Skip to main content

Virus-Induced Modification of Subnuclear Domain Functions

  • Chapter
  • First Online:
Plant-Virus Interactions

Abstract

The nucleus and subnuclear structures such as Cajal bodies and the nucleolus function as pleiotropic control centres which regulate cellular activities. In recent years it has been found that proteins encoded by diverse genera of plant viruses can localize and interact with components of these structures during the infection process. In some cases such interactions are required for successful replication and systemic spread of the viruses, whereas in other cases these associations are detrimental to virus infection. This chapter aims to discuss the types of interaction at the mechanistic level, to provide the reader with a broad understanding of the role of subnuclear domains during plant virus infections.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Andersen JS, Lam YW, Leung AKL et al (2005) Nucleolar proteome dynamics. Nature 433:77–83

    Article  CAS  PubMed  Google Scholar 

  • Andrade LE, Chan EK, RaÅ¡ka I et al (1991) Human autoantibody to a novel protein of the nuclear coiled body: immunological characterization and cDNA cloning of p80-coilin. J Exp Med 173:1407–1419

    Article  CAS  PubMed  Google Scholar 

  • Andrade LE, Tan EM, Chan EK (1993) Immunocytochemical analysis of the coiled body in the cell cycle and during cell proliferation. Proc Natl Acad Sci U S A 90:1947–1951

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aris JP, Blobel G (1991) cDNA cloning and sequencing of human fibrillarin, a conserved nucleolar protein recognised by autoimmune sera. Proc Natl Acad Sci U S A 88:931–935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bahner I, Lamb J, Mayo MA et al (1990) Expression of the genome of potato leafroll virus: readthrough of the coat protein termination codon in vivo. J Gen Virol 71:2251–2256

    Article  CAS  PubMed  Google Scholar 

  • Barneche F, Steinmetz F, Echeverría M (2000) Fibrillarin genes encode both a conserved nucleolar protein and a novel small nucleolar RNA involved in ribosomal RNA methylation in Arabidopsis thaliana. J Biol Chem 275:27212–27220

    CAS  PubMed  Google Scholar 

  • Bass HW, Nagar S, Hanley-Bowdoin L et al (2000) Chromosome condensation induced by geminivirus infection of mature plant cells. J Cell Sci 113:1149–1160

    CAS  PubMed  Google Scholar 

  • Bassett C (2012) Cajal bodies and plant RNA metabolism. CRC Crit Rev Plant Sci 31:258–270

    Article  CAS  Google Scholar 

  • Baunoch DA, Das P, Browning ME et al (1991) A temporal study of the expression of the capsid, cytoplasmic inclusion and nuclear inclusion proteins of tobacco etch potyvirus in infected plants. J Gen Virol 72:487–492

    Article  CAS  PubMed  Google Scholar 

  • Beauchemin C, Laliberté J-F (2007) The poly(A) binding protein is internalized in virus-induced vesicles or redistributed to the nucleolus during turnip mosaic virus infection. J Virol 81:10905–10913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beauchemin C, Boutet N, Laliberté J-F (2007) Visualisation of the interaction between the precursors of VPg, the viral protein linked to the genome of turnip mosaic virus, and the translation eukaryotic initiation factor iso 4E in planta. J Virol 81:775–782

    Article  CAS  PubMed  Google Scholar 

  • Belmont A (2003) Dynamics of chromatin, proteins, and bodies within the cell nucleus. Cur Opin Cell Biol 15:304–310

    Article  CAS  Google Scholar 

  • Bevan AF, Simpson GG, Brown JWS et al (1995) The organization of spliceosomal components in the nuclei of higher plants. J Cell Sci 108:509–518

    Google Scholar 

  • Boisvert FM, van Koningsbruggen S, Navascues J et al (2007) The multifunctional nucleolus. Nat Rev Mol Cell Biol 8:574–585

    Article  CAS  PubMed  Google Scholar 

  • Boudonck K, Dolan L, Shaw PJ (1999) The movement of coiled bodies visualized in living plant cells by the green fluorescent protein. Mol Biol Cell 10:2297–2307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boulon S, Westman BJ, Hutten S et al (2010) The nucleolus under stress. Mol Cell 40:216–227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bureau M, Leh V, Haas M et al (2004) P6 protein of cauliflower mosaic virus, a translation reinitiator, interacts with ribosomal protein L13 from Arabidopsis thaliana. J Gen Virol 85:3765–3775

    Google Scholar 

  • Canetta E, Kim S-H, Kalinina NO et al (2008) A plant virus movement protein forms ringlike complexes with the major nucleolar protein, fibrillarin, in vitro. J Mol Biol 376:932–937

    Article  CAS  PubMed  Google Scholar 

  • Canto T, Uhrig JF, Swanson M et al (2006) Translocation of tomato bushy stunt virus P19 into the nucleus by ALY proteins compromises its silencing suppressor activity. J Virol 80:9062–9072

    Article  CAS  Google Scholar 

  • Carmo-Fonseca M (2002) New clues to the function of the Cajal body. EMBO Rep 8:726–727

    Article  CAS  Google Scholar 

  • Carmo-Fonseca M, Ferreira J, Lamond AI (1993) Assembly of snRNP-containing coiled bodies is regulated in interphase and mitosis-evidence that the coilied body is a kinetic structure. J Cell Biol 120:841–852

    Article  CAS  PubMed  Google Scholar 

  • Carrington JC, Haldeman R, Dolja VV et al (1993) Internal cleavage and trans-proteolytic activities of the VPg-proteinase (NIa) of tobacco etch potyvirus in vivo. J Virol 67:6995–7000

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cecchini E, Gong Z, Geri C et al (1997) Transgenic Arabidopsis lines expressing gene VI from cauliflower mosaic virus variants exhibit a range of symptom-like phenotypes and accumulate inclusion bodies. Mol Plant Microbe Interact 10:1094–1101

    Google Scholar 

  • Cioce M, Lamond AI (2005) Cajal bodies: a long history of discovery. Annu Rev Cell Dev Biol 21:105–131

    Article  CAS  PubMed  Google Scholar 

  • Collier S, Pendle A, Boudonck K et al (2006) A distant coilin homologue is required for the formation of Cajal bodies in Arabidopsis. Mol Biol Cell 17:2942–2951

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Costa AT, Bravo JP, Makiyama RK et al (2013) Viral counter defense X antiviral immunity in plants: mechanisms for survival. Curr Issues Mol Virol Viral Genet Biotechnol Appl. doi:10.5772/56253

    Google Scholar 

  • Cotton S, Grangeon R, Thivierge K et al (2009) Turnip mosaic virus RNA replication complex vesicles are mobile, align with microfilaments and are each derived from a single viral genome. J Virol 83:10460–10471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crivelli G, Ciuffo M, Genre A et al (2011) Reverse genetic analysis of Ourmiaviruses reveals the nucleolar localization of the coat protein in Nicotiana benthamiana and unusual requirements for virion formation. J Virol 85:5091–5104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cui X, Wei T, Chowda-Reddy RV et al (2010) The tobacco etch virus P3 protein forms mobile inclusions via the early secretory pathway and traffics along actin microfilaments. Virology 397:56–63

    Article  CAS  PubMed  Google Scholar 

  • Desvoyes B, Scholthof KB (2000) RNA: protein interactions associated with satellites of panicum mosaic virus. FEBS Lett 485:25–28

    Article  CAS  PubMed  Google Scholar 

  • Dougherty WG, Parks TD, Cary SM et al (1989) Characterization of catalytic residues of the tobacco etch virus 49-kDa proteinase. Virology 172:302–310

    Article  CAS  PubMed  Google Scholar 

  • Eggenberger AL, Hajimorad MR, Hill JH (2008) Gain of virulence on Rsv1-genoype soybean by an avirulent soybean mosaic virus requires concurrent mutations in both P3 and HC-Pro. Mol Plant Microbe Interact 21:931–936

    Article  CAS  PubMed  Google Scholar 

  • Eichler DC, Craig N (1994) Processing of eukaryotic ribosomal RNA. Prog Nucleic Acids Res Mol Biol 49:197–239

    Article  CAS  Google Scholar 

  • Fatica A, Tollervey D (2002) Making ribosomes. Curr Opin Cell Biol 14:313–318

    Article  CAS  PubMed  Google Scholar 

  • Feng L, Duan CG, Guo HS (2013) Inhibition of in vivo Slicer activity of Argonaute protein 1 by the viral 2b protein independent of its dsRNA-binding function. Mol Plant Pathol 16:617–622

    Article  CAS  Google Scholar 

  • Gall JG, Tsvetkov A, Wu Z, Murphy C (1995) Is the sphere organelle/coiled body a universal nuclear component? Dev Genet 16:25–35

    Article  CAS  PubMed  Google Scholar 

  • Gilder AS, Do PM, Carrero ZI et al (2011) Coilin participates in the suppression of RNA polymerase I in response to cisplatin-induced DNA damage. Mol Biol Cell 22:1070–1079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • González I, Martínez L, Rakitina DV et al (2010) Cucumber mosaic virus 2b protein subcellular targets and interactions: their significance to RNA silencing suppressor activity. Mol Plant Microbe Interact 23:294–303

    Article  PubMed  CAS  Google Scholar 

  • Granneman S, Baserga SJ (2004) Ribosome biogenesis: of knobs and RNA processing. Exp Cell Res 296:43–50

    Article  CAS  PubMed  Google Scholar 

  • Haas M, Geldrich A, Bureau M et al (2005) The open reading frame VI product of cauliflower mosaic virus is a nucleocytoplasmic protein: its N terminus mediates its nuclear export and formation of electron-dense viroplasms. Plant Cell 17:927–943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haas G, Azevedo J, Moissiard G et al (2008) Nuclear import of CaMV P6 is required for infection and suppression of the RNA silencing factor DRB4. EMBO J 27:2102–2112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hajimorad MR, Ding XS, Flasinski S et al (1996) NIa and NIb of peanut stripe potyvirus are present in the nucleus of infected cells, but do not form inclusions. Virology 224:368–379

    Article  CAS  PubMed  Google Scholar 

  • Haupt S, Stroganova T, Ryabov E et al (2005) Nucleolar localisation of potato leafroll virus capsid proteins. J Gen Virol 86:2891–2896

    Article  CAS  PubMed  Google Scholar 

  • Herranz MC, Pallas V, Aparicio F (2012) Multifunctional roles for the N-terminal basic motif of alfalfa mosaic virus coat protein: nucleolar/cytoplasmic shuttling, modulation of RNA-binding activity, and virion formation. Mol Plant Microbe Interact 25:1093–1103

    Article  CAS  PubMed  Google Scholar 

  • Hiscox JA (2002) The nucleolus – a gateway to viral infection? Arch Virol 147:1077–1089

    Article  CAS  PubMed  Google Scholar 

  • Hiscox JA (2007) RNA viruses: hijacking the dynamic nucleolus. Nat Rev Microbiol 5:119–127

    Article  CAS  PubMed  Google Scholar 

  • Hong Y, Hunt AG (1996) RNA polymerase activity catalyzed by a potyvirus-encoded RNA dependent RNA polymerase. Virology 226:146–151

    Article  CAS  PubMed  Google Scholar 

  • Jenner CE, Wang X, Tomimura K et al (2003) The dual role of the potyvirus P3 protein of turnip mosaic virus as a symptoms and avirulence determinant of brassicas. Mol Plant Microbe Interact 16:777–784

    Article  CAS  PubMed  Google Scholar 

  • Johansen IE, Lund OS, Hjulsager CK et al (2001) Recessive resistance in Pisum sativum and potyvirus pathotype resolved in a gene-for-cistron correspondence between host and virus. J Virol 75:6609–6614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jolly C, Morimoto RI (1999) Stress and the cell nucleus: dynamics of gene expression and structural reorganization. Gene Expr 7:261–270

    CAS  PubMed  Google Scholar 

  • Jones KW, Gorzynski K, Hales CM et al (2001) Direct interaction of the spinal muscular atrophy disease protein SMN with the small nucleolar RNA-associated protein fibrillarin. J Biol Chem 26:38645–38651

