptor adaptor family grows to five members. Trends Immunol. 24, 286–290 (2003)

    Article  PubMed  CAS  Google Scholar 

  84. Zhang, Q., Zmasek, C.M., Cai, X., Godzik, A.: TIR domain-containing adaptor SARM is a late addition to the ongoing microbe-host dialog. Dev. Comp. Immunol. 35, 461–468 (2011). doi:10.1016/j.dci.2010.11.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Pahl, H.L.: Activators and target genes of Rel/NF-kappaB transcription factors. Oncogene 18, 6853–6866 (1999). doi:10.1038/sj.onc.1203239

    Article  CAS  PubMed  Google Scholar 

  86. Baker, R.G., Hayden, M.S., Ghosh, S.: NF-kappaB, inflammation, and metabolic disease. Cell Metab. 13, 11–22 (2011). doi:10.1016/j.cmet.2010.12.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Ben-Neriah, Y., Karin, M.: Inflammation meets cancer, with NF-kappaB as the matchmaker. Nat. Immunol. 12, 715–723 (2011). doi:10.1038/ni.2060

    Article  CAS  PubMed  Google Scholar 

  88. Hayden, M.S., Ghosh, S.: NF-kappaB, the first quarter-century: remarkable progress and outstanding questions. Genes Dev. 26, 203–234 (2012). doi:10.1101/gad.183434.111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Griffin, G.E., Leung, K., Folks, T.M., Kunkel, S., Nabel, G.J.: Activation of HIV gene expression during monocyte differentiation by induction of NF-kappa B. Nature 339, 70–73 (1989). doi:10.1038/339070a0

    Article  CAS  PubMed  Google Scholar 

  90. Rong, B.L., et al.: HSV-1-inducible proteins bind to NF-kappa B-like sites in the HSV-1 genome. Virology 189, 750–756 (1992)

    Article  CAS  PubMed  Google Scholar 

  91. Jan, R.H., et al.: Hepatitis B virus surface antigen can activate human monocyte-derived dendritic cells by nuclear factor kappa B and p38 mitogen-activated protein kinase mediated signaling. Microbiol. Immunol. 56, 719–727 (2012). doi:10.1111/j.1348-0421.2012.00496.x

    Article  CAS  PubMed  Google Scholar 

  92. O’Neill, L.A., Bryant, C.E., Doyle, S.L.: Therapeutic targeting of Toll-like receptors for infectious and inflammatory diseases and cancer. Pharmacol. Rev. 61, 177–197 (2009). doi:10.1124/pr.109.001073

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Krieg, A.M., et al.: CpG motifs in bacterial DNA trigger direct B-cell activation. Nature 374, 546–549 (1995). doi:10.1038/374546a0

    Article  CAS  PubMed  Google Scholar 

  94. Jahrsdorfer, B., Weiner, G.J.: CpG oligodeoxynucleotides as immunotherapy in cancer. Update Cancer Ther. 3, 27–32 (2008). doi:10.1016/j.uct.2007.11.003

    Article  PubMed  PubMed Central  Google Scholar 

  95. Butte, M.J., et al.: CD28 costimulation regulates genome-wide effects on alternative splicing. PLoS One 7, e40032 (2012). doi:10.1371/journal.pone.0040032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Ouyang, W., Kolls, J.K., Zheng, Y.: The biological functions of T helper 17 cell effector cytokines in inflammation. Immunity 28, 454–467 (2008). doi:10.1016/j.immuni.2008.03.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Deenick, E.K., Ma, C.S.: The regulation and role of T follicular helper cells in immunity. Immunology 134, 361–367 (2011). doi:10.1111/j.1365-2567.2011.03487.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Sakaguchi, S.: Regulatory T cells: key controllers of immunologic self-tolerance. Cell 101, 455–458 (2000)

    Article  CAS  PubMed  Google Scholar 

  99. Macatangay, B.J., Szajnik, M.E., Whiteside, T.L., Riddler, S.A., Rinaldo, C.R.: Regulatory T cell suppression of Gag-specific CD8 T cell polyfunctional response after therapeutic vaccination of HIV-1-infected patients on ART. PLoS One 5, e9852 (2010). doi:10.1371/journal.pone.0009852

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Hammarlund, E., et al.: Duration of antiviral immunity after smallpox vaccination. Nat. Med. 9, 1131–1137 (2003). doi:10.1038/nm917

    Article  CAS  PubMed  Google Scholar 

  101. Rudolph, M., Hebel, K., Miyamura, Y., Maverakis, E., Brunner-Weinzierl, M.C.: Blockade of CTLA-4 decreases the generation of multifunctional memory CD4+ T cells in vivo. J. Immunol. 186, 5580–5589 (2011). doi:10.4049/jimmunol.1003381

    Article  CAS  PubMed  Google Scholar 

  102. Litjens, N.H., et al.: IL-2 producing memory CD4+ T lymphocytes are closely associated with the generation of IgG-secreting plasma cells. J. Immunol. 181, 3665–3673 (2008)

