Skip to main content

The Various Functions of Opioids in Pathophysiological Conditions

  • Chapter
  • First Online:
Neural Functions of the Delta-Opioid Receptor

Abstract

Opioids and their analogues have been used as clinical analgesics for several centuries, with reports dating back to as early as 4000 B.C. Their anti-pain action is primarily accomplished through three major opioid receptor subtypes: μ-opioid receptor (MOR), δ-opioid receptor (DOR), and κ-opioid receptor (KOR). Although these opioid receptors have been cloned in many species, their complex functions, other than pain modulation, are still largely unknown in both physiological and pathophysiological conditions. However, recent studies have uncovered fresh insights into opioid receptor-mediated functions and their underlying mechanisms. Studies suggest that these opioid receptors participate in various physiological activities. Therefore, their dysfunction may play a role in numerous diseases, including hypoxic/ischemic injury in brain, epileptic seizures, Parkinson’s disease, Multiple Sclerosis, cardiovascular disease, respiratory depression, pulmonary artery hypertension, malignancies, diabetic cutaneous wounds, immune disease, chronic kidney disease, uremic pruritus, renal ischemia-reperfusion injury, and pre-eclampsia. There is also strong evidence showing that opioid receptors are involved in the regulation of stress, feeding and obesity, and play an essential role in hibernation in some species. One of the most exciting findings in the past decade is DOR-mediated neuroprotection and cardioprotection. The upregulation of DOR expression and activity increases the neuronal and myocardial tolerance to hypoxic and/or ischemic stress. The DOR signal triggers different mechanisms at multiple levels, depending on stress duration and severity, to preserve neuronal and myocardial survival, including the stabilization of homeostasis and increase in pro-survival signaling. DOR-mediated neuroprotection and cardioprotection may potentially influence clinical pharmacology in terms of prevention and treatment of life-threatening conditions like stroke and myocardial infarction. The main purpose of this chapter is to update recent research on opioids and their various functions, particularly in pathophysiological conditions. This chapter aims to deliver an informative reference for better understanding the opioid system from a/the pathophysiological point of view.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AHR:

Airway hyperresponsiveness

BMDCs:

Bone marrow dendritic cells

BNTX:

7-Benzylidenenaltrexone

BUN:

Blood urea nitrogen

CKD-aP:

Chronic kidney disease-associated pruritus

DG:

Dentate gyrus

DOR:

δ-Opioid receptor

EMT:

Epithelial mesenchymal transition

GBM:

Glioblastoma

HCC:

Hepatocellular carcinoma

IRI:

Renal ischaemia-reperfusion

KO:

Knockout

KOR:

κ-Opioid receptor

L-NAME:

N-nitro-L-arginine methyl ester

LPS:

Lipopolysaccharide

MS:

Multiple Sclerosis

MOR:

μ-Opioid receptor

NB:

Neuroblastoma

NPC:

Neural progenitor cells

NTX:

Naltrexone

OGF:

Opioid growth factor

ORL:

Opioid receptor-like orphan receptor

PAH:

Pulmonary artery hypertension

PASMCs:

Pulmonary arterial smooth muscle cells

PD:

Parkinson’s disease

PDYN:

Pro-dynorphin

PENK:

Pro-enkephalin

RIPC:

Remote ischaemic preconditioning

PIS:

Penicillin-induced seizures

PKC:

Protein kinase C

POMC:

Pro-opiomelanocortin

RR-EAE:

Relapse-remitting experimental autoimmune encephalomyelitis

RUPP:

Uteroplacental perfusion

TK:

Tyrosine kinase

WT:

Wild-type

References

  • Abbadic C, Pan YX, Pastemak GW (2004) Immunohistochemical study of the expression of exon11-containing mu opioid receptor variants in mouse brain. Neuroscience 127:419–430

    Article  CAS  Google Scholar 

  • Abood ME, Noel MA, Farnsworth JS, Tao Q (1994) Molecular cloning and expression of a delta-opioid receptor from rat brain. J Neurosci Res 37:714–719

    Article  PubMed  CAS  Google Scholar 

  • Adams HP Jr, Olinger CP, Barsan WG, Butler MJ, Graff-Radford NR, Brott TG, Biller J, Damasio H, Tomsick T, Goldberg M (1986) A dose-escalation study of large doses of naloxone for treatment of patients with acute cerebral ischemia. Stroke 17:404–409

    Article  PubMed  Google Scholar 

  • Ahmed MA, Kurkar A (2014) Effects of opioid (tramadol) treatment on testicular functions in adult male rats: the role of nitric oxidative stress. Clin Exp Pharmacol Physiol 41:317–323

    Article  PubMed  CAS  Google Scholar 

  • Akil H, Mayer DJ, Liebeskind JC (1976) Antagonism of stimulation-produced analgesia by naloxone, a narcotic antagonist. Science 191:961–962

    Article  PubMed  CAS  Google Scholar 

  • Akiyama T, Carsten MI, Piecha D, Steppan S, Carstens E (2014) Nalfurafine suppresses pruritogen- and touch-evoked scratching behavior in models of acute and chronic itch in mice. Acta Derm Venereol 95:147–150

    Article  Google Scholar 

  • Albrizio M, Guaricci AC, Milano S, Macri F, Aiudi G (2014) Mu opioid receptor in spermatozoa, eggs and larvae of gilthead sea bream (Sparus Aurata) and its involvement in stress related to aquaculture. Fish Physiol Biochem 40:997–1009

    PubMed  CAS  Google Scholar 

  • Al-Chalabi A, Leigh PN (2000) Recent advances in amyotrophic lateral sclerosis. Curr Opin Neurol 13:397–405

    Article  PubMed  CAS  Google Scholar 

  • Alicea C, Belkowski S, Eisenstein TK, Adler MW, Rogers TI (1996) Inhibition of primary murine macrophage cytokine production in vitro following treatment with the kappa-opioid agonist U50, 488H. J Neuroimmunol 64:83–90

    Article  PubMed  CAS  Google Scholar 

  • Ammon-Treiber S, Stolze D, Höllt V (2007a) Differential effects of mu-opioid receptor agonists in a hippocampal hypoxia/hypoglycemia model. Brain Res 1183:60–65

    Article  PubMed  CAS  Google Scholar 

  • Ammon-Treiber S, Stolze D, Schröder H, Loh H, Höllt V (2007b) Effects of opioid antagonists and morphine in a hippocampal hypoxia/hypoglycemia model. Neuropharmacology 49:1160–1169

    Article  CAS  Google Scholar 

  • Ananthan S (2006) Opioid ligands with mixed mu/delta opioid receptor interactions: an emerging approach to novel analgesics. AAPS J 8:118–125

    Article  Google Scholar 

  • Augustin LB, Felsheim RF, Min BH, Fuchs SM, Fuchs JA, Loh HH (1995) Genomic structure of the mouse delta opioid receptor gene. Biochem Biophys Res Commun 207:111–119

    Article  PubMed  CAS  Google Scholar 

  • Auh QS, Ro JY (2012) Effects of peripheral κ opioid receptor activation on inflammatory mechanical hyperalgesia in male and female rats. Neurosci Lett 524:111–115

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Avella DM, Kimchi ET, Donahue RN, Taqaram HR, McLquqhlin PJ, Zaqon IS, Staveley-O’Carroll KF (2010) The opioid growth factor-opioid growth factor receptor axis regulates cell proliferation of human hepatocellular cancer. Am J Physiol Regul Integr Comp Physiol 298:459–466

    Article  CAS  Google Scholar 

  • Bai HB, Du JZ, Zheng XX (1999) Beta-endorphin involved in the regulation of humoral immune function of rats during acute hypoxia. Sheng Li Xue Bao 51:258–262

    PubMed  CAS  Google Scholar 

  • Balboni G, Onnis V, Conqie C, Zotti M, Sasaki Y, Ambo A, Bryant SD, Jinsmaa Y, Lazarus LH, Trapella C, Salvadori S (2006) Effect of lysine at C-terminus of the Dmt-Tic opioid pharmacophore. J Med Chem 49:5610–5617

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bardoni R, Tawfik VL, Wang D, François A, Solorzano C, Shuster SA, Choudhury P, Betelli C, Cassidy C, Smith K, de Nooij JC, Mennicken F, O’Donnell D, Kieffer BL, Woodbury CJ, Basbaum AI, MacDermott AB, Scherrer G (2014) Delta opioid receptors presynaptically regulate cutaneous mechanosensory neuron input to the spinal cord dorsal horn. Neuron 81:1312–1327

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Barnes MJ, Holmes G, Primeaux SD, York DA, Bray GA (2006) Increased expression of mu opioid receptors in animals susceptible to diet-induced obesity. Peptides 27:3292–3298

    Article  PubMed  CAS  Google Scholar 

  • Barr JM, Van Stipdonk MJ (2002) Multi-stage tandem mass spectrometry of metal cationized leucine enkephalin and leucine enkephalin amide. Rapid Commun Mass Spectrom 16:566–578

    Article  PubMed  CAS  Google Scholar 

  • Barron BA, Gu H, Gaugl JF, Caffrey JL (1992) Screening for opioids in dog heart. J Mol Cell Cardiol 24:67–77

    Article  PubMed  CAS  Google Scholar 

  • Barron BA, Jones CE, Caffrey JL (1995) Pericardial repair depresses canine cardiac catecholamines and met-enkephalin. Regul Pept 59:313–320

    Article  PubMed  CAS  Google Scholar 

  • Barry U, Zuo Z (2005) Opioids: old drugs for potential new applications. Curr Pharm Des 11:1343–1350

    Article  PubMed  CAS  Google Scholar 

  • Bausch B, Garland JP, Yamada J (2005) The delta opioid receptor agonist, SNC80, has complex, dose-dependent effects on pilocarpine-induced seizures in Sprague–Dawley rats. Brain Res 1045:38–44

    Article  PubMed  CAS  Google Scholar 

  • Beadles-Bohling AS, Wiren KM (2005) Alteration of kappa-opioid receptor system expression in distinct brain regions of a genetic model of enhanced ethanol withdrawal severity. Brain Res 1045:77–89

    Article  CAS  Google Scholar 

  • Blasco H, Mavel S, Corcia P, Gordon PH (2014) The glutamate hypothesis in ALS: pathophysiology and drug development. Curr Med Chem 21:3551–3575

    Article  PubMed  CAS  Google Scholar 

  • Boeuf B, Poirier V, Gauvin F, Guerguerian AM, Roy C, Farrell CA, Lacroix J (2003) Naloxone for shock. Cochrane Database Syst Rev 4, CD004443

    PubMed  Google Scholar 

  • Bohn LM, Rachal KM (2006) Opioid receptor signaling: relevance for gastrointestinal therapy. Curr Opin Pharmacol 6:559–563

    Article  PubMed  CAS  Google Scholar 

  • Bohn LM, Lefkowitz RJ, Gainetdinov RR, Pepp lK, Caron MG, Lin FT (1999) Enhanced morphine analgesia in mice lacking beta-arrestin 2. Science 286:2495–2498

    Article  PubMed  CAS  Google Scholar 

  • Bohn LM, Gainetdinov RR, Lin FT, Lefkowitz RJ, Caron MG (2000) Mu-opioid receptor desensitization by beta-arrestin-2 determines morphine to tolerance but not dependence. Nature 408:720–723

    Article  PubMed  CAS  Google Scholar 

  • Bohn LM, Lefkowitz RJ, Caron MGJ (2002) Differential mechanisms of morphine antinociceptive tolerance revealed in (beta) arrestin-2 knock-out mice. J Neurosci 22:10494–10500

    PubMed  CAS  Google Scholar 

  • Bohn LM, Gainetdinov RR, Sotnikova TD, Medvedev IO, Lefkowitz RJ, Dykstra LA, Caron MG (2003) Enhanced rewarding properties of morphine, but not cocaine, in beta (arrestin)-2 knock-out mice. J Neurosci 23:1026–1073

    Google Scholar 

  • Borlongan CV, WangY STP (2004) Delta opioid peptide (D-Ala2, DLeu5) encephalin: linking hibernation and neuroprotection. Front Biosci 9:3392–3398

    Article  PubMed  CAS  Google Scholar 

  • Borlongan CV, Hayashi T, Oeltgen PR, Su TP, Wang Y (2009) Hibernation-like state induced by an opioid peptide protects against experimental stroke. BMC Biol 7:31

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Borroto-Escuela DO, Romero-Fernandez W, Rivera A, Van Craenenbroeck K, Tarakanov AO, Agnati LF, Fuxe K (2013) On the g-protein-coupled receptor heteromers and their allosteric receptor-receptor interactions in the central nervous system: focus on their role in pain modulation. Evid Based Complement Alternat Med 2013:563716

    Article  PubMed  PubMed Central  Google Scholar 

  • Borsodi A, Tóth G (1995) Characterization of opioid receptor types and subtypes with new ligands. Ann N Y Acad Sci 757:339–352

    Article  PubMed  CAS  Google Scholar 

  • Bostwick DG, Null WE, Holmes D, Weber E, Barchas JD, Bensch KG (1987) Expression of opioid peptides in tumors. N Engl J Med 317:1439–1443

    Article  PubMed  CAS  Google Scholar 

  • Bregola G, Zucchini S, Frigati L, Candeletti S, Romualdi P, Reinscheid R, Simonato M (2002) Involvement of the neuropeptide orphanin FQ/nociception in kainate and kindling seizures and epileptogenesis. Epilepsia 43:18–19

    Article  PubMed  CAS  Google Scholar 

  • Brigatte P, Konno K, Gutierrez VP, Sampaio SC, Zambelli VO, Picolo G, Curi R, Cury Y (2013) Peripheral kappa and delta opioid receptors are involved in the antinociceptive effect of crotalphine in a rat model of cancer pain. Pharmacol Biochem Behav 109:1–7

    Article  PubMed  CAS  Google Scholar 

  • Brinbaum HG, White AG, Reynolds JL, Greenberg PE, Zhang M, Vallow S, Schein JR, Katz NP (2006) Estimated costs of prescription opioid analgesic abuse in the United States in 2001: a societal perspective. Clin J Pain 22:667–676

    Article  Google Scholar 

  • Butelman ER, Ko MC, Sobczyk-Kojiro K, Mosberg HI, Van Bemmel B, Zernig G, Wods JH (1998) Kappa-opioid receptor binding populations in rhesus monkey brain: relationship to an assay of thermal antinociception. J Pharmacol Exp Ther 285:595–601

    PubMed  CAS  Google Scholar 

  • Campbell AM, Zagon IS, McLaughlin PJ (2012) Opioid growth factor arrests the progression of clinical disease and spinal cord pathology in established experimental autoimmune encephalomyelitis. Brain Res 1472:138–148

    Article  PubMed  CAS  Google Scholar 

  • Cao S, Chao D, Zhou H, Balboni G, Xia Y (2014) A novel mechanism for cytoprotection against hypoxic injury: δ-opioid receptor-mediated increase in Nrf2 translocation. Br J Pharmacol 172:1869–1881

    Article  CAS  Google Scholar 

  • Carcolé M, Castany S, Leánez S, Pol O (2014) Treatment with a heme oxygenase 1 inducer enhances the antinociceptive effects of μ-opioid, δ-opioid, and cannabinoid 2 receptors during inflammatory pain. J Pharmacol Exp Ther 351:224–232

    Article  PubMed  CAS  Google Scholar 

  • Carr D, Gebhart B, Paul D (1993) Alpha adrenergic and mu-2 opioid receptors are involved in morphine-induced suppression of splenocyte natural killer activity. J Pharmacol Exp Ther 264:1179–1186

    PubMed  CAS  Google Scholar 

  • Cata JP, Keerty V, Keerty D, Feng L, Norman PH, Gottumukkala V, Mehran JR, Engle M (2014) A retrospective analysis of the effect of intraoperative opioid dose on cancer recurrence after non-small cell lung cancer resection. Cancer Med 3:900–908

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Caudle RM, Finegold AA, Mannes AJ, Tobias MD, Kenshalo DR, Iadarola MJ (1998) Spinal kappa 1 and kappa 2 opioid binding sites in rats, guinea pigs, monkeys and humans. Neuroreport 9:2523–2525

    Article  PubMed  CAS  Google Scholar 

  • Cayun S, Resch GF, Evee AD, Rapacon-Baker MM, Millipgton WR (2001) Blockade of delta opioid receptors in the ventrolateral periaqueductal gray region inhibits the fall in arterial pressure evoked by hemorrhage. J Pharmacol Exp Ther 297:612–619

    Google Scholar 

  • Chakrabarti S, Liu NJ, Gintzler AR (2010) Formation of mu-/kappa-opioid receptor heterodimer is sex-dependent and mediates female-specific opioid analgesia. Proc Natl Acad Sci U S A 107:20115–20119

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chao D, Xia Y (2010) Ionic storm in hypoxic/ischemic stress: can opioid receptors subside it? Prog Neurobiol 90:439–470

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chao D, Xia Y (2012) Acupuncture treatment of epilepsy. In: Xia Y, Ding G, Wu G (eds) Current research in acupuncture. Springer, New York, pp 129–214

    Google Scholar 

  • Chao CC, Hu S, Molitor TW, Zhou Y, Murtaugh MP, Tsang M, Peterson PK (1992) Morphine potentiates transforming growth factor-beta release from human peripheral blood mononuclear cell cultures. J Pharmacol Exp Ther 262:19–24

    PubMed  CAS  Google Scholar 

  • Chao D, Qian H, Ghassemi F, Chen JS, Xia Y (2006) Transgenic overexpression of δ-opioid receptors protects the cortex from anoxic disruption of ionic homeostasis. Soc Neurosci Abstract Program, No. 87:19/MM68

    Google Scholar 

  • Chao D, Bazzy-Asaad A, Balboni G, Xia Y (2007a) δ-, but not μ-, opioid receptor stabilizes K+ homoeostasis by reducing Ca2+ influx in the cortex during acute hypoxia. J Cell Physiol 2012:60–67

    Article  CAS  Google Scholar 

  • Chao D, Donnelly DF, Feng Y, Bazzy-Asaad A, Xia Y (2007b) Cortical delta-opioid receptors potentiate K+ homeostasis during anoxia and oxygen-glucose deprivation. J Cereb Blood Flow Metab 27:356–368

    Article  PubMed  CAS  Google Scholar 

  • Chao D, Bazzy-Asaad A, Balboni G, Salvadori S, Xia Y (2008) Activation of DOR attenuates anoxic K+ derangement via inhibition of Na+ entry in mouse cortex. Cereb Cortex 18:2217–2227

    Article  PubMed  PubMed Central  Google Scholar 

  • Chao D, Balboni G, Lazarus LH, Salvadori S, Xia Y (2009) Na+ mechanism of δ-opioid receptor induced protection from anoxic K+ leakage in the cortex. Cell Mol Life Sci 66:1105–1115

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chao D, Shen X, Xia Y (2013) From acupuncture to interaction between δ-opioid receptors and Na (+) channels: a potential pathway to inhibit epileptic hyperexcitability. Evid Based Complement Alternat Med 2013:216016

    PubMed  PubMed Central  Google Scholar 

  • Charron C, Messier C, Plamondon H (2008) Neuroprotection and functional recovery conferred by administration of kappa- and delta-opioid agonists in a rat model of global ischemia. Physiol Behav 939:502–511

    Article  CAS  Google Scholar 

  • Chen CJ, Cheng FC, Liao SL, Chen WY, Lin NN, Kuo JS (2000) Effects of naloxone on lactate, pyruvate metabolism and antioxidant enzyme activity in rat cerebralischemia/reperfusion. Neurosci Lett 287:113–116

    Article  PubMed  CAS  Google Scholar 

  • Chen T, Li J, Chao D, Sandhu HK, Liao X, Zhao J, Wen G, Xia Y (2014) δ-Opioid receptor activation reduces α-synuclein overexpression and oligomer formation induced by MPP(+) and/or hypoxia. Exp Neurol 255:127–136

    Article  PubMed  CAS  Google Scholar 

  • Chen Y, Somme C (2007) Activation of the nociception opioid system in rat sensory neurons produces antinociceptive effects in inflammatory pain: involvement of inflammatory mediators. J Neurosci Res 85:1478–1488

    Article  PubMed  CAS  Google Scholar 

  • Chen Y, Mestek A, Liu J, Yu L (1993) Molecular cloning of a rat κ-opioid receptor reveals sequence similarities to the m and d opioid receptors. Biochem J 295:625–628

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chen CJ, Liao SL, Chen WY, Hong JS, Kuo JS (2001) Cerebral ischemia/reperfusion injury in rat brain: effects of naloxone. Neuroreport 12:1245–1249

    Article  PubMed  CAS  Google Scholar 

  • Chen CJ, Cheng FC, Liao SL, Chen WY, Lin NN, Kuo JS (2000) Effects of naloxone on lactate, pyruvate metabolism and antioxidant enzyme activity in rat cerebral ischemia/reperfusion. Neurosci Lett 287:113–116

    Article  PubMed  CAS  Google Scholar 

  • Chen T, Li J, Chao D, Sandhu HK, Liao X, Zhao J, Wen G, Xia Y (2014) δ-Opioid receptor activation reduced α-synuclein overexpression and oligomer formation induced by MPP (+) and/or hypoxia. Exp Neurol 255:127–136

    Article  PubMed  CAS  Google Scholar 

  • Cheng F, McLaughlin PJ, Verderame MF, Zagon IS (2008) The OGF-OGFr axis utilizes the p21 pathway to restrict progression of human pancreatic cancer. Mol Cancer 7:5

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Christie MJ (2008) Cellular neuroadaptations to chronic opioids: tolerance, withdrawal and addiction. Br J Pharmacol 154:384–396.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chung MK, Cho YS, Bae YC, Lee J, Zhang X, Ro JY (2014) Peripheral G protein-coupled inwardly rectifying potassium channels are involved in δ-opioid receptor-mediated anti-hyperalgesia in rat masseter muscle. Eur J Pain 18:29–38

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cicero TJ, Schainker BA, Meyer ER (1979) Endogenous opioids participate in the regulation of the hypothalamus-pituitary-luteinizing hormone axis and testosterone’s negative feedback control of luteinizing hormone. Endocrinology 104:1286–1291

    Article  PubMed  CAS  Google Scholar 

  • Clark JA, Liu L, Price M, Hersh B, Edelson M, Pasternak GW (1989) Kappa opiate receptor multiplicity: evidence for two U50, 488-sensitive kappa 1 subtypes and a novel kappa 3 subtype. J Pharmacol Exp Ther 251:461–468

    PubMed  CAS  Google Scholar 

  • Comb M, Seeburg PH, Adelman J, Eiden L, Herbert E (1982) Primary structure of the human met- and leu-enkephalin precursor and its mRNA. Nature 295:663–666

    Article  PubMed  CAS  Google Scholar 

  • Cominski TP, Ansonoff MA, Turchin CE, Pintar JE (2014) Loss of the mu opioid receptor induces strain-specific alterations in hippocampal neurogenesis and spatial learning. Neuroscience 278:11–19

    Article  PubMed  CAS  Google Scholar 

  • Compton W, Volkow ND (2006) Abuse of prescription drugs and the risk of addiction. Drug Alcohol Depend 83:4–7

    Article  CAS  Google Scholar 

  • Cooper PD, Dennis SR, Woodman JD, Cowlings A, Donnelly C (2010) Effect of opioid compounds on feeding and activity of the cockroach, Periplaneta Americana. Comp Biochem Physiol C Toxicol Pharmacol 151:298–302

    Article  PubMed  CAS  Google Scholar 

  • Cunha TM, Souza GR, Domingues AC, Carreira EU, Lotufo CM, Funez MI, Verri WA Jr, Cunha FQ, Ferreira SH (2012) Stimulation of peripheral kappa opioid receptors inhibits inflammatory hyperalgesia via activation of the PI3Kγ/AKT/nNOS/NO signaling pathway. Mol Pain 8:10

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cunha-Oliveira T, Rego AC, Oliveira CR (2008) Cellular and molecular mechanisms involved in the neurotoxicity of opioid and psychostimulant drugs. Brain Res Rev 58:192–208

    Article  PubMed  CAS  Google Scholar 

  • Czyzyk TA, Nogueiras R, Lockwood JF, McLomzie JH, Coskun T, Pintar JE, Hammond C, Tschop MH, Stantnick MA (2010) kappa-Opioid receptors control the metabolic response to a high-energy diet in mice. FASEB J 24:1151–1159

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dahan A, Aarts L, Smith TW (2010) Incidence, reversal, and prevention of opioid-induced respiratory depression. Anesthesiology 112:226–238

    Article  PubMed  Google Scholar 

  • Danielsson I, Gasior M, Stevenson GW, Folk JE, Rice KC, Negus SS (2006) Electroencephalographic and convulsant effects of the delta opioid agonist SNC80 in rhesus monkeys. Pharmacol Biochem Behav 85:428–434

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Darland T, Heinricher MM, Grandy DK (1998) Orphanin FQ/nociception: a role in pain and analgesia, but so much more. Trends Neurosci 21:215–221

    Article  PubMed  CAS  Google Scholar 

  • Demoliou-Mason CD, Barnard EA (1986) Distinct subtypes of the opioid receptor with allosteric interactions in brain membranes. J Neurochem 46:1118–1128

    Article  PubMed  CAS  Google Scholar 

  • Doggrell SA (2007) Cardiovascular and renal effects of nociception/orphanin FQ: a new mediator to target? Curr Opin Investig Drugs 8:742–749

    PubMed  CAS  Google Scholar 

  • Donahue LA, Kulik L, Baker T, Ganger DR, Gupta R, Memon K, Abecassis MM, Salem R, Lewandowski RJ (2013) Yttrium-90 radioembolization for the treatment of unresectable hepatocellular carcinoma in patients with transjugular intrahepatic portosystemic shunts. J Vasc Interv Radiol 24(1):74–80

    Article  PubMed  Google Scholar 

  • Donahue RN, McLaughlin PJ, Zagon IS (2009) Cell proliferation of human ovarian cancer is regulated by the opioid growth factor opioid growth factor receptor axis. Am J Physiol Regul Integr Comp Physiol 296:1716–1725

    Article  CAS  Google Scholar 

  • Donahue RN, McLaughlin PJ, Zagon IS (2011) Low-dose naltrexone targets the opioid growth factor-opioid growth factor receptor pathway to inhibit cell proliferation: mechanistic evidence from a tissue culture model. Exp Biol Med (Maywood) 236:1036–1050

    Article  CAS  Google Scholar 

  • Eisenstein TK, Rahim RT, Feng P, Thingalaya N, Meissler JJ (2006) Effects of opioid tolerance and withdrawal on the immune system. J Neuroimmune Pharmacol 1:237–249

    Article  PubMed  Google Scholar 

  • Eisinger DA, Schulz R (2005) Mechanism and consequences of delta opioid receptor internalization. Crit Rev Neurobiol 17:1–26

    Article  PubMed  CAS  Google Scholar 

  • Eliasson T, Mannheimer C, Waagstein F, Andersson B, Berqh CH, Auqustinsson LE, Hedner T, Larson G (1998) Myocardial turnover of endogenous opioid and calcitonin-gene-related peptide in the human heart and the effects of spinal cord stimulation on pacing-induced angina pectoris. Cardiology 89:170–177

    Article  PubMed  CAS  Google Scholar 

  • Endoh H, Taga K, Yamakura T, Sato K, Watanabe I, Fukuda S, Shimoji K (1999) Effects of naloxone and morphine on acute hypoxic survival in mice. Crit Care Med 27:1929–1933

    Article  PubMed  CAS  Google Scholar 

  • Evans CJ, Keith DE, Morrison H, Magendzo K, Edwards RH (1992) Cloning of a delta opioid receptor functional expression. Science 258:1952–1955

    Article  PubMed  CAS  Google Scholar 

  • Fabbri A, Knox G, Buczko E, Dufau ML (1988) Beta-endorphin production by the fetal Leydig cell: regulation and implication for paracrine control of Sertoli cell function. Endocrinology 122:749–755

    Article  PubMed  CAS  Google Scholar 

  • Fabbri A, Jannini EA, Gnessi L, Ulisse S, Moretti C, Isidori A (1989) Neuroendocrine control of male reproductive function: the opioid system as a model of control at multiple sites. J Steroid Biochem 32:145–150

    Article  PubMed  CAS  Google Scholar 

  • Faden AI, Holaday JW (1979) Opiate antagonists: a role in the treatment of hypovolemic shock. Science 205:317–318

    Article  PubMed  CAS  Google Scholar 

  • Feng Y, Chao DM, Li WM, Cao YX, Wang YQ, Wu GC (2004) Inhibition of nociception/orphanin FQ on penicillin-induced seizures in rats. Brain Res 1020:214–219

    Article  PubMed  CAS  Google Scholar 

  • Feng Y, Chao D, He X, Yang Y, Kang X, Lazarus LH, Xia Y (2009) A novel insight into neuroprotection against hypoxic/ischemic stress. Sheng Li Xue Bao 61:585–592

    PubMed  CAS  Google Scholar 

  • Feng Y, He X, Yang Y, Chen J, Yin K, Xia Y (2011) Effect of delta opioid receptor over-expression on cortical expression of GABAA receptor alpha1-subunit in hypoxia. Chin J Physiol 54:118–123

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Feng Y, He X, Yang Y, Chao D, Lazarus LH, Xia Y (2012) Current research on opioid receptor function. Curr Drug Targets 13:230–246

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Filliol D, Ghozland S, Chluba J, Martin M, Matthes HW, Simonin F, Befort K, Gaveriaux-Ruff C, Dierich A, LeMeur M, Valverde O, Maldonado R, Kieffer BL (2000) Mice deficient for delta- and mu-opioid receptors exhibit opposing alterations of emotional responses. Nat Genet 25:195–200

    Article  PubMed  CAS  Google Scholar 

  • Finley MJ, Happel CM, Kaminsky DE, Rogers TJ (2008) Opioid and nociception receptors regulate cytokine and cytokine receptor expression. Cell Immunol 252:146–154

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fiore G, Ghelardini C, Bruni G, Guarna M, Bianchi E (2013) Differentiation state affects morphine induced cell regulation in neuroblastoma cultured cells. Neurosci Lett 555:51–56

    Article  PubMed  CAS  Google Scholar 

  • Forman LJ, Estilow S, Hock CE (1989) Localization of beta-endorphin in the rat heart and modulation by testosterone. Pro Soc Exp Biol Med 190:240–245

    Article  CAS  Google Scholar 

  • Fricsen C, Hormann I, Roscher M, Fichtner I, Alt A, Hilger R, Debatin KM, Miltner E (2014) Opioid receptor activation triggering downregulation of cAMP improves effectiveness of anti-cancer drugs in treatment of glioblastoma. Cell Cycle 13:156–170

    Google Scholar 

  • Fristad I, Berggreen E, Haug SR (2006) Delta opioid receptors in small and medium-sized trigeminal neurons supporting the dental pulp of rats. Arch Oral Biol 51:273–281

    Article  PubMed  CAS  Google Scholar 

  • Fujisawa M, Bardin CW, Morris PL (1993) Germ cell factor(s) regulates opioid gene expression in Sertoli cells. Recent Prog Horm Res 48:497–503

    PubMed  CAS  Google Scholar 

  • Fujita Y, Tsuda Y, Li T, Motoyama Takahashi M, Shimizu Y, Yokoi T, Sasaki Y, Ambo A, Kita A, Jinsmaa Y, Bryant SD, Lazarus LH, Okada Y (2004) Development of potent bifunctional endomorphin-2 analogues with mixed mu-/delta-opioid agonist and delta-opioid antagonist properties. J Med Chem 47(14):3591–3599

    Article  PubMed  CAS  Google Scholar 

  • Gackenheimer SL, Suter TM, Pintar JE, Quimby SJ, Wheeler WJ, Mitch CH, Gehlert DR, Statnick MA (2005) Localization of opioid receptor antagonist [3H]-LY255582 binding sites in mouse brain: comparison with the distribution of mu, delta and kappa binding sites. Neuropeptides 39:559–567

    Article  PubMed  CAS  Google Scholar 

  • Garzon J, Jen M, Sanchez-Blaquez P, Lee N (1982) Dynorphin (1–13), a long-lasting inhibitor of opiate receptor binding in vitro. Life Sci 31:1789–1792

    Article  PubMed  CAS  Google Scholar 

  • Gastfriend DR (2014) A pharmaceutical industry perspective on the economics of treatments for alcohol and opioid use disorders. Ann N Y Acad Sci 1327:112–130

    PubMed  PubMed Central  Google Scholar 

  • Gavériaux-Ruff C, Kieffer BL (2002) Opioid receptor genes inactivated in mice: the highlights. Neuropeptides 36:62–71

    Article  PubMed  CAS  Google Scholar 

  • Ge ZH, Wang ZX, Yu TL, Yang N, Sun Y, Hao CL, Sun LX (2014) Morphine improved the antitumor effects on MCF-7 cells in combination with 5-Fluorouracil. Biomed Pharmacother 68:299–305

    Article  PubMed  CAS  Google Scholar 

  • Gebhart GF (2000) J.J. Bonica lecture-2000: Physiology, pathophysiology, and pharmacology of visceral pain. Reg Anesth Pain Med 25:632–638

    PubMed  CAS  Google Scholar 

  • Georganta EM, Tsoutsi L, Gaitanou M, Georgoussi Z (2013) δ-opioid receptor activation leads to neurite outgrowth and neuronal differentiation via a STAT5B-Gαi/o pathway. J Neurochem 127:329–341

    Article  PubMed  CAS  Google Scholar 

  • Giovannitti JA Jr, Thoms SM, Crawford JJ (2015) Alpha-2 adrenergic receptor agonists: a review of current clinical applications. Anesth Prog 62:31–39

    Article  PubMed  PubMed Central  Google Scholar 

  • Gironi M, Furlan R, Rovaris M, Comi G, Filippi M, Panerai AE, Sacerdote P (2003) Beta endorphin concentrations in PBMC of patients with different clinical phenotypes of multiple sclerosis. J Neurol Neurosurg Psychiatry 74:495–497

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gironi M, Martinelli-Boneschi F, Sacerdote P, Solaro C, Zaffaroni M, Cavarretta R, Moiola L, Bucello S, Radaelli M, Pilato V, Rodegher M, Cursi M, Franchi S, Martinelli V, Nemni R, Comi G, Martino G (2008) A pilot trial of low-dose naltrexone in primary progression multiple sclerosis. Mult Scler 14:1076–1083

    Article  PubMed  CAS  Google Scholar 

  • Giros B, Pohl M, Rochelle JM, Seldin MF (1995) Chromosomal localization of opioid peptic and receptor genes in the mouse. Life Sci 56:360–375

    Article  Google Scholar 

  • Goldstein A, Tachibana S, Lowney LI, Hunkapiller M, Hood L (1979) Dynorphin-(1-13), an extraordinarily potent opioid peptide. Proc Natl Acad Sci U S A 76:6666–6670

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gonzalez-Nunez V, Noriega-Prieto JA, Rodrlfuez RE (2014) Morphine modulates cell proliferation through mir133b & mir128 in the neuroblastoma SH-SY5Y cell line. Biochim Biophys Acta 1842:566–572

    Article  PubMed  CAS  Google Scholar 

  • Gosnell BA, Levine AS (2009) Reward systems and food intake: role of opioids. Int J Obes (Lond) 33:54–58

    Article  CAS  Google Scholar 

  • Govindaswami M, Brown SA, Yu J, Zhu H, Bishop PD, Kindy MS, Oeltgen PR (2008) Delta 2-specific opioid receptor agonist and hibernating woodchuck plasma fraction provide ischemic neuroprotection. Acad Emerg Med 15:250–257

    Article  PubMed  Google Scholar 

  • Grecksch G, Becker A, Schroeder H, Höllt V (1999) Involvement of delta-opioid receptors in pentylenetetrazol kindling development and kindling-related processes in rats. Naunyn Schmiedebergs Arch Pharmacol 360:151–156

    Article  PubMed  CAS  Google Scholar 

  • Greeneltch KM, Haudenschild CC, Keegan AD, Shi Y (2004) The opioid antagonist naltrexone blocks acute endotoxic shock by inhibiting tumor necrosis factor-alpha production. Brain Behav Immun 18:476–484

    Article  PubMed  CAS  Google Scholar 

  • Grimm MC, Ben-Baruch A, Taub DD, Howard OM, Resau JH, Wang JM, Ali H, Richardson R, Snyderman R, Oppenheim JJ (1998) Opiates transdeactivate chemokine receptors: delta and mu opiate-receptor mediated heterologous desensitization. J Exp Med 188:317–325

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gross GJ (2003) Role of opioids in acute and delayed preconditioning. J Mol Cell Cardiol 35:709–718

    Article  PubMed  CAS  Google Scholar 

  • Gross ER, Hsu AK, Gross GJ (2004) Opioid-induced cardioprotection occurs via glycogen synthase kinase beta inhibition during reperfusion in intact rat hearts. Circ Res 94:960–966

    Article  PubMed  CAS  Google Scholar 

  • Guo Y, Wang L, Zhou Z, Wang M, Liu R, Wang L, Jiang Q, Song L (2013) An opioid growth factor receptor (OGFR) for [Met5]-enkephalin in Chlamys farreri. Fish Shellfish Immunol 34:1228–1235

    Article  PubMed  CAS  Google Scholar 

  • Gutkowska J, Jankowski M, Pawlak D, Mukaddam-Daher S, Izdebski J (2004) The cardiovascular and renal effects of a highly potent mu-opioid receptor agonist, cyclo [Ne, Nb-carbonyl-D-Lys2, Dap5]enkephalinamide. Eur J Pharmacol 496:167–174

    Article  PubMed  CAS  Google Scholar 

  • Hackler L, Zadina JE, Ge L-J, Kastin AJ (1997) Isolationo of relatively large amounts of endomorphin-1 and endomorphin-2 from human brain cortex. Peptides 18:1635–1639

    Article  PubMed  CAS  Google Scholar 

  • Haji A, Takeda R, Okazaki M (2000) Neuropharmacology of control of respiratory rhythm and pattern in mature mammals. Pharmacol Ther 86:277–304

    Article  PubMed  CAS  Google Scholar 

  • Hajrasouliha AR, Tavakoli S, Jabehdar-Maralani P, Ebrahimi F, Shafaroodi H, Mirkhani SH, Amanpour S, Dehpour AR (2005) Cholestatic liver disease modulates susceptibility to ischemia/reperfusion- induced arrhythmia, but not necrosis and hemodynamic instability: the role of endogenous opioid peptides. J Hepatol 43:491–498

    Article  PubMed  CAS  Google Scholar 

  • Hammer LA, Zagon IS, McLaughlin PJ (2013) Treatment of a relapse-remitting model of multiple sclerosis with opioid growth factor. Brain Res Bull 98:122–131

    Article  PubMed  CAS  Google Scholar 

  • Hammers A, Asselin M, Hinz R, Kitchen I, Brools DJ, Duncan JS, Koepp MJ (2007) Upregulation of opioid receptor binding following spontaneous epileptic seizures. Brain 130:1009–1016

    Article  PubMed  Google Scholar 

  • Hanlon KE, Herman DS, Agnes RS, Largent-Milnes TM, Kumarasinghe IR, Ma SW, Guo W, Lee YS, Ossipov MH, Hruby VJ, Lai J, Porreca F, Vanderah TW (2011) Novel peptide ligands with dual acting pharmacophores designed for the pathophysiology of neuropathic pain. Brain Res 1395:1–11

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Harrison LM, Kastin AL, Zadina JE (1998) Opiate tolerance and dependence: receptors, G-proteins, and antiopiates. Peptides 19:1603–1630

    Article  PubMed  CAS  Google Scholar 

  • Hauser KF, Knapp PE (2014) Interactions of HIV and drugs of abuse: the importance of glia, neural progenitors, and host genetic factors. Int Rev Neurobiol 118:231–313

    Article  PubMed  PubMed Central  Google Scholar 

  • Hauser KF, McLaughlin PJ, Zagon IS (1987) Endogenous opioid regulate dendritic growth and spine formation in developing rat brain. Brain Res 416:157–161

    Article  PubMed  CAS  Google Scholar 

  • Hayward NJ, McKnight AT, Woodruff GN (1993) Neuroprotective effect of the kappa-agonist enadoline (CI-997) in rat models of focal cerebral ischaemia. Eur J Neurosci 5:961–967

    Article  PubMed  CAS  Google Scholar 

  • He A, Hersh EV (2012) A review of intranasal ketorolac tromethamine for the short-term management of moderate to moderately severe pain that requires analgesia at the opioid level. Curr Med Res Opin 28:1873–1880

    Article  PubMed  CAS  Google Scholar 

  • He BJ, Tong PJ, Li J, Jing HT, Yao XM (2013) Auricular acupressure for analgesia in perioperative period of total knee arthroplasty. Pain Med 14:1608–1613

    Article  PubMed  Google Scholar 

  • Heckert LL, Griswold MD (2002) The expression of the follicle-stimulating hormone receptor in spermatogenesis. Recent Prog Horm Res 57:127–148

    Article  Google Scholar 

  • Heinricher MM (2005) Nociceptin/orphanin FQ: pain, stress and neural circuits. Life Sci 77:3127–3132

    Article  PubMed  CAS  Google Scholar 

  • Hill MP, Hille CJ, Brotchie JM (2000) Delta-opioid receptor agonists as a therapeutic approach in Parkinson’s disease. Drug News Perspect 13:261–268

    PubMed  CAS  Google Scholar 

  • Holaday JW (1984) Opiate antagonists in shock and trauma. Am J Emerg Med 2:8–12

    Article  PubMed  CAS  Google Scholar 

  • Höllt V (1992) Precursors of opioid peptides and their gene regulation. Clin Neuropharmacol 15:50–51

    Article  Google Scholar 

  • Horiuchi T, Kawaguchi M, Sakamoto T, Kurita N, Inoue S, Nakamura M, Konishi N, Furuya H (2004) The effects of the delta-opioid agonist SNC80 on hind-limb motor function and neuronal injury after spinal cord ischmia in rats. Anesth Analg 99:235–240

    Article  PubMed  CAS  Google Scholar 

  • Horiuchi T, Kawaguchi M, KuritaN IS, Sakamoto T, Nakamura M, Konishi N, Furuya H (2008) Effects of delta-opioid agonist SNC80 on white matter injury following spinal cord ischemia in normothermic and mildly hypothermic rats. J Anesth 22:32–37

    Article  PubMed  Google Scholar 

  • Hosobuchi Y, Baskin DS, Woo SK (1982) Reversal of induced ischemic neurologic deficit in gerbils by the opiate antagonist naloxone. Science 215:69–71

    Article  PubMed  CAS  Google Scholar 

  • Hughes J, Smith TW, Kosterlitz HW, Fothergill LA, Morgan BA, Morris HR (1975) Identification of two related pentapeptides from the brain with potent opiate agonist activity. Nature 258:577–579

    Article  PubMed  CAS  Google Scholar 

  • Iishi H, Tatsuta M, Baba M, Okuda S, Taniguchi H (1992) Enhancement by methionine- and leucine-enkephalin of gastric carcinogenesis induced by N-methyl-N′-nitro-N-nitrosoguanidine in Wistar rats. Oncology 49:407–410

    Article  PubMed  CAS  Google Scholar 

  • Ikeda K, Yoshikawa S, Kurokawa T, Yuzawa N, Nakao K, Mochizuki H (2009) TRK-820, a selective kappa opioid receptor agonist, could effectively ameliorate L-DOPA-induced dyskinesia symptoms in a rat model of Parkinson’s disease. Eur J Pharmacol 620:42–48

    Article  PubMed  CAS  Google Scholar 

  • Immonen JA, Zagon IS, Lewis GS, McLaughlin PJ (2013) Topical treatment with the opioid antagonist naltrexone accelerates the remodeling phase of full-thickness wound healing in type 1 diabetic rats. Exp Biol Med (Maywood) 238:1127–1135