    Article  Google Scholar 

  • Kim KS, Shock TL, Goodman RM (1978) Infection of Phaseolus vulgaris by bean golden mosaic virus: ultrastructural aspects. Virology 89:22–33

    Article  CAS  PubMed  Google Scholar 

  • Kim KS, Bird J, Rodriguez RL et al (1986) Ultrastructural studies of Jatropha gossypifolia infected with jatropha mosaic virus, a whitefly-transmitted geminivirus. Phytopathology 76:80–85

    Article  Google Scholar 

  • Kim S-H, MacFarlane S, Kalinina NO et al (2007a) Interaction of a plant virus-encoded protein with the major nucleolar protein fibrillarin is required for systemic virus infection. Proc Natl Acad Sci U S A 104:11115–11120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim S-H, Ryabov EV, Kalinina NO et al (2007b) Cajal bodies and the nucleolus are required for a plant virus systemic infection. EMBO J 26:2169–2179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim S-H, Koroleva OA, Lewandowska D et al (2009) Aberrant mRNA transcripts and the nonsense-mediated decay proteins UPF2 and UPF3 are enriched in the Arabidopsis nucleolus. Plant Cell 21:2045–2057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kleinow T, Tanwir F, Kocher C et al (2009) Expression dynamics and ultrastructural localization of epitope-tagged Abutilon mosaic virus nuclear shuttle and movement proteins in Nicotiana benthamiana cells. Virology 39:212–220

    Article  CAS  Google Scholar 

  • Kobayashi K, Hohn T (2004) The avirulence domain of cauliflower mosaic virus transactivator/viroplasmin is a determinant of viral virulence in susceptible hosts. Mol Plant Microbe Interact 17:475–483

    Article  CAS  PubMed  Google Scholar 

  • Krenz B, Neugart F, Kleinow T et al (2011) Self-interaction of Abutilon mosaic virus replication initiator protein (Rep) in plant cell nuclei. Virus Res 161:194–197

    Article  CAS  PubMed  Google Scholar 

  • Laird J, Mcinally C, Carr C et al (2013) Identification of the domains of cauliflower mosaic virus protein P responsible for suppression of RNA silencing and salicylic acid signaling. J Gen Virol 94:2777–2789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lam YW, Lyon CE, Lamond AI (2002) Large-scale isolation of Cajal bodies from HeLa cells. Mol Biol Cell 13:2461–2473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lam YW, Lamond AI, Mann M et al (2007) Analysis of nucleolar protein dynamics reveals the nuclear degradation of ribosomal proteins. Curr Biol 17:749–760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lamond AI, Spector DL (2003) Nuclear speckles: a model for nuclear organelles. Nat Rev Mol Cell Biol 4:605–612

    Article  CAS  PubMed  Google Scholar 

  • Leh V, Yot P, Keller M et al (2000) The cauliflower mosaic virus translational transactivator interacts with the 60S ribosomal subunit protein L18 of Arabidopsis thaliana. Virology 266:1–7

    Article  CAS  PubMed  Google Scholar 

  • Léonard S, Plante D, Wittman S et al (2000) Complex formation between potyvirus VPg and translation eukaryotic initiation factor 4E correlates with virus infectivity. J Virol 74:7730–7737

    Article  PubMed  PubMed Central  Google Scholar 

  • Li XH, Carrington JC (1995) Complementation of tobacco etch potyvirus mutants by active RNA polymerase expressed in transgenic cells. Proc Natl Acad Sci U S A 92:457–461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li YP, Busch RK, Valdez BC et al (1996) C23 interacts with B23, a putative nucleolar-localization-signal-binding protein. Eur J Biochem 237:153–158

    Article  CAS  PubMed  Google Scholar 

  • Li XH, Valdez P, Olvera RE et al (1997) Functions of the tobacco etch virus NA polymerase (Nib): subcellular transport and protein-protein interaction with VPg/proteinase (NIa). J Virol 71:1598–1607

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li CF, Pontes O, El-Shami M et al (2006) An ARGONAUTE-4-containing nuclear processing center colocalised with Cajal bodies in Arabidopsis thaliana. Cell 126:93–106

