Skip to main content

Decoding Distributed Tree Structures

  • Conference paper
  • First Online:
  • 662 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9449))

Abstract

Encoding structural information in low-dimensional vectors is a recent trend in natural language processing that builds on distributed representations [14]. However, although the success in replacing structural information in final tasks, it is still unclear whether these distributed representations contain enough information on original structures. In this paper we want to take a specific example of a distributed representation, the distributed trees (DT) [17], and analyze the reverse problem: can the original structure be reconstructed given only its distributed representation? Our experiments show that this is indeed the case, DT can encode a great deal of information of the original tree, and this information is often enough to reconstruct the original object format.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    The circular convolution between \(\mathbf {a}\) and \(\mathbf {b}\) is defined as the vector \(\mathbf {c}\) with component \(c_i = \sum _j a_j b_{i-j\text { mod } d}\). The shuffled circular convolution is the circular convolution after the vectors have been randomly shuffled.

References

  1. Aiolli, F., Da San Martino, G., Sperduti, A.: Route kernels for trees. In: ICML 2009 Proceedings of the 26th Annual International Conference on Machine Learning, pp. 17–24. ACM, New York, NY, USA (2009). http://doi.acm.org/10.1145/1553374.1553377

  2. Baroni, M., Lenci, A.: Distributional memory: a general framework for corpus-based semantics. Comput. Linguist. 36(4), 673–721 (2010). http://dx.doi.org/10.1162/coli_a_00016

    Article  Google Scholar 

  3. Baroni, M., Zamparelli, R.: Nouns are vectors, adjectives are matrices: representing adjective-noun constructions in semantic space. In: Proceedings of the 2010 Conference on Empirical Methods in Natural Language Processing, pp. 1183–1193. Association for Computational Linguistics, Cambridge, MA, October 2010. http://www.aclweb.org/anthology/D10-1115

  4. Clark, S., Coecke, B., Sadrzadeh, M.: A compositional distributional model of meaning. In: Proceedings of the Second Symposium on Quantum Interaction (QI-2008), pp. 133–140 (2008)

    Google Scholar 

  5. Collins, M., Duffy, N.: Convolution kernels for natural language. In: Dietterich, T.G., Becker, S., Ghahramani, Z. (eds.) Advances in Neural Information Processing Systems 14, pp. 625–632. MIT Press, Cambridge (2001)

    Google Scholar 

  6. Collins, M., Duffy, N.: New ranking algorithms for parsing and tagging: kernels over discrete structures, and the voted perceptron. In: Proceedings of ACL 2002 (2002)

    Google Scholar 

  7. Dagan, I., Glickman, O., Magnini, B.: The PASCAL RTE challenge. In: PASCAL Challenges Workshop, Southampton, U.K. (2005)

    Google Scholar 

  8. Ferrone, L., Zanzotto, F.M.: Towards syntax-aware compositional distributional semantic models. In: Proceedings of COLING 2014, The 25th International Conference on Computational Linguistics: Technical Papers, pp. 721–730. Dublin City University and Association for Computational Linguistics, Dublin, Ireland, August 2014. http://www.aclweb.org/anthology/C14-1068

  9. Grefenstette, E., Sadrzadeh, M.: Experimental support for a categorical compositional distributional model of meaning. In: Proceedings of the Conference on Empirical Methods in Natural Language Processing, EMNLP 2011, pp. 1394–1404. Association for Computational Linguistics, Stroudsburg, PA, USA (2011). http://dl.acm.org/citation.cfm?id=2145432.2145580

  10. Kimura, D., Kuboyama, T., Shibuya, T., Kashima, H.: A subpath kernel for rooted unordered trees. In: Huang, J.Z., Cao, L., Srivastava, J. (eds.) PAKDD 2011, Part I. LNCS, vol. 6634, pp. 62–74. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  11. Li, X., Roth, D.: Learning question classifiers. In: Proceedings of the 19th International Conference on Computational Linguistics, COLING 2002, vol. 1, pp. 1–7. Association for Computational Linguistics, Stroudsburg, PA, USA (2002). http://dx.doi.org/10.3115/1072228.1072378

  12. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word representations in vector space. CoRR abs/1301.3781 (2013). http://arxiv.org/abs/1301.3781

  13. Mitchell, J., Lapata, M.: Vector-based models of semantic composition. In: Proceedings of ACL 2008: HLT, pp. 236–244. Association for Computational Linguistics, Columbus, Ohio, June 2008. http://www.aclweb.org/anthology/P/P08/P08-1028

  14. Plate, T.A.: Distributed Representations and Nested Compositional Structure. Ph.D. thesis (1994). http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.48.5527

  15. Turney, P.D., Pantel, P.: From frequency to meaning: vector space models of semantics. J. Artif. Intell. Res. (JAIR) 37, 141–188 (2010)

    MathSciNet  MATH  Google Scholar 

  16. Vishwanathan, S.V.N., Smola, A.J.: Fast kernels for string and tree matching. In: Becker, S., Thrun, S., Obermayer, K. (eds.) NIPS, pp. 569–576. MIT Press, Cambridge (2002)

    Google Scholar 

  17. Zanzotto, F.M., Dell’Arciprete, L.: Distributed tree kernels. In: Proceedings of International Conference on Machine Learning, 26 June–1 July 2012

    Google Scholar 

  18. Zanzotto, F.M., Dell’Arciprete, L.: Transducing sentences to syntactic feature vectors: an alternative way to “parse”? In: Proceedings of the Workshop on Continuous Vector Space Models and Their Compositionality, pp. 40–49. 8 August 2013. http://www.aclweb.org/anthology/W13-3205

  19. Zanzotto, F.M., Korkontzelos, I., Fallucchi, F., Manandhar, S.: Estimating linear models for compositional distributional semantics. In: Proceedings of the 23rd International Conference on Computational Linguistics (COLING), August 2010

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lorenzo Ferrone .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Ferrone, L., Zanzotto, F.M., Carreras, X. (2015). Decoding Distributed Tree Structures. In: Dediu, AH., Martín-Vide, C., Vicsi, K. (eds) Statistical Language and Speech Processing. SLSP 2015. Lecture Notes in Computer Science(), vol 9449. Springer, Cham. https://doi.org/10.1007/978-3-319-25789-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-25789-1_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-25788-4

  • Online ISBN: 978-3-319-25789-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics