Skip to main content

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 226))

  • 1472 Accesses

Abstract

In this chapter, we present the conceptual framework that motivates the development of a predictive multiscale approach to Integrated Computational Materials Science and Engineering. Clear distinction among theories, models, and simulations allow us to categorize the underlying physical principles used, the realization of those principles, and their implementation on a computational architecture. The physical theories that are explored in this volume can be combined into coherent multi-theory constructs that preserve the fidelity of each theory over its range of applicability. Similarly, models of these physical theories, which can be realized in computer simulations, must respect their range of validity over both spatial and temporal scales. The principles and procedures presented in this book promote a clear and concise methodological approach for the creation of predictive multi-theory, multi-model, multiscale simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. P. Hohenberg, W. Kohn, Phys. Rev. 136, B864 (1964)

    Article  ADS  Google Scholar 

  2. W. Kohn, L.J. Sham, Phys. Rev. 140, A1133 (1965)

    Article  ADS  Google Scholar 

  3. K. Muralidharan, C. Cao, Y. Wan, K. Runge, H.-P. Cheng, Chem. Phys. Lett. 437, 92 (2007)

    Article  ADS  Google Scholar 

  4. W.J. Boettinger, J.A. Warren, C. Beckermann, A. Karma, Annu. Rev. Mater. Res. 32, 163 (2002)

    Article  Google Scholar 

  5. S.A. Silling, J. Mech. Phys. Solids 48, 175 (2000)

    Article  MathSciNet  ADS  Google Scholar 

  6. S.A. Silling, M. Epton, O. Weckner, J. Xu, A. Askari, J. Elast. 88, 151 (2007)

    Article  Google Scholar 

  7. E.B. Tadmor, M. Ortiz, R. Phillips, Phil. Mag. A 73, 1529 (1996)

    Article  ADS  Google Scholar 

  8. E.B. Tadmor, R. Phillips, M. Ortiz, Langmuir 12, 4529 (1996)

    Article  Google Scholar 

  9. V.B. Shenoy, R. Miller, E.B. Tadmor, R. Phillips, M. Ortiz, Phys. Rev. Lett. 80, 742 (1998)

    Article  ADS  Google Scholar 

  10. G.S. Smith, E.B. Tadmor, E. Kaxiras, Phys. Rev. Lett. 84, 1260 (2000)

    Article  ADS  Google Scholar 

  11. M. Mullins, M.A. Dokainish, Phil. Mag. A 46, 771 (1982)

    Article  ADS  Google Scholar 

  12. H. Kitagawa, A. Nakatami, Y. Sibutani, Mat. Sci. Eng. A 176, 263 (1994)

    Article  Google Scholar 

  13. R.E. Rudd, J.Q. Broughton, Phys. Rev. B 58, R5893 (1998)

    Article  ADS  Google Scholar 

  14. J.Q. Broughton, F.F. Abraham, N. Bernstein, E. Kaxiras, Phys. Rev. B 60, 2391 (1999)

    Article  ADS  Google Scholar 

  15. S. Kohlhoff, P. Gumbsch, H.F. Fischmeister, Phil. Mag. A 64, 851 (1991)

    Article  ADS  Google Scholar 

  16. F.F. Abraham, J.Q. Broughton, N. Bernstein, E. Kaxiras, Comp. Phys. 12, 538 (1998)

    Article  Google Scholar 

  17. S. Ogata, E. Lidorikis, F. Shimojo, A. Nakano, P. Vashista, R.K. Kalia, Comp. Phys. Commun. 138, 143 (2001)

    Article  ADS  Google Scholar 

  18. K. Runge, in Optical Measurements, Modeling, and Metrology, vol. 5, ed. by T. Proulx. Conference Proceedings of the Society for Experimental Mechanics Series, p. 83 (2011)

    Google Scholar 

  19. G. Frantziskonis, P.A. Deymier, Model. Simul. Mater. Sci. Eng. 8, 649 (2000)

    Article  ADS  Google Scholar 

  20. G. Frantziskonis, P. Deymier, Phys. Rev. B 68, 024105 (2003)

    Article  ADS  Google Scholar 

  21. G. Frantziskonis, S.K. Mishra, S. Pannala, S. Simunovic, C.S. Daw, P. Nukala, R.O. Fox, P.A. Deymier, Int. J. Mult. Comp. Eng. 4, 755 (2006)

    Article  Google Scholar 

  22. S.K. Mishra, K. Muralidharan, S. Pannala, S. Simunovic, C.S. Daw, P. Nukala, R.O. Fox, P.A. Deymier, G. Frantziskonis, Intl. J. Chem. React. Eng. 6, A28 (2008)

    Google Scholar 

  23. K. Muralidharan, S.K. Misra, G. Frantziskonis, P.A. Deymier, P. Nukala, S. Pannala, S. Simunovic, Phys. Rev. E 77, 026714 (2008)

    Article  ADS  Google Scholar 

  24. G. Frantziskonis, K. Muralidharan, P. Deymier, S. Simunovic, P. Nukala, S. Pannala, J. Comp. Phys. 228, 8085 (2009)

    Article  ADS  Google Scholar 

  25. P.A. Deymier, Ki-Dong Oh, Krishna Muralidharan, G. Frantzikonis, K. Runge, J. Comput. Aided Mater. Des. 13, 17 (2006)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. Samuel B. Trickey for many helpful and informative conversations that form the basis for this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre A. Deymier .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Deymier, P.A., Runge, K. (2016). Introduction. In: Deymier, P., Runge, K., Muralidharan, K. (eds) Multiscale Paradigms in Integrated Computational Materials Science and Engineering. Springer Series in Materials Science, vol 226. Springer, Cham. https://doi.org/10.1007/978-3-319-24529-4_1

Download citation

Publish with us

Policies and ethics