    Article  CAS  PubMed  Google Scholar 

  • Liu J-L, Wu Z, Nizami Z et al (2009) Coilin is essential for Cajal body organisation in Drosophila melanogaster. Mol Biol Cell 20:1661–1670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Love AJ, Laird J, Holt J et al (2007) Cauliflower mosaic virus protein P6 is a suppressor of RNA silencing. J Gen Virol 88:3439–3444

    Article  CAS  PubMed  Google Scholar 

  • Love AJ, Geri C, Laird J et al (2012) Cauliflower mosaic virus protein P6 inhibits signaling responses to salicylic acid and regulates innate immunity. PLoS One 7:e47535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lucas WJ (2006) Plant viral movement proteins: agents for cell-to-cell trafficking of viral genomes. Virology 344:169–184

    Article  CAS  PubMed  Google Scholar 

  • Lucy AP, Guo H-S, W-X LI et al (2000) Suppression of post-transcriptional gene silencing by a plant viral protein localised in the nucleus. EMBO J 19:1672–1680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lyon CE, Bohmann K, Sleeman J et al (1997) Inhibition of protein dephosphorylation results in the accumulation of splicing snRNPs and coiled bodies within the nucleolus. Exp Cell Res 230:84–93

    Article  CAS  PubMed  Google Scholar 

  • Macara IG (2001) Transport into and out of the nucleus. Microbiol Mol Biol Rev 65:570–594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Makarov V, Rakitina D, Protopopova A et al (2013) Plant coilin: structural characteristics and RNA-binding properties. PLoS One 8:e53571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mangus DA, Evans MC, Jacobson A (2003) Poly(A)-binding proteins: multifunctional scaffolds for the post-transcriptional control of gene expression. Genome Biol 4:223

    Article  PubMed  PubMed Central  Google Scholar 

  • Matera AG, Shpargel KB (2006) Pumping RNA: nuclear bodybuilding along the RNP pipeline. Curr Opin Cell Biol 18:317–324

    Article  CAS  PubMed  Google Scholar 

  • Matera AG, Izaguire-Sierra M, Praveen K et al (2009) Nuclear bodies: random aggregates of sticky proteins or crucibles of macromolecular assembly? Dev Cell 17:639–647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mongelard F, Bouvet P (2007) Nucleolin: a multiFACeTed protein. Trends Cell Biol 14:80–86

    Article  CAS  Google Scholar 

  • Morozov SY, Solovyev AG (2003) Triple gene block: modular design of a multifunctional machine for plant virus movement. J Gen Virol 84:1351–1366

    Article  CAS  PubMed  Google Scholar 

  • Morris G (2008) The Cajal body. Biochim Biophys Acta 1783:2108–2115

    Article  CAS  PubMed  Google Scholar 

  • Nicol RL, Frey N, Olson EN (2000) From the sarcomere to the nucleus: role of genetics and signalling in structural heart disease. Annu Rev Genomics Hum Genet 1:179–223

    Article  CAS  PubMed  Google Scholar 

  • Ogg SC, Lamond AI (2002) Cajal bodies and coilin--moving towards function. J Cell Biol 159:17–21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Okuwaki M, Iwamatsu A, Tsujimoto M et al (2001) Identification of nucleophosmin/B23, an acidic nucleolar protein, as a stimulatory factor for in vitro replication of adenovirus DNA complexed with viral basic core proteins. J Mol Biol 311:41–55

    Article  CAS  PubMed  Google Scholar 

  • Olson MOJ (2004a) Introduction. In: The nucleolus. Landes/Kluwer, Georgetown/New York, pp p1–p9

    Google Scholar 

  • Olson MOJ (2004b) Nontraditional roles of the nucleolus. In: Olson MOJ (ed) The nucleolus. Landes/Kluwer, Georgetown/New York, pp 329–342

    Google Scholar 

  • Omarov RT, Qi D, Scholthof KBG (2005) The capsid protein of satellite Panicum mosaic virus contributes to systemic invasion and interacts with its helper virus. J Virol 79:9756–9764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oparka KJ (2004) Getting the message across: how do plant cells exchange macromolecular complexes? Trends Plant Sci 9:33–41