    Article  CAS  PubMed  Google Scholar 

  103. Williams, M.A., Tyznik, A.J., Bevan, M.J.: Interleukin-2 signals during priming are required for secondary expansion of CD8+ memory T cells. Nature 441, 890–893 (2006). doi:10.1038/nature04790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Kaech, S.M., Cui, W.: Transcriptional control of effector and memory CD8(+) T cell differentiation. Nat. Rev. Immunol. 12, 749–761 (2012). doi:10.1038/nri3307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Sallusto, F., Langenkamp, A., Geginat, J., Lanzavecchia, A.: Functional subsets of memory T cells identified by CCR7 expression. Curr. Top. Microbiol. Immunol. 251, 167–171 (2000)

    CAS  PubMed  Google Scholar 

  106. Okada, R., Kondo, T., Matsuki, F., Takata, H., Takiguchi, M.: Phenotypic classification of human CD4+ T cell subsets and their differentiation. Int. Immunol. 20, 1189–1199 (2008). doi:10.1093/intimm/dxn075

    Article  CAS  PubMed  Google Scholar 

  107. Keshavarz Valian, H., et al.: CCR7(+) central and CCR7(-) effector memory CD4 (+) T cells in human cutaneous leishmaniasis. J. Clin. Immunol. 33, 220–234 (2013). doi:10.1007/s10875-012-9788-7

    Article  CAS  PubMed  Google Scholar 

  108. Vazquez-Cintron, E.J., et al.: Protocadherin-18 is a novel differentiation marker and an inhibitory signaling receptor for CD8+ effector memory T cells. PLoS One 7, e36101 (2012). doi:10.1371/journal.pone.0036101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Lau, L.L., Jamieson, B.D., Somasundaram, T., Ahmed, R.: Cytotoxic T-cell memory without antigen. Nature 369, 648–652 (1994). doi:10.1038/369648a0

    Article  CAS  PubMed  Google Scholar 

  110. Mackay, L.K., et al.: Long-lived epithelial immunity by tissue-resident memory T (TRM) cells in the absence of persisting local antigen presentation. Proc. Natl. Acad. Sci. U. S. A. 109, 7037–7042 (2012). doi:10.1073/pnas.1202288109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Michalek, R.D., Rathmell, J.C.: The metabolic life and times of a T cell. Immunol. Rev. 236, 190–202 (2010). doi:10.1111/j.1600-065X.2010.00911.x

    Google Scholar 

  112. Bensinger, S.J., Christofk, H.R.: New aspects of the Warburg effect in cancer cell biology. Semin. Cell Dev. Biol. 23, 352–361 (2012). doi:10.1016/j.semcdb.2012.02.003

    Article  CAS  PubMed  Google Scholar 

  113. Maciver, N.J., et al.: Glucose metabolism in lymphocytes is a regulated process with significant effects on immune cell function and survival. J. Leukoc. Biol. 84, 949–957 (2008). doi:10.1189/jlb.0108024

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. Jacobs, S.R., et al.: Glucose uptake is limiting in T cell activation and requires CD28-mediated Akt-dependent and independent pathways. J. Immunol. 180, 4476–4486 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Finlay, D.K.: Regulation of glucose metabolism in T cells: new insight into the role of Phosphoinositide 3-kinases. Front. Immunol. 3, 247 (2012). doi:10.3389/fimmu.2012.00247

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Khan, J.M., Kumar, G., Ranganathan, S.: In silico prediction of immunogenic T cell epitopes for HLA-DQ8. Immunome Res. 8, 14 (2012)

    Google Scholar 

  117. Beaver, J.E., Bourne, P.E., Ponomarenko, J.V.: EpitopeViewer: a Java application for the visualization and analysis of immune epitopes in the Immune Epitope Database and Analysis Resource (IEDB). Immunome Res. 3, 3 (2007). doi:10.1186/1745-7580-3-3

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  118. Kim, Y., Sette, A., Peters, B.: Applications for T-cell epitope queries and tools in the Immune Epitope Database and Analysis Resource. J. Immunol. Methods 374, 62–69 (2011). doi:10.1016/j.jim.2010.10.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Herd, K.A., et al.: Cytotoxic T-lymphocyte epitope vaccination protects against human metapneumovirus infection and disease in mice. J. Virol. 80, 2034–2044 (2006). doi:10.1128/JVI.80.4.2034-2044.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. De Rose, R., et al.: Control of viremia and prevention of AIDS following immunotherapy of SIV-infected macaques with peptide-pulsed blood. PLoS Pathog. 4, e1000055 (2008). doi:10.1371/journal.ppat.1000055

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  121. Torti, N., Oxenius, A.: T cell memory in the context of persistent herpes viral infections. Viruses 4, 1116–1143 (2012). doi:10.3390/v4071116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Johnson, P.L., et al.: Vaccination alters the balance between protective immunity, exhaustion, escape, and death in chronic infections. J. Virol. 85, 5565–5570 (2011). doi:10.1128/JVI.00166-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Walsh, E.E.: Respiratory syncytial virus infection in adults. Semin. Respir. Crit. Care Med. 32, 423–432 (2011). doi:10.1055/s-0031-1283282