    Article  CAS  Google Scholar 

  • Immonen JA, Zagon IS, McLaughlin PJ (2014a) Selective blockade of the OGF-OGFr pathway by naltrexone accelerates fibroblast proliferation and wound healing. Exp Bliol Med (Maywood) 239:1300–1309

    Article  CAS  Google Scholar 

  • Immonen JA, Zagon IS, McLaughlin PJ (2014b) Topical naltrexone as treatment for Type 2 diabetic cutancous wounds. Adv Wound Care (New Rochelle) 3:419–427

    Article  Google Scholar 

  • Iselin-Chaves IA, Grötzsch H, Besson M, Burkhard PR, Savoldelli GL (2009) Naloxone-responsive acute dystonia and parkinsonism following general anaesthesia. Anaesthesia 64:1359–1362

    Article  PubMed  CAS  Google Scholar 

  • Iskandar SB, Abi-Saleh BS, Mechleb BK, Fahrig SA (2007) Methadone and torsade de pointes: case report and review of the literature. Tenn Med 100:35–37

    PubMed  Google Scholar 

  • Ivanov IS, Schulz KP, Palmero RC, Newcorn JH (2006) Neurorobiology and evidence-based biological treatments for substance abuse disorders. CNS Spectr 11:864–877

    Article  PubMed  Google Scholar 

  • Iwata M, Inoue S, Kawaguchi M, Nakamura M, Konishi N, Furuya H (2007) Effects of delta-opioid receptor stimulation and inhibition on hippocampal survival in a rat model of forebrain ischaemia. Br J Anaesth 99:538–546

    Article  PubMed  CAS  Google Scholar 

  • Jamali A, Bamdad T, Soleimanjahi H, Pakdel FG, Arefian E (2007) Acute morphine administration reduces white blood cells’ capability to induce innate resistance against HSV-1 infection in BALB/c mice. Neuroimmunomodulation 14:16–23

    Article  PubMed  CAS  Google Scholar 

  • Javadian P, Salmanian B, Javadi-Paydar M, Shamshirsaz AA, Ejtemaci Mehr S, Gharedaghi MH, Dehpour AR (2013) Effect of morphine on the reduced uteroplacental perfusion model of pre-eclampsia in rats. Eur J Obstet Gynecol Reprod Biol 168:161–166

    Article  PubMed  CAS  Google Scholar 

  • Jiang Q, Takemori AE, Sultana M, Portoqhese PS, Bowen WD, Mosberg HI, Porreca F (1991) Differential antagonism of opioid delta antinociception by [D-Ala2, Leu5, Cys6]enkephalin and naltrindole 5′-isothiocyanate: evidence for delta receptor subtypes. J Pharmacol Exp Ther 257:1069–1075

    PubMed  CAS  Google Scholar 

  • Jordan BA, Cyejie S, Devi LA (2000) Opioids and their complicated receptor complexes. Neuropsychopharmacology 23:5–18

    Article  Google Scholar 

  • Jutkiewicz EM, Baladi MG, Folk JE, Rice KC, Woods JH (2006) The convulsive and electroencephalographic changes produced by nonpeptidic delta-opioid agonists in rats: comparison with pentylenetetrazol. J Pharmacol Exp Ther 317:1337–1348

    Article  PubMed  CAS  Google Scholar 

  • Kalman S, Osterberg A, Sörensen J, Boivie J, Bertler A (2002) Morphine responsiveness in a group of well-defined multiple sclerosis patients: a study with i.v. morphine. Eur J Pain 6:69–80

    Article  PubMed  CAS  Google Scholar 

  • Kang J, Shi Y, Xiang B, Qu B, Su W, Zhu M, Zhang M, Bao G, Wang F, Zhang X, Yang R, Fan F, Chen X, Pei G, Ma L (2005) A nuclear function of beta-arrestin 1 in GPCR signaling: regulation of histone acetylation and gene transcription. Cell 123:833–847

    Article  PubMed  CAS  Google Scholar 

  • Kao TK, Ou YC, Liao SL, Chen WY, Wang CC, Chen SY, Chiang AN, Chen CJ (2008) Opioids modulate post-ischemic progression in a rat model of stroke. Neurochem Int 52:1256–1265

    Article  PubMed  CAS  Google Scholar 

  • Karrow A, Verthein U, Krausz M, Schafer I (2008) Association of personality disorders, family conflicts and treatment with quality of life in opiate addiction. Eur Addict Res 14:38–46

    Article  Google Scholar 

  • Kharmate G, Rajput PS, Lin YC, Kumar U (2013) Inhibition of tumor promoting signals by activation of SSTR 2 and opioid receptors in human breast cancer cells. Cancer Cell Int 13:93

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kho HG, Kloppenborg PW, van Egmond J (1993) Effects of acupuncture and transcutaneous stimulation analgesia on plasma hormone levels during and after major abdominal surgery. Eur J Anaesthesiol 10:197–208

    PubMed  CAS  Google Scholar 

  • Kieffer BL, Evans CJ (2009) Opioid receptors: from binding sites to visible molecules in vivo. Neuropharmacology 56:205–212

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kieffer BL, Gavériaux-Ruff C (2002) Exploring the opioid system by gene knockout. Prog Neurobiol 66:285–306

    Article  PubMed  CAS  Google Scholar 

  • Kieffer BL, Befort K, Gaveiau-Ruff C, Hirth CG (1992) The delta opioid receptor: isolation of a cDNA clone by expression cloning and pharmacological characterization. Proc Natl Acad Sci U S A 89:12048–12052

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Koch T, Höllt V (2008) Role of receptor internalization in opioid tolerance and dependence. Pharmacol Ther 117:199–206

    Article  PubMed  CAS  Google Scholar 

  • Koodie L, Yuan H, Pumper JA, Yu H, Charboneau R, Ramkrishnan S, Roy S (2014) Morphine inhibits migration of tumor-infiltrating leukocytes and suppresses angiogenesis associated with tumor growth in mice. Am J Pathol 184:1073–1084

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Koprich JB, Fox SH, Johnston TH, Goodman A, Le Bourdonnec B, Dolle RE, DeHaven RN, DeHaven RN, DeHaven-Hudkins DL, Little PJ, Brotchie JM (2011) The selective mu-opioid receptor antagonist, ADC5510, reduces L-DODA induced dyskinesia in the MPTP macaque model of Parkinson’s disease. Mov Disord 26:1225–1233

    Article  PubMed  Google Scholar 

  • Korolenko TA, Goncharova IA, Anterejkina LI, Levina OA, Korolenko CP (2007) Influence of opiate addiction on liver cell damage of patients with viral hepatitis C. Alaska Med 49:75–78

    PubMed  CAS  Google Scholar 

  • Kotlinska JH, Gibula-Bruzda E, Witkowska E, Chung NN, Schiller PW, Izdebski J (2013) Antinociceptive effects of two deltorphins analogs in the tail-immersion test in rats. Peptides 39:103–110

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kouchek M, Takasusuki T, Terashima T, Yaksh TL, Xu Q (2013) Effects of intrathecal SNC80, a delta receptor ligand, on nociceptive threshold and dorsal horn substance p release. J Pharmacol Exp Ther 347:258–264

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Krajnik M, Jassem E, Sobanski P (2014) Opioid receptor bronchial tree: current science. Curr Opin Support Palliat Care 8:191–199

    Article  PubMed  Google Scholar 

  • Kreek MJ, Nielsen DA, LaForge KS (2004) Genes associated with addiction: alcoholism, opiate, and cocaine addiction. Neuromolecular Med 5:85–108

    Article  PubMed  CAS  Google Scholar 

  • Kreek MJ, Zhou Y, Butelman ER, Levran O (2009) Opiate and cocaine addiction: from bench to clinic and back to the bench. Curr Opin Pharmacol 9:74–80

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kumagai H, Ebata T, Takamori K, Miyasato K, Muramatsu T, Nakamoto H, Kurihara M, Yanagita T, Suzuki H (2012) Efficacy and safety of a novel κ-agonist for managing intractable pruritus in dialysis patients. Am J Nephrol 36:175–183

    Article  PubMed  CAS  Google Scholar 

  • Kuzumaki N, Suzuki A, Narita M, Hosoya T, Nagasawa A, Imai S, Yamamizu K, Morita H, Nagase H, Okada Y, Okano HJ, Yamshita JK, Okano H, Suzuki T, Narita M (2012) Effect of κ- opioid receptor agonist on the growth of non-small cell lung cancer (NSCLC) cells. Br J Cancer 106:1148–1152

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • LaBuda CJ, Sora I, Uhl GR, Fuchs PN (2000) Stress-induced analgesia in mu-opioid receptor knockout mice reveals normal function of the delta-opioid receptor system. Brain Res 869:1–5

    Article  PubMed  CAS  Google Scholar 

  • Lalley PM (2008) Opioidergic and dopaminergic modulation of respiration. Respir Physiol Neurobiol 164:160–167

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • LaLumiere RT, Kalivas PW (2008) Glutamate release in the nucleus accumbens core is necessary for heroin seeking. J Neurosci 28:3170–3177

    Article  PubMed  CAS  Google Scholar 

  • Lambert DG (2008) The nociception/orphanin FQ receptor: a target with broad therapeutic potential. Nat Rev Drug Discov 7:694–711

    Article  PubMed  CAS  Google Scholar 

  • Lan X, Chandel N, Cheng K, Lederman R, Saleem MA, Mathieson PW, Husain M, Crosson JT, Gupta K, Malhotra A, Singhal PC (2013) Morphine induces albuminuria by compromising podocyte integrity. PLoS One 8:e55748

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lang RE, Hermann K, Dietz R, Gaida W, Ganten D, Kraft K, Unger T (1983) Evidence for the presence of enkephalins in the heart. Life Sci 32:399–406

    Article  PubMed  CAS  Google Scholar 

  • Lasukova TV, Krylatov AV, Maslov LN, Lishmanov lB, Gross GJ, Podoksenov A (2004) Antiarrhythmic and cardioprotective effect of stimulation of delta 1-opiate receptors in myocardial ischemia and reperfusion. Patol Fiziol Eksp Ter 3:12–15

    PubMed  Google Scholar 

  • Law PY, Loh HH (1999) Regulation of opioid receptor activities. J Pharmacol Exp Ther 289:607–624

    PubMed  CAS  Google Scholar 

  • Lawson KP, Nag S, Thompson AD, Mokha SS (2010) Sex-specificity and estrogen-dependence of kappa opioid receptor-mediated antinociception and antihyperalgesia. Pain 151:806–815

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lei ZM, Rao CV (2001) Neural actions of luteinizing hormone and human chorionic gonadotropin. Semin Reprod Med 19:103–109

    Article  PubMed  CAS  Google Scholar 

  • Leitl MD, Onvani S, Bowers MS, Cheng K, Rice KC, Carlezon WA Jr, Banks ML, Negus SS (2014) Pain-related depression of the mesolimbic dopamine system in rats: expression, blockade by analgesics, and role of endogenous κ-opioids. Neuropsychopharmacology 39:614–624

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lenard NR, Zheng H, Berthoud HR (2010) Chronic suppression of mu opioid receptor signaling in the nucleus accumbens attenuates development of diet-induced obesity in rats. Int J Obes (Lond) 34:1001–1010

    Article  CAS  Google Scholar 

  • Lennon FE, Mirzapoiazova T, Mambetsariev B, Salgia R, Moss J, Singleton PA (2012a) Overexpression of the μ-opioid receptor in human non-small cell lung cancer promotes Akt and mTOR activation, tumor growth, and metastasis. Anesthesiology 116:857–867

    Article  PubMed  CAS  Google Scholar 

  • Lennon FE, Moss J, Singleton PA (2012b) The μ-opioid receptor in cancer progression: is there a direct effect? Anesthesiology 116:940–945

    Article  PubMed  Google Scholar 

  • Lennon FE, Mirzapoiazova T, Mambetsariev B, Poroyko VA, Salgia R, Moss J, Singletion PA (2014) The Mu opioid receptor promotes opioid and growth factor-induced proliferation, migration and Epithelial Mesenchymal Transition (EMT) in human lung cancer. PLoS One 9:91577

    Article  CAS  Google Scholar 

  • Li CH, Chung D, Doneen BA (1976) Isolation, characterization and opiate activity of beta-endorphin from human pituitary glands. Biochem Biophys Res Commun 72:1542–1547

    Article  PubMed  CAS  Google Scholar 

  • Li J, Zhang P, Zhang QY, Zhang SM, Guo HT, Bi H, Wang YM, Sun X, Liu JC, Cheng L, Cui Q, Yu SQ, Kaye AD, Yi DH, Pei JM (2009) Effects of U50, 488H on hypoxia pulmonary hypertension and its underlying mechanism. Vascul Pharmacol 51:72–77

    Article  PubMed  CAS  Google Scholar 

  • Liang Y, Mestek A, Yu L, Carr LG (1995) Cloning and characterization of the promoter region of the mouse mu opioid receptor gene. Brain Res 679:82–88

    Article  PubMed  CAS  Google Scholar 

  • Liang J, Chao D, Sandhu HK, Yu Y, Zhang L, Balboni G, Kim DH, Xia Y (2014) δ-Opioid receptors up-regulate excitatory amino acid transporters in mouse astrocytes. Br J Pharmacol 171:5417–5430

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lim YJ, Zheng S, Zuo Z (2004) Morphine preconditions purkinje cells against cell death under in vitro simulated ischemia-reperfusion conditions. Anesthesiology 100:562–568

    Article  PubMed  CAS  Google Scholar 

  • Liu NJ, Schnell S, Wessendorf MW, Gintzler AR (2013) Sex, pain, and opioids: interdependent influences of sex and pain modality on dynorphin-mediated antinociception in rats. J Pharmacol Exp Ther 344:522–530

    Article  PubMed  CAS  Google Scholar 

  • Loseva TM, Koliaskin GI (1981) Opiate receptors of peripheral blood lymphocytes (effect of morphine and naloxone on human T-lymphocytes. Zh Nevropatol Psikhiatr Im S S Korsakova 81:1006–1008

    PubMed  CAS  Google Scholar 

  • Lu J, Liu Z, Zhao L, Tian H, Liu X, Yuan C (2013) In vivo and in vitro inhibition of human liver cancer progress by downregulation of the μ-opioid receptor and relevant mechanisms. Oncol Rep 30:1731–1738

    PubMed  CAS  Google Scholar 

  • Lynch JL, Alley JF, Wellman L, Beitz AJ (2008) Decreased spinal cord opioid receptor mRNA expression and antinociception in a Theiler’s murine encephalomyelitis virus model of multiple sclerosis. Brain Res 1191:180–191

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ma MC, Qian H, Ghassemi F, Zhao P, Xia Y (2005) Oxygen-sensitive delta-opioid receptor-regulated survival and death signals: novel insights into neuronal preconditioning and protection. J Biol Chem 280:16208–16218