    Article  CAS  PubMed  Google Scholar 

  • Oruetxebarria I, Guo D, Merits A et al (2001) Identification of the genome-linked protein in virions of potato virus A, with comparison to other members in genus Potyvirus. Virus Res 73:103–112

    Article  CAS  PubMed  Google Scholar 

  • Park HS, Himmelbach A, Browning RS et al (2001) A plant viral ‘reinitiation’ factor interacts with the host translational machinery. Cell 106:723–733

    Article  CAS  PubMed  Google Scholar 

  • Pih KT, Yi MJ, Liang YS et al (2000) Molecular cloning and targeting of a fibrillarin homolog from Arabidopsis. Plant Physiol 123:51–58

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pontes O, Pikaard CS (2008) siRNA and miRNA processing: new functions for Cajal bodies. Curr Opin Genet Dev 18:1–7

    Article  CAS  Google Scholar 

  • Pontes O, Li CF, Nunes PC et al (2006) The Arabidopsis chromatin-modifying nuclear siRNA pathway involves a nucleolar RNA processing center. Cell 126:79–92

    Article  CAS  PubMed  Google Scholar 

  • Qi D, Omarov RT, Scholthof KBG (2008) The complex subcellular distribution of satellite Panicum mosaic virus capsid protein reflects its multifunctional role during infection. Virology 376:154–164

    Article  CAS  PubMed  Google Scholar 

  • Rajamäki M-L, Valkonen JPT (2003) Localization of a potyvirus and the viral genome-linked protein in wild potato leaves at an early stage of systemic infection. Mol Plant Microbe Interact 16:25–34

    Article  PubMed  Google Scholar 

  • Rajamäki M-L, Valkonen JPT (2009) Control of nuclear and nucleolar localization of nuclear inclusion protein a of picorna-like potato virus A in Nicotiana species. Plant Cell 21:2485–2502

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rajamäki M-L, Mäki-Valkama T, Mäkinen K et al (2004) Infection with potyviruses. In: Talbot N (ed) Plant-pathogen interactions. Blackwell Publishing, Oxford, pp 68–91

    Google Scholar 

  • Rakitina DV, Taliansky M, Brown JWS et al (2011) Two RNA-binding sites in plant fibrillarin provide interactions with various RNA substrates. Nucleic Acids Res 39:8869–8880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • RaÅ¡ka I, Andrade LEC, Ochs RL et al (1991) Immunological and ultrastructural studies of the nuclear coiled body with autoimmune antibodies. Exp Cell Res 195:27–37

    Article  PubMed  Google Scholar 

  • Rastgou M, Habibi MK, Izadpanah K et al (2009) Molecular characterization of the plant virus genus Ourmiavirus and evidence of inter-kingdom reassortment of viral genome segments as its possible route of origin. J Gen Virol 90:2525–2535

    Google Scholar 

  • Reichow SL, Hamma T, Ferré-D’Amaré AR et al (2007) The structure and function of small nucleolar ribonucleoproteins. Nucleic Acids Res 35:1452–1464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Restrepo MA, Freed DD, Carrington JC (1990) Nuclear transport of plant potyviral proteins. Plant Cell 2:987–998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Restrepo-Hartwig MA, Carrington JC (1994) The tobacco etch potyvirus 6-kilodalton protein is membrane associated and involved in viral replication. J Virol 68:2388–2397

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rippe K (2007) Dynamic organisation of the cell nucleus. Curr Opin Genet Dev 17:373–380

    Article  CAS  PubMed  Google Scholar 

  • Robaglia C, Caranta C (2006) Translation initiation factors: a weak link in plant RNA virus infection. Trends Plant Sci 11:40–45

    Article  CAS  PubMed  Google Scholar 

  • Rojas MR, Jiang H, Salati R et al (2001) Functional analysis of proteins involved in movement of the monopartite begomovirus, tomato yellow leaf curl virus. Virology 291:110–125

    Article  CAS  PubMed  Google Scholar 

  • Rossi M, Genre A, Turina M (2014) Genetic dissection of a putative nucleolar localization signal in the coat protein of ourmia melon virus. Arch Virol 159(5):1187–1192