    Article  PubMed  Google Scholar 

  124. Graham, B.S.: Biological challenges and technological opportunities for respiratory syncytial virus vaccine development. Immunol. Rev. 239, 149–166 (2011). doi:10.1111/j.1600-065X.2010.00972.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Zinkernagel, R.M.: On natural and artificial vaccinations. Annu. Rev. Immunol. 21, 515–546 (2003). doi:10.1146/annurev.immunol.21.120601.141045

    Article  CAS  PubMed  Google Scholar 

  126. Maruyama, M., Lam, K.P., Rajewsky, K.: Memory B-cell persistence is independent of persisting immunizing antigen. Nature 407, 636–642 (2000). doi:10.1038/35036600

    Article  CAS  PubMed  Google Scholar 

  127. Caraux, A., et al.: Circulating human B and plasma cells. Age-associated changes in counts and detailed characterization of circulating normal CD138- and CD138+ plasma cells. Haematologica 95, 1016–1020 (2010). doi:10.3324/haematol.2009.018689

    Article  PubMed  PubMed Central  Google Scholar 

  128. Yu, X., et al.: Neutralizing antibodies derived from the B cells of 1918 influenza pandemic survivors. Nature 455, 532–536 (2008). doi:10.1038/nature07231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. McHeyzer-Williams, M., Okitsu, S., Wang, N., McHeyzer-Williams, L.: Molecular programming of B cell memory. Nat. Rev. Immunol. 12, 24–34 (2012). doi:10.1038/nri3128

    CAS  Google Scholar 

  130. Phan, T.G., Gray, E.E., Cyster, J.G.: The microanatomy of B cell activation. Curr. Opin. Immunol. 21, 258–265 (2009). doi:10.1016/j.coi.2009.05.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Dogan, I., et al.: Multiple layers of B cell memory with different effector functions. Nat. Immunol. 10, 1292–1299 (2009). doi:10.1038/ni.1814

    Article  CAS  PubMed  Google Scholar 

  132. Juno, J.A., Keynan, Y., Fowke, K.R.: Invariant NKT cells: regulation and function during viral infection. PLoS Pathog. 8, e1002838 (2012). doi:10.1371/journal.ppat.1002838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Pena-Cruz, V., Ito, S., Dascher, C.C., Brenner, M.B., Sugita, M.: Epidermal Langerhans cells efficiently mediate CD1a-dependent presentation of microbial lipid antigens to T cells. J.Invest. Dermatol. 121, 517–521 (2003). doi:10.1046/j.1523-1747.2003.12429.x

    Google Scholar 

  134. O’Brien, K.L., Hochman, M., Goldblatt, D.: Combined schedules of pneumococcal conjugate and polysaccharide vaccines: is hyporesponsiveness an issue? Lancet Infect. Dis. 7, 597–606 (2007). doi:10.1016/S1473-3099(07)70210-4

    Article  PubMed  Google Scholar 

  135. Brynjolfsson, S.F., et al.: Hyporesponsiveness following booster immunization with bacterial polysaccharides is caused by apoptosis of memory B cells. J. Infect. Dis. 205, 422–430 (2012). doi:10.1093/infdis/jir750

    Article  CAS  PubMed  Google Scholar 

  136. Paradiso, P.R.: Pneumococcal conjugate vaccine for adults: a new paradigm. Clin. Infect. Dis. 55, 259–264 (2012). doi:10.1093/cid/cis359

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  137. Woodland, D.L.: Jump-starting the immune system: prime-boosting comes of age. Trends Immunol. 25, 98–104 (2004). doi:10.1016/j.it.2003.11.009

    Article  CAS  PubMed  Google Scholar 

  138. Mast, T.C., et al.: International epidemiology of human pre-existing adenovirus (Ad) type-5, type-6, type-26 and type-36 neutralizing antibodies: correlates of high Ad5 titers and implications for potential HIV vaccine trials. Vaccine 28, 950–957 (2010). doi:10.1016/j.vaccine.2009.10.145

    Article  CAS  PubMed  Google Scholar 

  139. O’Hara, G.A., et al.: Clinical assessment of a recombinant simian adenovirus ChAd63: a potent new vaccine vector. J. Infect. Dis. 205, 772–781 (2012). doi:10.1093/infdis/jir850

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  140. Rerks-Ngarm, S., et al.: Vaccination with ALVAC and AIDSVAX to prevent HIV-1 infection in Thailand. N. Engl. J. Med. 361, 2209–2220 (2009). doi:10.1056/NEJMoa0908492

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Giese, M. (2016). Basic Vaccine Immunology. In: Introduction to Molecular Vaccinology. Springer, Cham. https://doi.org/10.1007/978-3-319-25832-4_2

Download citation

Publish with us

Policies and ethics