    Article  PubMed  CAS  Google Scholar 

  • Mabrouk OS, Volta M, Marti M, Morari M (2008) Stimulation of delta opioid receptors located in substantia nigra reticulate but not globus pallidus or striatum restores motor activity in 6-hydroxydopamine lesioned rats: new insights into the role of delta receptors in parkinsonism. J Neurochem 107:1647–1659

    Article  PubMed  CAS  Google Scholar 

  • Mabrouk OS, Marti M, Salvadori S, Morari M (2009) The novel delta opioid receptor agonist UFP-512 dually modulates motor activity in hemiparkinsonian rats via control of the nigro-thalamic pathway. Neuroscience 164:360–369

    Article  PubMed  CAS  Google Scholar 

  • Mahajan SD, Aalinkeel R, Reynolds JL, Nair BB, Fernandez SF, Schwartz SA, Nair MP (2006) Morphine exacerbates HIV-1 viral protein gp120 induced modulation of chemokine gene expression in U373 astrocytoma cells. Curr HIV Res 3:277–288

    Article  Google Scholar 

  • Maher DP, Wong W, White PF, McKenna R Jr, Rosner H, Shamloo B, Louy C, Wender R, Yumul R, Zhang V (2014) Association of increased postoperative opioid administration with non-small-cell lung cancer recurrence: a retrospective analysis. Br J Anaesth 113:88–94

    Article  CAS  Google Scholar 

  • Makman MH, Dvorkin B, Stefano GB (1995) Murine macrophage cell lines contain mu 3-opiate receptors. Eur J Pharmacol 273:5–6

    Article  Google Scholar 

  • Malendowicz LK, Rebuffat P, Tortorella C, Nussdorfer GG, Ziolkowska A, Hochol A (2005) Effects of met-enkephalin on cell proliferation in different models of adrenocortical-cell growth. Int J Mol Med 15:841–845

    PubMed  CAS  Google Scholar 

  • Mansour A, Fox CA, Akil H, Watson SJ (1995) Opioid-receptor mRNA expression in the rat CNS: anatomical and functional implications. Trends Neurosci 18:22–29

    Article  PubMed  CAS  Google Scholar 

  • Mansour A, Thompson RC, Akil H, Watson SJ (1993) Delta opioid receptor mRNA distribution in the brain: comparison to delta receptor binding and proenkephalin mRNA. J Chem Neuroanat 6:351–362

    Article  PubMed  CAS  Google Scholar 

  • Mao L, Wang JQ (2005) Cardiovascular responses to microinjection of nociceptin and endomorphin-1 into the nucleus tractus solitarii in conscious rats. Neuroscience 132:1009–1015

    Article  PubMed  CAS  Google Scholar 

  • Marczak ED, Jinsmaa Y, Myers PH, Blankenship T, Wilson R, Balboni G, Salvadori S, Lazarus LH (2009) Orally administered H-Dmt-Tic-Lys-NH-CH2-Ph (MZ-2), a potent mu/delta-opioid receptor antagonist, regulates obese-related factors in mice. Eur J Pharmacol 616:115–121

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Martin W (1967) Opioid antagonists. Pharmacol Rev 19:283–323

    Google Scholar 

  • Martin WR (1983) Pharmacology of opioids. Pharmacol Rev 35:283–323

    PubMed  CAS  Google Scholar 

  • Maslov LN, Lishmanov YB, Oeltgen PR, Barzakh EI, Krylatov AV, Govindaswami M, Brown SA (2009) Activation of peripheral delta2 opioid receptors increases cardiac tolerance to ischemia/reperfusion injury Involvement of protein kinase C, NO-synthase, KATP channels and the autonomic nervous system. Life Sci 84:657–663

    Article  PubMed  CAS  Google Scholar 

  • Mathew B, Lennon FE, Siegler J, Mirzapoiazova T, Mambetsariev N, Sammani S, Gerhold LM, LaRiviere PJ, Chen CT, Garcia JG, Salgia R, Moss J, Singleton PA (2011) The novel role of the mu opioid receptor in lung cancer progression: a laboratory investigation. Anesth Analg 112:558–567

    Google Scholar 

  • Matthes HW, Maldonado R, Simonin F, Valverde O, Slowe S, Kitchen I, Befort K, Dierich A, Le Meur M, Dolle P, Tzavara E, Hanone J, Roques BP, Kieffer BL (1996) Loss of morphine-induced analgesia, reward effect and withdrawal symptoms in mice lacing the mu-opioid-receptor gene. Nature 383:819–823

    Google Scholar 

  • Matthes HW, Smadja C, Valverde O, Vonesch JL, Foutz AS, Boudinot E, Denavit-Saubié M, Severini C, Negri L, Roques BP, Maldonado R, Kieffer BL (1998) Activity of the delta-opioid receptor is partially reduced, whereas activity of the kappa-receptor is maintained in mice lacking the mu-receptor. J Neurosci 18:7285–7295

    PubMed  CAS  Google Scholar 

  • Mattia A, Vanderah T, Mosberg HI, Porreca F (1991) Lack of antinociceptive cross-tolerance between [D-Pen2, D-Pen5]enkephalin and [D-Ala2]deltorphin II in mice: evidence for delta receptor subtypes. J Pharmacol Exp Ther 258:583–587

    PubMed  CAS  Google Scholar 

  • Mayer P, Höllt V (2006) Pharmacogenetics of opioid receptors and addiction. Pharmacogenet Genomics 16:1–7

    Article  PubMed  CAS  Google Scholar 

  • Mayer D, Liebeskind JC (1974) Pain reduction by focal electrical stimulation of the brain: an anatomical and behavioral analysis. Brain Res 68:73–93

    Article  PubMed  CAS  Google Scholar 

  • Mayfield KP, D’Alecy LG (1994) Delta-1 opioid agonist acutely increases hypoxic tolerance. J Pharmacol Exp Ther 268:683–688

    PubMed  CAS  Google Scholar 

  • McBride SM, Smith-Sonneborn J, Oeltgen P, Flynn FW (2005) Delta2 opioid receptor agonist facilitates mean arterial pressure recovery after hemorrhage in conscious rats. Shock 23:264–268

    PubMed  CAS  Google Scholar 

  • McCarthy LE, Rogers TJ (2011) Alteration of early T cell development by opioid and superantigen stimulation. Adv Exp Med Biol 493:163–167

    Article  Google Scholar 

  • McCormick SE, Stoessl AJ (2002) Blockade of nigral and pallidal opioid receptors suppresses vacuous chewing movements in a rodent model of tardive dyskinesia. Neuroscience 112:851–859

    Article  PubMed  CAS  Google Scholar 

  • McLaughlin PJ, Zagon IS (1987) Modulation of human neuroblastoma transplanted into nude mice by endogenous opioid systems. Life Sci 41:1465–1472

    Article  PubMed  CAS  Google Scholar 

  • McLaughlin PJ, Zagon IS (2012) The opioid growth factor-opioid growth factor receptor axis: homeostatic regulator of cell proliferation and its implications for health and disease. Biochem Pharmacol 86:746–755

    Article  CAS  Google Scholar 

  • McLaughlin PJ, Zagon IS (2014) Novel treatment for triple-negative breast and ovarian cancer: endogenous opioid suppression of women’s cancers. Expert Rev Anticancer Ther 14:247–250

    Article  PubMed  CAS  Google Scholar 

  • Meis S (2003) Nociceptin/orphanin FQ: actions within the brain. Neuroscientist 9:158–168

    Article  PubMed  CAS  Google Scholar 

  • Meng J, Meng Y, Plotnikoff NP, Youkilis G, Griffin N, Shan FInt (2013) Low dose naltrexone (LDN) enhances maturation of bone marrow dendritic cells (BMDCs). Immunopharmacol. 17:1084–1089

    Google Scholar 

  • Menzebach A, Hirsch J, Nost R, Mogk M, Hempelmann G, Welters ID (2004) Morphine inhibits complement receptor expression, phagocytosis and oxidative burst by a nitric oxide dependent mechanism. Anasthesiol Intensivmed Notfallmed Schmerzther 39:204–211

    Google Scholar 

  • Mettang T, Kremer AE (2015) Uremic pruritus. Kidney Int 87:685–691

    Google Scholar 

  • Meunier JC, Mollereau C, Toll L, Suaudeau C, Moisand C, Alvinerie P, Butour JL, Guillemot JC, Ferrara P, Monsarrat B (1995) Isolation and structure of the endogenous agonist of opioid receptor-like ORL1 receptor. Nature 377:532–535

    Article  PubMed  CAS  Google Scholar 

  • Mika J, Popiolek-Barczyk K, Rojewska E, Makuch W, Starowicz K, Przewlocka B (2014) Delta-opioid receptor analgesia is independent of microglial activation in a rat model of neuropathic pain. PLoS One 9:104420

    Article  CAS  Google Scholar 

  • Miranda HF, Noriega V, Zanetta P, Prieto J, Prieto-Rayo J, Aranda N, Sierralta F (2014) Isobolographic analysis of the opioid-opioid interactions in a tonic and a phasic mouse model of induced nociceptive pain. J Biomed Sci 21:62

    Article  PubMed  PubMed Central  Google Scholar 

  • Molina PE (2002) Stress-specific opioid modulation of haemodynamic counter-regulation. Clin Exp Pharmacol Physiol 29:248–253

    Article  PubMed  CAS  Google Scholar 

  • Mollercau C, Parmentier M, Mailleux P, Butour JL, Moisand C, Chalon P, Caput D, Vassart G, Meunier JC (1994) ORL1, a novel member of the opioid receptor family: cloning, functional expression and localization. FEBS Lett 341:33–38

    Article  Google Scholar 

  • Mutoh J, Ohsawa M, Hisa H (2013) Effect of naloxone on ischemic acute kidney injury in the mouse. Neuropharmacology 71:10–18

    Article  PubMed  CAS  Google Scholar 

  • Mutolo D, Bongianni F, Einum J, Dubuc R, Pantaleo T (2007) Opioid-induced depression in the lamprey respiratory network. Neuroscience 150:720–729

    Article  PubMed  CAS  Google Scholar 

  • Naghibzadeh Tahami A, Khanjani N, Yazdi Feyzabadi V, Varzandeh M, Haghdoost AA (2014) Opium as a risk factor for upper gastrointestinal cancers: a population-based case–control study in Iran. Arch Iran Med 17:2–6

    PubMed  Google Scholar 

  • Naidu PS, Lichtman AH, Archer CC, May EL, Harris LS, Aceto MD (2007) NIH 11082 produces anti-depressant-like activity in the mouse tail-suspension test through a delta-opioid receptor mechanism of action. Eur J Pharmacol 566:132–136

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Negus SS, Gatch MB, Mello NK, Zhang X, Rice K (1998) Behavioral effects of the delta-selective opioid agonist SNC80 and related compounds in rhesus monkeys. J Pharmacol Exp Ther 286:362–375

    PubMed  CAS  Google Scholar 

  • Nomura Y, Kawaraguchi Y, Sugimoto H, Furuya H, Kawaguchi M (2014) Effects of morphine and fentanyl on 5-fluorouracil sensitivity in human colon cancer HCT116 cells. J Anesth 28:298–301

    Article  PubMed  Google Scholar 

  • Notas G, Kampa M, Nifli AP, Xiadakis K, Papasava D, Thermos K, Kouroumalis E, Castanas E (2007) The inhibitory effect of opioids on HepG2 cells is mediated via interaction with somatostatin receptors. Eur J Pharmacol 555:1–7

    Article  PubMed  CAS  Google Scholar 

  • Obese FY, Whitlock BK, Steele BP, Buonomo FC, Sartin JL (2007) Long-term feed intake regulation in sheep is mediated by opioid receptors. J Anim Sci 85:11–17

    Article  CAS  Google Scholar 

  • Olinger CP, Adams HP Jr, Brott TG, Biller J, Barsan WG, Toffol GJ, Eberle RW, Marler JR (1990) High-dose intravenous naloxone for the treatment of acute ischemic stroke. Stroke 21:721–725

    Article  PubMed  CAS  Google Scholar 

  • Olsen P, Rasmussen M, Zhu W, Tonnesen E, Stefano GB (2005) Human gliomas contain morphine. Med Sci Monit 11:18–21

    Google Scholar 

  • Ordaz-Sanchez I, Weber RJ, Rice KC, Zhang X, Rodriquez-Padilla C, Tamez-Guerra R, Mendez-Vazquez JL, Gomez-Flores R (2003) Chemotaxis of human and rat leukocytes by the delta-selective non-peptidic opioid SNC 80. Rev Latinoam Microbiol 45:16–23

    PubMed  Google Scholar 

  • Ozarda Ilcol Y, Ozyurt G, Kilicturgay S, Uncu G, Ulus IH (2002) The decline in serum choline concentration in humans during and after surgery is associated with the elevation of cortisol, adrenocorticotropic hormone, prolactin and beta-endorphin concentrations. Neurosci Lett 324:41–44

    Article  PubMed  Google Scholar 

  • Pamenter ME, Buck LT (2008) δ-Opioid receptor antagonism induces NMDA receptor-dependent excitotoxicity in anoxic turtle cortex. J Exp Biol 21:3512–3517

    Article  CAS  Google Scholar 

  • Pan EC, Bohn LM, Belcheva MM, Thomas GE, Manepalli AN, Mamone JY, Johnson FE, Coscia CJ (1998) Kappa-opioid receptor binding varies inversely with tumor grade in human gliomas. Cancer 83:2561–2566

    Article  PubMed  CAS  Google Scholar 

  • Pan L, Xu J, Yu R, Xu MM, Pan YX, Pasternak GW (2005) Identification and characterization of six new alternatively spliced variants of the human mu opioid receptor gene. Neuroscience 133:209–220

    Article  PubMed  CAS  Google Scholar 

  • Parkhill AL, Bidlack JM (2006) Reduction of lipopolysaccharide-induced interleukin-6 production by the kappa opioid U50, 488 in a mouse monocyte-like cell line. Int Immunopharmacol 6:1013–1019

    Article  PubMed  CAS  Google Scholar 

  • Pastermak GW (2005) Molecular biology of opioid analgesia. J Pain Symptom Manage 29:2–9

    Article  CAS  Google Scholar 

  • Pasternak GW (2004) Multiple opiate receptors: déjà vu all over again. Neuropharmacology 47:312–323

    Article  PubMed  CAS  Google Scholar 

  • Paterson SJ, Robson LE, Kosterlitz HW (1983) Classification of opioid receptors. Br Med Bull 39:31–36

    PubMed  CAS  Google Scholar 

  • Pattinson KT (2008) Opioids and the control of respiration. Br J Anaesth 100:747–758

    Article  PubMed  CAS  Google Scholar 

  • Patwardhan AM, Berg KA, Akopain AN, Jeske NA, Gamper N, Clarke WP, Harqreaves KM (2005) Bradykinin-Induced functional competence and trafficking of the δ-opioid receptor in trigeminal nociceptors. J Neurosci 25:8825–8832