    Article  CAS  PubMed  Google Scholar 

  • Rubbi CP, Milner J (2003) Disruption of the nucleolus mediates stabilization of p53 in response to DNA damage and other stresses. EMBO J 22:6068–6077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruiz-Ferrer V, Voinnet O (2009) Roles of plant small RNAs in biotic stress responses. Annu Rev Plant Biol 60:485–510

    Article  CAS  PubMed  Google Scholar 

  • Ryabov EV, Oparka KJ, Santa Cruz S et al (1998) Intercellular location of two groundnut rosette umbravirus proteins delivered by PVX and TMV vectors. Virology 242:303–313

    Article  CAS  PubMed  Google Scholar 

  • Ryabov EV, Kim S-H, Taliansky M (2004) Identification of a nuclear localisation signal and nuclear export signal of the umbraviral long-distance RNA movement protein. J Gen Virol 85:1329–1333

    Article  CAS  PubMed  Google Scholar 

  • Schaad MC, Haldeman-Cahill R, Cronin S et al (1996) Analysis of the VPg-proteinase (NIa) encoded by tobacco etch potyvirus: effects of mutations on subcellular transport, proteolytic processing, and genome amplification. J Virol 70:7039–7048

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schaad MC, Jensen PE, Carrington JC (1997) VPg of tobacco etch potyvirus is a host genotype-specific determinant for long-distance movement. J Virol 71:8624–8631

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schaad MC, Anderberg RJ, Carrington JC (2000) Strain-specific interaction of the tobacco etch virus NIa protein with the translation initiation factor eIF4E in the yeast two-hybrid system. Virology 273:300–306

    Article  CAS  PubMed  Google Scholar 

  • Schneider R, Grosscheld R (2007) Dynamics and interplay of nuclear architecture, genome organization, and gene expression. Genes Dev 21:3027–3043

    Article  CAS  PubMed  Google Scholar 

  • Semashko MA, González I, Shaw J et al (2012) The extreme N-terminal domain of a hordeivirus TGB1 movement protein mediates its localization to the nucleolus and interaction with fibrillarin. Biochimie 94:1180–1188

    Article  CAS  PubMed  Google Scholar 

  • Sharma P, Ikegami M (2009) Characterization of signals that dictate nuclear/nucleolar and cytoplasmic shuttling of the capsid protein of tomato leaf curl java virus associated with DNAβ satellite. Virus Res 144:145–153

    Article  CAS  PubMed  Google Scholar 

  • Shaw PJ, Brown JWS (2004) Plant nuclear bodies. Curr Opin Plant Biol 7:614–620

    Article  CAS  PubMed  Google Scholar 

  • Shaw J, Love AJ, Makarova SS et al (2014) Coilin, the signature protein of Cajal bodies, differentially modulates the interactions of plants with viruses in widely different taxa. Nucleus 5(1):85–94

    Article  PubMed  PubMed Central  Google Scholar 

  • Siaw MFE, Shahabuddin M, Ballard S et al (1985) Identification of a protein covalently linked to the ‘-terminus of tobacco vein mottling virus RNA. Virology 142:134–143

    Article  CAS  PubMed  Google Scholar 

  • Sleeman JE, Lyon CE, Platani M et al (1998) Dynamic interactions between slicing snRNPs, coiled bodies and nucleoli revealed using snRNP protein fusions to the green fluorescent protein. Exp Cell Res 243:290–304

    Article  CAS  PubMed  Google Scholar 

  • Strudwick S, Borden KLB (2002) The emerging roles of translation factor eIF4E in the nucleus. Differentiation 70:10–22

    Article  CAS  PubMed  Google Scholar 

  • Taliansky ME, Robinson DJ (2003) Molecular biology of umbraviruses: phantom warriors. J Gen Virol 84:1951–1960

    Article  CAS  PubMed  Google Scholar 

  • Taliansky M, Roberts IM, Kalinina NO et al (2003) An umbraviral protein, involved in long-distance RNA movement, binds RNA and forms unique, protective ribonucleoprotein complexes. J Virol 77:3031–3040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taliansky ME, Brown JWS, Rajämaki M-L et al (2010) Involvement of the plant nucleolus in virus and viroid infections: parallels with animal pathosystems. Adv Virus Res 77:119–158

    Article  CAS  PubMed  Google Scholar 

  • Thompson SR, Sarnow P (2000) Regulation of host cell translation by viruses and effects on cell function. Curr Opin Microbiol 3:366–370

    Article  CAS  PubMed  Google Scholar 

  • Torrance L, Wright KM, Crutzen F et al (2011) Unusual features of pomoviral RNA movement. Front Microbiol 2:1–7

    Article  Google Scholar 

  • Trinkle-Mulcahy L, Lamond AI (2007) Toward a high resolution view of nuclear dynamics. Science 318:1403–1407

    Article  CAS  Google Scholar 

  • Trinkle-Mulcahy L, Lamond AI (2008) Nuclear functions in space and time: gene expression in a dynamic, constrained environment. FEBS Lett 82:1960–1970

    Article  CAS  Google Scholar 

  • Tsai CW, Redinbaugh MG, Willie KJ et al (2005) Complete genome sequence and in planta subcellular localization of maize fine streak virus proteins. J Virol 79:5304–5314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tucker KE, Berciano MT, Jacobs EY et al (2001) Residual Cajal bodies in coilin knockout mice fail to recruit Sm snRNPs and SMN, the spinal muscular atrophy gene product. J Cell Biol 154:293–307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tuteja R, Tuteja N (1998) Nucleolin: a multifunctional major nucleolar phosphoprotein. Crit Rev Biochem Mol Biol 33:407–436

    Article  CAS  PubMed  Google Scholar 

  • Velma V, Carrero ZI, Cosman AM et al (2010) Coilin interacts with Ku proteins and inhibits in vitro non-homologous DNA end joining. FEBS Lett 584:4735–4739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Venema J, Tollervey D (1999) Ribosome synthesis in Saccharomyces cerevisiae. Annu Rev Genet 33:261–311

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Boisvert D, Kim KK et al (2000) Crystal structure of a fibrillarin homologue from Methanocaldococcus jannaschii, a hyperthermophile, at 1.6 A resolution. EMBO J 19:317–323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang X, Zhang Y, Xu J et al (2012) The R-rich motif of beet black scorch virus P7a movement protein is important for the nuclear localization, nucleolar targeting and viral infectivity. Virus Res 167:207–218

    Article  CAS  PubMed  Google Scholar 

  • Warner JR (1990) The nucleolus and ribosome formation. Curr Opin Cell Biol 2:521–527

    Article  CAS  PubMed  Google Scholar 

  • Wright KM, Cowan GH, Lukhovitskaya NI et al (2010) The N-terminal domain of PMTV TGB1 movement protein is required for nucleolar localisation, microtubule association, and long distance movement. Mol Plant Microbe Interact 23:1486–1497

    Article  CAS  PubMed  Google Scholar 

  • Yannoni YM, White K (1997) Association of the neuron-specific RNA-binding domain-containing protein ELAV with the coilied body in Drosophila neurons. Chromosoma 105:332–341

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Yuan Y-R, Pei Y et al (2006) Cucumber mosaic virus-encoded 2b suppressor inhibits Arabidopsis Argonaute1 cleavage activity to counter plant defense. Genes Dev 20:3255–3268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou YC, Garrido-Ramirez ER, Sudarshana MR et al (2007) The N-terminus of the begomovirus nuclear shuttle protein (BV1) determines virulence or avirulence in Phaseolus vulgaris. Mol Plant Microbe Interact 20:1523–1534

    Google Scholar 

Download references

Acknowledgements

This work was funded by Scottish Government Rural and Environmental Science and Analytical Services Division (JS, AJL and MT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael E. Taliansky .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Love, A.J., Shaw, J., Taliansky, M.E. (2016). Virus-Induced Modification of Subnuclear Domain Functions. In: Kleinow, T. (eds) Plant-Virus Interactions. Springer, Cham. https://doi.org/10.1007/978-3-319-25489-0_3

Download citation

Publish with us

Policies and ethics