    Article  PubMed  CAS  Google Scholar 

  • Peart JN, Patel HH, Gross GJ (2003) Delta-opioid receptor activation mimics ischemic preconditioning in the canine heart. J Cardiovasc Pharmacol 42:78–81

    Article  PubMed  CAS  Google Scholar 

  • Peart JN, Gross ER, Gross GJ (2005) Opioid-induced preconditioning: recent advances and future perspectives. Vascul Pharmacol 42:211–218

    Article  PubMed  CAS  Google Scholar 

  • Pello OM, Duthey B, García-Bernal D, Rodríguez-Frade JM, Stein JV, Teixido J, Martínez C, Mellado M (2006) Opioids trigger alpha 5 beta 1 integrin-mediated monocyte adhesion. J Immunol 176:1675–1685

    Article  PubMed  CAS  Google Scholar 

  • Peng PH, Huang HS, Lee YJ, Chen YS, Ma MC (2009a) Novel role for the δ-opioid receptor in hypoxic preconditioning in rat retinas. J Neurochem 108:741–754

    Article  PubMed  CAS  Google Scholar 

  • Peng P, Huang LY, Li J, Fan R, Zhang SM, Wang YM, Hu YZ, Sun X, Kaye AD, Pei JM (2009b) Distribution of kappa-opioid receptor in the pulmonary artery and its changes during hypoxia. Anat Rec 292:1062–1067

    Article  Google Scholar 

  • Peng J, Sarkara S, Chang S (2012) Opioid receptor expression in human brain and peripheral tissues using absolute quantitative real-time RT-PCR. Drug Alcohol Depend 124:223–228

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pert A, Yaksh T (1974) Sites of morphine induced analgesia in the primate brain: relation to pain pathway. Brain Res 80:135–140

    Article  PubMed  CAS  Google Scholar 

  • Pert A, Yaksh T (1975) Localization of the antinociceptive action of morphine in primate brain. Pharmacol Biochem Behav 3:133–138

    Article  PubMed  CAS  Google Scholar 

  • Pinna A, Di Chiara G (1998) Dopamine-dependent behavioural stimulation by non-peptide delta opioids BW 373U86 and SNC 80: 3. Facilitation of D1 and D2 responses in unilaterally 6-hydroxydopamine-lesioned rats. Behav Pharmacol 9:15–21

    Article  PubMed  CAS  Google Scholar 

  • Pinsky C, Bose R, Frederickson RC (1986) Mu- and delta-opioid modulation of electrically-induced epileptic seizures in mice. NIDA Res Monogr 75:534–536

    Google Scholar 

  • Plotnikov EY, Grebenchikov OA, Babenko VA, Pevzner IB, Zorova LD, Likhvantse VV, Zorov DB (2013) Nephroprotective effect of GSK-3β inhibition by lithium ions and δ-opioid receptor agonist dalargin on gentamicin-induced nephrotoxicity. Toxicol Lett 220:303–308

    Article  PubMed  CAS  Google Scholar 

  • Popiolek-Barczyk K, Makuch W, Rojewska E, Pilat D, Mika J (2014) Inhibition of intracellular signaling pathways NF-κB and MEK1/2 attenuates neuropathic pain development and enhances morphine analgesia. Pharmacol Rep 66:845–851

    Article  PubMed  CAS  Google Scholar 

  • Przewlocki R (2004) Opioid abuse and brain gene expression. Eur J Pharmacol 500:331–349

    Article  PubMed  CAS  Google Scholar 

  • Qin Y, Chen J, Li L, Liao CJ, Liang YB, Guan EJ, Xie YB (2012a) Exogenous morphine inhibits human gastric cancer MGC-803 cell growth by cell cycle arrest and apoptosis induction. Asian Pac J Cancer Prev 13:1377–1382

    Article  PubMed  Google Scholar 

  • Qin Y, Li L, Chen J, Tang X, Liao C, Xie Y, Xiao Q (2012b) Fentanyl inhibits progression of human gastric cancer MGC-803 cells by NF-kappaB downregulation and PTEN upregulation in vitro. Oncol Res 20:61–69

    Article  PubMed  CAS  Google Scholar 

  • Quaglio GL, Lugoboni F, Pajusco B, Sarti M, Talamini G, Mezzelani P, Des Jarlais DC, GICS (2003) Hepatitis C virus infection: prevalence, predictor variables and prevention opportunities among drug users in Italy. J Viral Hepat 10:394–400

    Article  PubMed  CAS  Google Scholar 

  • Quill TA, Wang D, Garbers DL (2006) Insights into sperm cell motility signaling through sNHE and the CatSpers. Mol Cell Endocrinol 250:84–92

    Article  PubMed  CAS  Google Scholar 

  • Rahn KA, McLaughlin PJ, Zagon IS (2011) Prevention and diminished expression of experimental autoimmune encephalomyelitis by low dose naltrexone (LDN) or opioid growth factor (OGF) for an extended period: Therapeutic implications for multiple sclerosis. Brain Res 1381:243–253

    Article  PubMed  CAS  Google Scholar 

  • Rech RH, Mokler DJ, Briggs SL (2012) Effects of combined opioids on pain and mood in mammals. Pain Res Treat 2012:145965

    PubMed  PubMed Central  Google Scholar 

  • Reinscheid RK, Nothacker HP, Bourson A (1995) Orphanin FQ: a neuropeptide that activates an opioid like G protein-coupled receptor. Science 270:792–794

    Article  PubMed  CAS  Google Scholar 

  • Reiss D, Wichmann J, Tekeshima H, Kieffer BL, Ouagazzal AM (2008) Effects of nociceptin/orphanin FQ receptor (NOP) agonist, Ro64-6198, on reactivity to acute pain in mice: comparison to morphine. Eur J Pharmacol 579:141–148

    Article  PubMed  CAS  Google Scholar 

  • Rizzi A, Nazzaro C, Marzola GG, Zucchini S, Trapella C, Guerrini R, Zeilhofer HU, Reqoli D, Calo’ G (2006) Endogenous nociceptin/orphanin FQ signaling produces opposite spinal antinociceptive and supraspinal pronociceptive effects in the mouse formalin test: pharmacological and genetic evidences. Pain 124:100–108

    Article  PubMed  CAS  Google Scholar 

  • Rong F, Peng Z, Ye MX, Zhang QY, Zhao Y, Zhang SM, Guo HT, Hui B, Wang YM, Liang C, Cui Q, Yu SQ, Yi DH, Pei JM (2009) Myocardial apoptosis and infarction after ischemia/reperfusion are attenuated by kappa-opioid receptor agonist. Arch Med Res 40:227–234

    Article  PubMed  CAS  Google Scholar 

  • Rothman RB, Bowen WD, Bykov V, Schumacher UK, Pert CB, Jacobson AE, Burke TR Jr, Rice KC (1984) Preparation of rat brain membranes greatly enriched with either type-I-delta or type-II-delta opiate binding sites using site directed alkylating agents: evidence for a two-site allosteric model. Neuropeptides 4:201–215

    Article  PubMed  CAS  Google Scholar 

  • Rothman RB, Bykov V, Danks JA, Jacobson AE, Burke TR Jr, Rice KC, Herkenham M (1985) Preparation of rat brain membranes highly enriched with opiate kappa binding sites using site-directed acylating agents: optimization of assay conditions. Neuropeptides 6:503–516

    Article  PubMed  CAS  Google Scholar 

  • Rothman RB, Bykov V, JacobsonAE RKC, Long JE, Bowen WD (1992) A study of the effect of the irreversible delta receptor antagonist [D-Ala2, Leu5, Cys6]-enkephalin on delta cx and delta ncx opioid binding sites in vitro and in vivo. Peptides 13:691–694

    Article  PubMed  CAS  Google Scholar 

  • Roy S, Cain KJ, Chapin RB, Charbonecau RG, Barke RA (1998) Morphine modulates NF kappa B activation in macrophages. Biochem Biophys Res Commun 245:392–396

    Article  PubMed  CAS  Google Scholar 

  • Ruff MR, Wahl SM, Mergenhagen S, Pert CB (1985) Opiate receptor mediated chemotaxis of human monocytes. Neuropeptides 5:363–366

    Article  PubMed  CAS  Google Scholar 

  • Sabory E, Derchansky M, Ismaili M, Jahromi SS, Brull R, Carlen PL, El Beheiry H (2007) Mechanisms of morphine enhancement of spontaneous seizure activity. Anesth Analg 105:1729–1735

    Article  CAS  Google Scholar 

  • Saitoh A, Yoshikawa Y, Onodera K, Kamei J (2005) Role of delta-opioid receptor subtypes in anxiety-related behaviors in the elevated plus-maze in rats. Psychopharmacology (Berl) 182:327–334

    Article  CAS  Google Scholar 

  • Saloman JL, Niu KY, Ro JY (2011) Activation of peripheral delta-opioid receptors leads to anti-hyperalgesic responses in the masseter muscle of male and female rats. Neuroscience 190:379–385

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • San-Emeterio EP, Hurlé MA (2006) Modulation of brain apoptosis-related proteins by the opioid antagonist naltrexone in mice. Neurosci Lett 403:276–279

    Article  PubMed  CAS  Google Scholar 

  • Santos FM, Grecco LH, Pereira MG, Oliveira ME, Rocha PA, Silva JT, Martins DO, Miyabara EH, Chacur M (2014) The neural mobilization technique modulates the expression of endogenous opioids in the periaqueductal gray and improves muscle strength and mobility in rats with neuropathic pain. Behav Brain Funct 10:19

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Scherrer G, Imamachi N, Gao YQ, Contet C, Mennicken F, O’Donnell D, Kieffer BL, Basbaum A (2009) Dissociation of the opioid receptor mechanisms that control mechanical and the pain. Cell 137:1148–1159

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schindler CW, Graczyk Z, Gilman JP, Nequs SS, Berqman J, Mello NK, Goldberg SR (2007) Effects of kappa opioid agonists alone and in combination with cocaine on heart rate and blood pressure in conscious squirrel monkeys. Eur J Pharmacol 576:107–113

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schultz JJ, Hsu AK, Gross GJ (1997) Ischaemic preconditioning and morphine-induced cardioprotection involve the delta (δ)-opioid receptor in the intact rat heart. J Mol Cell Cardiol 29:2187–2195

    Article  PubMed  CAS  Google Scholar 

  • Scoto GM, Aricò G, Ronsisvalle S, Parenti C (2007) Blockade of the nociception/orphanin FQ/NOP receptor system in the rat ventrolateral periaqueductal gray potentiates DAMGO analgesia. Peptides 28:1441–1446

    Article  PubMed  CAS  Google Scholar 

  • Scwarzer S (2009) 30 Years of Dynorphins-new insights on their functions in neuropsychiatric disease. Pharmacol Ther 123:353–370

    Article  CAS  Google Scholar 

  • Shaqura M, Khalefa BI, Shakibaei M, Zöllner C, Al-Khrasani M, Fürst S, Schäfer M, Mousa SA (2014) New insights into mechanisms of opioid inhibitory effects on capsaicin-induced TRPV1 activity during painful diabetic neuropathy. Neuropharmacology 85:142–150

    Article  PubMed  CAS  Google Scholar 

  • Sharp BM, Keane WF, Suh HJ, Gekker G, Tsukayama D, Peterson PK (1985) Opioid peptides rapidly stimulate superoxide production by human polymorphonuclear leukocytes and macrophages. Endocrinology 117:793–795

    Article  PubMed  CAS  Google Scholar 

  • Sheng WS, Hu S, Gekker G, Zhu S, Peterson PK, Chao CC (1997) Immunomodulatory role of opioids in the central nervous system. Arch Immunol Ther Exp (Warsz) 45:359–366

    CAS  Google Scholar 

  • Shook JE, Watkins WD, Camporesi EM (1990) Differential roles of opioid receptors in respiration, respiratory disease, and opiate-induced respiratory depression. Am Rev Respir Dis 142:895–909

    Article  PubMed  CAS  Google Scholar 

  • Shutov AA, Bykova AA, Volodina EV (1999) Immunopharmacological method for the diagnosis of multiple sclerosis. Zh Nevrol Psikhiatr Im S S Korsakova 99:35–37

    PubMed  CAS  Google Scholar 

  • Simonin F, Befort K, Gaveriaux-Ruff C et al (1994) The human delta opioid receptor: genomic organization, cDNA cloning, functional expression, and distribution in human brain. Mol Pharmacol 46:1015–1021

    PubMed  CAS  Google Scholar 

  • Singleton PA, Mirzapoiazova T, Hasina R, Salgia R, Moss J (2014) Increased μ-opioid receptor expression in metastatic lung cancer. Br J Anaesth 113:103–108

    Article  CAS  Google Scholar 

  • Skarphedinsson JO, Thoren P (1988) Endorphin mechanisms are responsible for the beneficial effects of opioid antagonists on cerebral function during relative cerebral ischaemia in rats. Acta Physiol Scand 132:281–288

    Article  PubMed  CAS  Google Scholar 

  • Smeester BA, Lunzer MM, Akgün E, Beitz AJ, Portoghese PS (2014) Targeting putative mu opioid/metabotropic glutamate receptor-5 heteromers produces potent antinociception in a chronic murine bone cancer model. Eur J Pharmacol 734:48–52

    Article  CAS  Google Scholar 

  • Smith JP, Conter RL, Demers TM, McLaughlin PJ, Zagon IS (2000) Elevated levels of opioid growth factor in the plasma of patients with pancreatic cancer. Pancreas 21:158–164

    Article  PubMed  CAS  Google Scholar 

  • Smith JP, Conter RL, Bingaman SI, Harvey HA, Mauger DT, Ahmad M, Demers LM, Stanley WB, McLaughlin PJ, Zagon IS (2004) Treatment of advanced pancreatic cancer with opioid growth factor: phase I. Anticancer Drugs 15:203–209

    Article  PubMed  CAS  Google Scholar 

  • Smith JP, Bingaman SI, Mauger DT, Harvey HH, Demers LM, Zagon IS (2010) Opioid growth factor improves clinical benefit and survival in patients with advanced pancreatic cancer. Open Access J Clin Trials 2010:37–48

    PubMed  PubMed Central  Google Scholar 

  • Snuder SH, Matthysse S (1975) Opiate receptor mechanisms. Neurosci Res Program Bull 13:1–66

    Google Scholar 

  • Sofuoglu M, Portoghese PS, Takemori AE (1991) Differential antagonism of delta opioid agonists by naltrindole and its benzofuran analog (NTB) in mice: evidence for delta opioid receptor subtypes. J Pharmacol Exp Ther 257:676–680

    PubMed  CAS  Google Scholar 

  • Sofuoglu M, Portoghese PS, Takemori AE (1993) 7-Benzylidenenaltrexone (BNTX): a selective delta 1 opioid receptor antagonist in the mouse spinal cord. Life Sci 52:769–775

    Article  PubMed  CAS  Google Scholar 

  • Solbrig MV, Adrian R, Baratta J, Lauterborn JC, Koob GF (2006) Kappa opioid control of seizures produced by a virus in an animal model. Brain 129:642–654

    Article  PubMed  Google Scholar 

  • Soverchia L, Mosconi G, Ruqqeri B, Ballarini P, Catone G, Deql’lnnocenti S, Nabissi M, Polzonetti-Maqni AM (2006) Proopiomelanocortin gene expression and beta-endorphin localization in the pituitary, testis, and epididymis of stallion. Mol Reprod Dev 73:1–8

    Article  PubMed  CAS  Google Scholar 

  • Spampinato S, Goldstein A (1983) Immunoreactive dynorphin in rat tissues and plasma. Neuropeptides 3:193–212

    Article  PubMed  CAS  Google Scholar 

  • Steele PA, Aromataris EC, Riederer BM (1996) Endogenous opioid peptides in parasympathetic, sympathetic and sensory nerves in the guinea-pig heart. Cell Tissue Res 284:331–339

    Article  PubMed  CAS  Google Scholar 

  • Stevens CW, Brasel CM, Mohan S (2007) Cloning and bioinformatics of amphibian mu, delta, kappa, and nociception opioid receptors expressed in brain tissue: evidence for opioid receptor of divergence in mammals. Neurosci Lett 419:189–194

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Su DS, Wang ZH, Zheng YJ, Zhao YH, Wang XR (2007) Dose-dependent neuroprotection of delta opioid peptide [D-Ala2, DLeu5] encephalin in neuronal death and retarded behavior induced by forebrain ischemia in rats. Neurosci Lett 423:113–117

    Article  PubMed  CAS  Google Scholar 

  • Subirán N, Casis L, Irazusta J (2011) Regulation of male fertility by the opioid system. Mol Med 17:846–853

    Google Scholar 

  • Sullo N, Roviezzo F, Matteis M, Lanaro A, Calo G, Guerrini R, De Gruttloa L, Spaziano G, Cirino G, Rossi F, DAgostino B (2013) Nociceptin/orphanin FQ receptor activation decreases the airway hyperresponsiveness induced by allergen in sensitized mice. Am J Physiol Lung Cell Mol Physiol 304:657–664

    Article  CAS  Google Scholar 

  • Summers RL, Li Z, Hildebrandt D (2003) Effect of a delta receptor agonist on duration of survival during hemorrhagic shock. Acad Emerg Med 10:587–593

    PubMed  Google Scholar 

  • Szabo I, Rojavin M, Bussiere JL, Eisenstein TK, Adler MW, Rogers TJ (1993) Suppression of peritoneal macrophage phagocytosis of Candida albicans by opioid. J Pharmacol Exp Ther 267:703–706

    PubMed  CAS  Google Scholar 

  • Tang B, DU J, Cao ZM, Liang R, Sun DG, Jin XL, Wang LM (2012) DADLE suppresses the proliferation of human liver cancer HepG2 cells by activation of PKC pathway and elevates the sensitivity to cis-diammine dichloridoplatium. Zhonghua Zhong Liu Za Zhi 34:425–429

    PubMed  CAS  Google Scholar 

  • Tang B, Li Y, Yuan S, Tomlinson S, He S (2013) Upregulation of the δ-opioid receptor in liver cancer promotes liver cancer progression both in vitro and in vivo. Int J Oncol 43:1281–1290

    PubMed  CAS  Google Scholar 

  • Taracha E, Mierzejewski P, Lehner M (2009) Stress-opioid interactions: a comparison of morphine and methadone. Pharmacol Rep 61:424–435

    Article  PubMed  CAS  Google Scholar 

  • Teoulloa E, Hargreaves KM, Dionne RA (1997) Ibuprofen elevates immunoreactive beta-endorphin levels in humans during surgical stress. Clin Pharmacol Ther 62:74–81

    Article  Google Scholar 

  • Tian XS, Zhou F, Yang R, Xia Y, Wu GC, Guo JC (2008a) Electroacupuncture protects the brain against acute ischemic injury via up-regulation of delta-opioid receptor in rats. J Chin Integr Med 6:632–638

    Article  CAS  Google Scholar 

  • Tian XS, Zhou F, Yang R, Xia Y, Wu GC, Guo JC (2008b) Role of δ-opioid receptors in cumulative electro-acupuncture induced protection from ischemic injury in the rat brain. Shanghai J TCM 42:71–74

    Google Scholar 

  • Tian XS, Zhou F, Yang R, Xia Y, Wu GC, Guo JC (2008c) Effects of intracerebroventricular injection of delta-opioid receptor agonist TAN-67 or antagonist naltrindole on acute cerebral ischemia in rat. Sheng Li Xue Bao 60:475–484

    PubMed  CAS  Google Scholar 

  • Tian X, Hua F, Sandhu HK, Chao D, Balboni G, Salvadori S, He X, Xia Y (2013a) Effect of δ-opioid receptor activation on BDNF-TrkB vs. TNF-α in the mouse cortex exposed to prolonged hypoxia. Int J Mol Sci 14:15959–15976

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tian X, Guo J, Zhu M, Li M, Wu G, Xia Y (2013b) δ-Opioid receptor activation rescues the functional TrkB receptor and protects the brain from ischemia-reperfusion injury in the rat. PLoS One 8:e69252

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Torregrossa MM, Jutkiewicz EM, Mosberg HI, Balboni G, Watson SJ, Woods JH (2006) Peptidic delta opioid receptor agonists produce antidepressant-like effects in the forced swim test and regulate BDNF mRNA expression in rats. Brain Res 1069:172–181

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tortella FC, Long JB (1998) Characterization of opioid peptide-like anticonvulsant activity in rat cerebrospinal fluid. Brain Res 456:139–146

    Article  Google Scholar 

  • Tortella FC, Robles L, Holaday JW (1985) The anticonvulsant effects of DADLE are primarily mediated by activation of delta opioid receptors: interactions between delta and mu receptor antagonists. Life Sci 37:497–503

    Article  PubMed  CAS  Google Scholar 

  • Tortella FC, Echevarria E, Robles L, Mosberg HI, Holaday JW (1988) Anticonvulsant effects of mu (DAGO) and delta (DPDPE) enkephalins in rats. Peptides 9:1177–1181

    Article  PubMed  CAS  Google Scholar 

  • Traynor J (1989) Subtypes of κ-opioid receptor: fact or fiction? Trends Pharmacol Sci 10:52–53

    Article  PubMed  CAS  Google Scholar 

  • Traynor J, Elliot J (1993) δ-opioid receptor subtypes and cross talk with μ-receptors. Trends Pharmacol Sci 14:84–85

    Article  PubMed  CAS  Google Scholar 

  • Trescot AM, Datta S, Lee M, Hansen H (2008) Opioid pharmacology. Pain Physician 11:133–153

    Google Scholar 

  • Tsong SD (1982) ACTH and beta-endorphin-related peptides are present in multiple sites in the reproductive tract of the male rat. Endocrinology 1109:2204–2206

    Article  Google Scholar 

  • Tsou K, Jang CS (1964) Studies on the site of analgesic action of morphine by intracerebral micro-injection. Sci Sin 13:1099–1109

    PubMed  CAS  Google Scholar 

  • Vallejo R, de Leon-Cassola O, Benyamin R (2004) Opioid therapy and immunosuppression: a review. Am J Ther 11:354–365

    Article  PubMed  Google Scholar 

  • Van Epps DE, Saland L (1984) Beta-endorphin and met-enkephalin stimulate human peripheral blood mononuclear cell chemotaxis. J Immunol 132:3046–3053

    PubMed  Google Scholar 

  • Vander Weele CM, Porter-Stransky KA, Mabrouk OS, Lovic V, Singer BF, Kennedy RT, Aragona BJ (2014) Rapid dopamine transmission within the nucleus accumbens: dramatic difference between morphine and oxycodone delivery. Eur J Neurosci 40:3041–3054

    Article  PubMed  PubMed Central  Google Scholar 

  • Vien N, Gleason CA, Hays SL, McPherson RJ, Chavkin C, Juul SE (2009) Effects of neonatal stress and morphine on kappa opioid receptor signaling. Neonatology 96:235–243

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Villemagne PS, Dannals RF, Ravert HT, Frost JJ (2002) PET imaging of human cardiac opioid receptors. Eur J Nucl Med Mol Imaging 29:1385–1388

    Article  PubMed  CAS  Google Scholar 

  • Vogt BA, Wiley RG, Jensen EL (1995) Localization of mu and delta opioid receptors to anterior cingulated afferents and projection neurons and input/output model of mu regulation. Exp Neurol 135:83–92

    Article  PubMed  CAS  Google Scholar 

  • Waldhoer M, Bartlett SE, Whistler JL (2004) Opioid receptors. Annu Rev Biochem 73:953–990

    Article  PubMed  CAS  Google Scholar 

  • Wang GY, Wu S, Pei JM, Yu XC, Wong TM (2001) Kappa-but not delta-opioid receptors mediate effects of ischemic preconditioning on both infarct and arrhythmia in rats. Am J Physiol Heart Circ Physiol 280:384–391

    Google Scholar 

  • Wang J, Gao Q, Shen J, Ye TM, Xia Q (2007) Kappa-opioid receptor mediates the cardioprotective effect of ischemic postconditioning. Zhejiang Da Xue Xue Bao Yi Xue Ban 36:41–47

    PubMed  Google Scholar 

  • Wang Q, Chao D, Chen T, Sandhu H, Xia Y (2014) δ-Opioid receptors and inflammatory cytokines in hypoxia: differential regulation between glial and neuron-like cells. Transl Stroke Res 5:476–483

    Article  PubMed  CAS  Google Scholar 

  • Weber ML, Vang D, Velho PE, Gupta P, Crosson JT, Hebbel RP, Gupta K (2012) Morphine promotes renal pathology in sickle mice. Int J Nephrol Renovasc Dis 2012:109–118

    Google Scholar 

  • Weber ML, Chen C, Li Y, Faroqui M, Nguyen J, Poonawala T, Hebbel RP, Gupta K (2013) Morphine stimulates platelet-derived growth factor receptor-β signalling in mesangial cells in vitro and transgenic sickle mouse kidney in vivo. Br J Anaesth 111:1004–1012

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Weihe E, McKnight AT, Corbett AD, Kosterlitz HW (1985) Proenkephalin- and prodynorphin- derived opioid peptides in guinea-pig heart. Neuropeptides 5:453–456

    Google Scholar 

  • Weihe E, McKnight AT, Corbett AD, Hartschuh W, Reinecke M, Kosterliz HW (1983) Characterization of opioid peptides in guinea-pig heart. Neuropeptides 5:453–456

    Article  Google Scholar 

  • Welters ID (2003) Is immunomodulation by opioid drugs of clinical relevance? Curr Opin Anaesthesiol 16:509–513

    Article  PubMed  Google Scholar 

  • Welters ID, Menzebach A, Goumon Y, Langegeld TW, Teschemacher H, Hempelmann G, Stefano GB (2000) Morphine suppresses complement receptor expression, phagocytosis, and respiratory burst in neutrophils by a nitric oxide and mu (3) opiate receptor dependent mechanism. J Neuroimmunol 111:139–145

    Article  PubMed  CAS  Google Scholar 

  • Wever KE, Mascreeuw R, Wagener FA, Verweij VG, Peters JG, Petijis JC, Van der Vilet JA, Warle MC, Rongen GA (2013) Humoral signaling compounds in remote ischaemic preconditioning of the kidney, a role for the opioid receptor. Nephrol Dial Transplant 28:1721–1732

    Article  PubMed  CAS  Google Scholar 

  • Wiesenfeld-Hallin Z, de Araúja LG, Alster P, Xu XJ, Hökfelt T (1999) Cholecystokinin/opioid interactions. Brain Res 848:78–89

    Article  PubMed  CAS  Google Scholar 

  • Wikstrom B, Gellert R, Ladefoged SD, Danda Y, Akai M, Ide K, Ogasawara M, Kawashima Y, Ueno K, Mori A, Ueno Y (2005) Kappa-opioid system in uremic pruritus: multicenter, randomized, double-blind, placebo-controlled clinical studies. J Am Soc Nephrol 16:3742–3747

    Article  PubMed  CAS  Google Scholar 

  • Willner D, Cohen-Yeshurun A, Avidan A, Ozersky V, Shohami E, Leker RR (2014) Short term morphine exposure in vitro alters proliferation and differentiation of neural progenitor cells and promotes apoptosis via mu receptors. PLoS One 29:9

    Google Scholar 

  • Wittert G, Hope P, Pyle D (1996) Tissue distribution of opioid receptor gene expression in the rat. Biochem Biophys Res Commun 218:877–8781

    Article  PubMed  CAS  Google Scholar 

  • Wolozin BL, Pasternak GW (1981) Classification of multiple morphine and encephalin binding sites in the central nervous system. Proc Natl Acad Sci U S A 78:6181–6185

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wu S, Li HY, Wong TM (1999) Cardioprotection of preconditioning by metabolic inhibition in the rat ventricular myocyte. Involvement of kappa-opioid receptor. Circ Res 84:1388–1395

    Article  PubMed  CAS  Google Scholar 

  • Wu Q, Wang HY, Li J, Zhou P, Wang QL, Zhao L, Fan R, Wang YM, Xu XZ, Yi DH, Yu SQ, Pei JM (2013) K-opioid receptor stimulation improves endothelial function in hypoxic pulmonary hypertension. PLoS One 8:60850

    Article  CAS  Google Scholar 

  • Xander C, Meerpohl JJ, Galandi D, Buroh S, Schwarzer G, Antes G, Becker G (2013) Pharmacological interventions for pruritus in adult palliative care patients. Cochrane Database Syst Rev 6, CD008320

    PubMed  Google Scholar 

  • Xia Y (1989) Pressor effect of naloxone in acute experimental rabbits. Chin Pharmacol Bull 5:162–164

    Google Scholar 

  • Xia Y, Haddad GG (1991) Ontogeny and distribution of opioid receptors in the rat brainstem. Brain Res 549:181–193

    Article  PubMed  CAS  Google Scholar 

  • Xia Y, Haddad GG (2001) Major different in the expression of delta- and mu-opioid receptors between turtle and rat brain. J Comp Neurol 436:202–210

    Article  PubMed  CAS  Google Scholar 

  • Xiang B, Yu GH, Guo J, Chen L, Hu W, Pei G, Ma L (2001) Heterologous activation of protein kinase C stimulates phosphorylation of delta-opioid receptor at serine 344, resulting in beta-arrestin-and clathrin-mediated receptor internalization. J Biol Chem 276:4709–4716

    Article  PubMed  CAS  Google Scholar 

  • Xu B (2011) Effects of remifentanil combined with naloxone on human sperm motility. Zhonghua Nan Ke Xue 17:926–929

    PubMed  Google Scholar 

  • Xu B (2012) Remifentanil impairs sperm motility reversibly in vitro. J Biochem Mol Toxicol 26:176–177

    Article  PubMed  CAS  Google Scholar 

  • Xu B, Wang ZP, Wang YJ, Lu PH, Wang XH (2013) The toxic effect of opioid analgesics on human sperm motility in vitro. Drug Chem Toxicol 36:205–208

    Article  PubMed  CAS  Google Scholar 

  • Yajinma Y, Narita M, Takahashi-Nakano Y, Misawa M, Nagase H, Mizoquchi H, Tseng LF, Suzuki T (2000) Effects of differential modulation of mu-, delta- and kappa-opioid systems on bicuculline-induced convulsions in the mouse. Brain Res 862:120–126

    Article  Google Scholar 

  • Yamada K, Nabeshima T (1995) Stress-induced behavioral responses and multiple opioid systems in the brain. Behav Brain Res 67:133–145

    Article  PubMed  CAS  Google Scholar 

  • Yamada H, Shimoyama N, Sora I, Uhl GR, Fukuda Y, Moriya H, Shimoyama M (2006) Morphine can produce analgesia via spinal kappa opioid receptors in the absence of mu opioid receptors. Brain Res 1083:61–69

    Article  PubMed  CAS  Google Scholar 

  • Yamamizu K, Furuta S, Hamada Y, Yamashita A, Kuzumaki N, Narita M, Doi K, Katayama S, Nagase H, Yamasita JK, Narita M (2013) κ Opioids inhibit tumor angiogenesis by suppressing VEGF signaling. Sci Rep 3:3213

    Article  PubMed  PubMed Central  Google Scholar 

  • Yamamizu K, Hamada Y, Narita M (2014) κ Opioid receptor ligands regulate angiogenesis in development and in tumours. Br J Pharmacol 172:268–276

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yang Y, Xia X, Zhang Y, Wang Q, Li L, Luo G, Xia Y (2009) Delta-opioid receptor activation attenuates oxidative injury in the ischemic rat brain. BMC Biol 7:55

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yang Y, Zhi F, He X, Moore M, Kang X, Chao D, Wang R, Kim DH, Xia Y (2012) δ-opioid receptor activation and microRNA expression of the rat cortex in hypoxia. PLoS One 7:51524

    Article  CAS  Google Scholar 

  • Yeadon M, Kitchen I (1989) Opioids and respiration. Prog Neurobiol 33:1–16

    Article  PubMed  CAS  Google Scholar 

  • Yilmaz A, Sogut A, Kilinc M, Sogut AG (2003) Successful treatment of intrathecal morphine overdose. Neurol India 51:410–411

    PubMed  CAS  Google Scholar 

  • Young AP, Gruber RB, Discala JF, May WJ, Palmer LA, Lewis SJ (2013) Co-activation of μ- and δ-opioid receptors elicits tolerance to morphine-induced ventilatory peroxynitrite. Respir Physiol Neurobiol 186:255–264

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Younger J, Parkitny L, McLain D (2014) The use of low-dose naltrexone (LDN) as a novel anti-inflammatory treatment for chronic pain. Clin Rheumatol 33:451–459

    Article  PubMed  PubMed Central  Google Scholar 

  • Zadina JE, Hackler L, Ge L-J, Kastin AJ (1997) A potent and selective endogenous agonist for the mu-opiate receptor. Nature 386:499–502

    Article  PubMed  CAS  Google Scholar 

  • Zagon IS, McLaughlin PJ (1983a) Naltrexone modulates tumor response in mice with neuroblastoma. Science 221:671–673

    Article  PubMed  CAS  Google Scholar 

  • Zagon IS, McLaughlin PJ (1983b) Opioid antagonists inhibit the growth of metastatic murine neuroblastoma. Cancer Lett 21:89–94

    Article  PubMed  CAS  Google Scholar 

  • Zagon IS, McLaughlin PJ (1983c) Increased brain size and cellular content in infant rats treated with an opiate antagonist. Science 221:1179–1180

    Article  PubMed  CAS  Google Scholar 

  • Zagon IS, McLaughlin PJ (2014) Opioid growth factor and the treatment of human pancreatic cancer: a review. World J Gastroenterol 20:2218–2223

    Article  PubMed  PubMed Central  Google Scholar 

  • Zagon IS, MsLaughlin PJ (2012) Targeting opioidergic pathways as a novel biological treatment for advanced pancreatic cancer. Expert Rev Gastroenterol Hepatol 6:133–135

    Article  PubMed  Google Scholar 

  • Zagon IS, Goodman SR, McLaughlin PJ (1988) Characterization of opioid binding sites in murine neuroblastoma. Brain Res 499:80–88

    Article  Google Scholar 

  • Zagon IS, Gibo D, McLaughlin PJ (1990a) Expression of zeta (zeta), a growth-related opioid receptor, in metastatic adenocarcinoma of the human cerebellum. J Natl Cancer Inst 82:325–327

    Article  PubMed  CAS  Google Scholar 

  • Zagon IS, Goodman SR, MeLaughlin PJ (1990b) Demonstration and characterization of zeta (zeta), a growth-related opioid receptor, in a neuroblastoma cell line. Brain Res 511:181–186

    Article  PubMed  CAS  Google Scholar 

  • Zagon IS, Wu Y, McLaughlin PJ (1994) Opioid growth factor inhibits DNA synthesis in mouse tongue epithelium in a circadian rhythm-dependent manner. Am J Physiol 267:645–652

    Google Scholar 

  • Zagon IS, Hytrek SD, Smith JP, McLaughlin PJ (1997) Opioid growth factor (OGF) inhibits human pancreatic cancer transplanted into nude mice. Cancer Lett 112:167–175

    Article  PubMed  CAS  Google Scholar 

  • Zagon IS, Smith JP, McLaughlin PJ (1999) Human pancreatic cancer cell proliferation in tissue culture is tonically inhibited by opioid growth factor. Int J Oncol 14:577–584

    PubMed  CAS  Google Scholar 

  • Zagon IS, Smith JP, Conter R, McLaughlin PJ (2000) Identification and characterization of opioid growth factor receptor in human pancreatic adenocarcinoma. Int J Mol Med 5:77–84

    PubMed  CAS  Google Scholar 

  • Zagon IS, Kreiner S, Heslop JJ, Conway AB, Morgan CR, MaLaughlin PJ (2008) Prevention and delay in progression of human pancreatic cancer by stable overexpression of the opioid growth factor receptor. Int J Oncol 33:317–323

    PubMed  Google Scholar 

  • Zagon IS, Rahn KA, Turel AP, McLaughlin PJ (2009) Endogenous opioids regulate expression of experimental autoimmune encephalomyelitis: a new paradigm for the treatment of multiple sclerosis. Exp Biol Med (Maywood) 234:1383–1392

    Article  CAS  Google Scholar 

  • Zagon IS, Rahn KA, Bonneau RH, Turel AP, McLaughlin PJ (2010) Opioid growth factor suppresses expression of experimental autoimmune encephalomyelitis. Brain Res 1310:154–161

    Article  PubMed  CAS  Google Scholar 

  • Zagon IS, Donahue R, McLaughlin PJ (2013) Targeting the opioid growth factor: opioid growth factor receptor axis for treatment of human ovarian cancer. Exp Biol Med (Maywood) 238:579–587

    Article  CAS  Google Scholar 

  • Zagon IS, Verderame MF, Hankins J, McLaughlin PJ (2007) Overexpression of the opioid growth factor receptor potentiates growth inhibition in humanpancreatic cancer cells. Int J Oncol 30:775–783

    PubMed  CAS  Google Scholar 

  • Zaki PA, Bilsky EJ, Vanderah TW, Lai J, Evans CJ, Porreca F (1996) Opioid receptor types and subtypes: the delta receptor as a model. Annu Rev Pharmacol Toxicol 36:379–401

    Article  PubMed  CAS  Google Scholar 

  • Zastawny RL, George SR, Nguyen T, Cheng R, Tsatsos J, Briones-Urbina R, O’Dowd BF (1994) Cloning, characterization, and distribution of a mu-opioid receptor in rat brain. J Neurochem 62:2009–2105

    Google Scholar 

  • Zhang JH, Xia Y, Haddad GG (1999) Activation of delta-opioid receptors protects cortical neurons from glutamate excitotoxic injury. Soc Neurosci 28:736

    Google Scholar 

  • Zhang JH, Haddad GG, Xia Y (2000) delta- but not mu-and kappa-opioid receptor activation protects neocortical neuron from glutamate-induced excitotoxic injury. Brain Res 885:143–153

    Article  PubMed  CAS  Google Scholar 

  • Zhang JH, Gibney GT, Xia Y (2001) Effect of prolonged hypoxia on expression of NA+ channel mRNA subtypes in the developing rat cortex. Brain Res Mol Brain Res 91:154–158

    Article  PubMed  CAS  Google Scholar 

  • Zhang JH, Gibney GT, Xia Y (2002) Neuroprotective role of delta-opioid receptors in cortical neurons. Am J Physiol Cell Physiol 282:C1225–C3124

    Article  PubMed  CAS  Google Scholar 

  • Zhang X, Wang F, Chen X, Li J, Xiang B, Zhang YQ, Li BM, Ma L (2005) Beta-arrestin1 and beta-arrestin2 are differentially required for phosphorylation-dependent and -independent internalization of delta-opioid receptors. J Neurochem 95:169–178

    Article  PubMed  CAS  Google Scholar 

  • Zhang J, Qian H, Zhao P, Hong SS, Xia Y (2006) Rapid hypoxia preconditioning protects cortical neurons from glutamate toxicity through delta-opioid receptor. Stroke 37:1094–1099

    Article  PubMed  CAS  Google Scholar 

  • Zhang H, Shi YG, Woods JH, Watson SJ, Ko MC (2007) Central kappa opioid receptor-mediated antidepressant-like effects of nor-Binaltorphimine: behavioral and BDNF mRNA expression studies. Eur J Pharmacol 570:89–96

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang S, Yekkirala A, Tang Y, Portoghese PS (2009) A bivalent ligand (KMN-21) antagonist for mu/kappa heterodimeric opioid receptors. Bioorg Med Chem Lett 19:6978–6980

    Article  PubMed  CAS  Google Scholar 

  • Zhang L, Li J, Shi Q, Fan R, Kaye AJ, Wang Y, Sun X, Rivera FB, Kaye AD, Pei J (2013) Role of κ-opioid receptor in hypoxic pulmonary artery hypertension and its underlying mechanism. Am J Ther 20:329–336

    Article  PubMed  CAS  Google Scholar 

  • Zhang X, Zhang Y, Asgar J, Niu KY, Lee J, Lee KS, Schneider M, Ro JY (2014) Sex differences in μ-opioid receptor expression in trigeminal ganglia under a myositis condition in rats. Eur J Pain 8:151–161

    Article  CAS  Google Scholar 

  • Zhao P, Guo JC, Xia Y (2002) Electro-acupuncture and brain protection from cerebral ischemia: the role of delta-opioid receptor. Soc Neurosci Abstract Program, No. 490.13

    Google Scholar 

  • Zhao P, Huang Y, Zuo Z (2006) Opioid preconditioning induces opioid receptor-dependent delayed neuroprotection against ischemia in rats. J Neuropathol Exp Neurol 65:945–952

    Article  PubMed  CAS  Google Scholar 

  • Zhao L, Zhu Y, Wang D, Chen M, Gao P, Xiao W, Rao G, Wang X, Jin H, Xu L, Sui N, Chen Q (2010) Morphine induces Beclin 1- and ATG5-dependent autophagy in human neuroblastoma SH-SY5Y cells and in the rat hippocampus. Autophagy 6:386–394

    Article  PubMed  CAS  Google Scholar 

  • Zhou F, Guo J, Cheng J, Wu G, Xia Y (2013) Effect of electroacupuncture on rat ischemic brain injury: importance of stimulation duration. Evid Based Complement Alternat Med 2013:87852

    Google Scholar 

  • Zhou XL, Yu LN, Wang Y, Tang LH, Peng YN, Cao JL, Yan M (2014) Increased methylation of the MOR gene proximal promoter in primary sensory neurons plays a crucial role in the decreased analgesic effect of opioids in neuropathic pain. Mol Pain 10:51

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhu Y, King MA, Schuller AGP, Nitsche JF, Reidl M, Elde RP, Unterwald E, Paseternak GW, Pintar JE (1999) Retention of supraspinal delta-like analgesia and loss of morphine tolerance in delta opioid receptor knockout mice. Neuron 24:243–252

    Article  PubMed  CAS  Google Scholar 

  • Zhu M, Li M, Tian X, Ou X, Zhu C, Guo J (2009) Neuroprotective role of δ-opioid receptors against mitochondrial respiratory chain injury. Brain Res 1252:183–191

    Article  PubMed  CAS  Google Scholar 

  • Zhu Y, Fotinos A, Mao LL, Atassi N, Zhou EW, Ahmad S, Guan Y, Berry JD, Cudkowicz ME, Wang X (2014) Neuroprotective agents target molecular mechanisms of disease in ALS. Drug Discov Today 6446:343

    Google Scholar 

  • Zöllner C, Schäfer M (2008) Opioids in anesthesia. Anaesthesist 57:729–740

    Article  PubMed  CAS  Google Scholar 

  • Zöllner C, Stein C (2007) Opioids. Handb Exp Pharmacol 2007:31–63

    Google Scholar 

  • Zou W, Guo Q, Wang E, Cai J, Cheng Z (2007) Intrathecal morphine suppresses immune function in rats with inflammatory-induced pain. J Int Med Res 36:626–636

    Article  Google Scholar 

  • Zuberi AR, Townsend L, Patterson L, Zheng H, Berthoud HR (2008) Increased adiposity on normal diet, but decreased susceptibility to diet-induced obesity in mu-opioid receptor-deficient mice. Eur J Pharmacol 585:14–23

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zubieta J-K, Ketter TA, Bueller JA, Xu Y, Kilbourn MR, Yong EA, Koeppe RA (2003) Regulation of human affective responses by anterior cingulated and limbic μ-opioid neurotransmission. Arch Gen Psychiatry 60:1145–1153

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The work was supported by NIH (HD-034852 and AT-004422) and Vivian L Smith Neurologic Foundation. GW and TC were supported by the National Natural Science Foundation of China (81260204; 81060096).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying Xia M.D., Ph.D .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Gao, H. et al. (2015). The Various Functions of Opioids in Pathophysiological Conditions. In: Xia, Y. (eds) Neural Functions of the Delta-Opioid Receptor. Springer, Cham. https://doi.org/10.1007/978-3-319-25495-1_18

Download citation

Publish with us

Policies and ethics