Skip to main content

Growth and Properties of Bulk AlN Substrates

  • Chapter
  • First Online:
III-Nitride Ultraviolet Emitters

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 227))

Abstract

Bulk crystal growth of aluminum nitride (AlN) comes into focus in order to provide substrates for deep-UV optoelectronics (LEDs, lasers, and sensors) which are typically based on Al-rich AlGaN epitaxial layers and structures. On AlN substrates, pseudomorphic AlGaN layers can be deposited with compressive strain and high structural quality [13]. In this context, the growth of AlN crystals by sublimation and recondensation (physical vapor transport method) at temperatures exceeding 2000 °C has proven to be the method of choice, as the boules and substrates show very high structural perfection at reasonable growth rates. Availability of AlN substrates as well as their useable area, structural quality, and electrical/optical properties are directly related to growth technology issues, including selection of set-up materials, seeding strategy, and pre-purification efforts. After a brief overview of history and applications of bulk AlN, the basic principles of AlN bulk growth by physical vapor transport (PVT) are reviewed. The formation of extended defects and the incorporation of impurities during growth as well as their impact on the material’s optical and electrical properties are discussed in detail. The main target of this chapter is to provide readers with enough information about AlN substrate preparation to understand and make informed decisions about employing AlN substrates for deep-UV optoelectronics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. R. Dalmau, B. Moody, R. Schlesser, S. Mita, J. Xie, M. Feneberg, B. Neuschl, K. Thonke, R. Collazo, A. Rice, J. Tweedie, Z. Sitar, J. Electrochem. Soc. 158, H530 (2011)

    Article  Google Scholar 

  2. J. Tweedie, R. Collazo, A. Rice, J. Xie, S. Mita, R. Dalmau, Z. Sitar, J. Appl. Phys. 108, 043526 (2010)

    Article  Google Scholar 

  3. R.T. Bondokov, S.G. Mueller, K.E. Morgan, G.A. Slack, S. Schujman, M.C. Wood, J.A. Smart, L.J. Schowalter, J. Cryst. Growth 310, 4020 (2008)

    Article  Google Scholar 

  4. L.H. Dreger, V.V. Dadape, J.L. Margrave, J. Phys. Chem. 66, 1556 (1962)

    Article  Google Scholar 

  5. M. Levinshtein, S. Ruymantsev, M. Shur (eds.), Properties of Advanced Semiconductor Materials, GaN, AIN, InN, BN, SiC, SiGe (Wiley, New York, 2001). ISBN 978-0-471-35827-5

    Google Scholar 

  6. G.A. Slack, J. Phys. Chem. Solids 34, 321 (1973)

    Article  Google Scholar 

  7. G.A. Slack, T.F. McNelly, J. Cryst. Growth 34, 263 (1976)

    Article  Google Scholar 

  8. T. Baker, A. Mayo, Z. Veisi, P. Lu, J. Schmitt, Phys. Status Solidi C 11, 373 (2014)

    Google Scholar 

  9. O. Kovalenkov, V. Soukhoveev, V. Ivantsov, A. Usikov, V. Dmitriev, J. Cryst. Growth 281, 87 (2005)

    Article  Google Scholar 

  10. Y. Katagiri, S. Kishino, K. Okuura, H. Miyake, K. Hiramatu, J. Cryst. Growth 311, 2831 (2009)

    Article  Google Scholar 

  11. Y. Kumagai, J. Tajima, M. Ishizuki, T. Nagashima, H. Murakami, K. Takada, A. Koukitu, Appl. Phys. Express 1, 045003 (2008)

    Article  Google Scholar 

  12. J.A. Freitas Jr, G.C.B. Braga, E. Silveira, J.G. Tischler, M. Fatemi, Appl. Phys. Lett. 83, 2584 (2003)

    Article  Google Scholar 

  13. T. Furusho, S. Ohshima, S. Nishino, Mater. Sci. Forum 389–393, 1449 (2002)

    Article  Google Scholar 

  14. R. Schlesser, Z. Sitar, J. Cryst. Growth 234, 349 (2002)

    Article  Google Scholar 

  15. K. Kamei, Y. Shirai, T. Tanaka, N. Okada, A. Yauchi, H. Amano, Phys. Status Solidi C 4, 2211 (2007)

    Article  Google Scholar 

  16. M. Bockowski, Cryst. Res. Technol. 36, 771 (2001)

    Article  Google Scholar 

  17. M. Yano, M. Okamoto, Y.K. Yap, M. Yoshimura, Y. Mori, T. Sasaki, Diam. Relat. Mater. 9, 512 (2000)

    Article  Google Scholar 

  18. Y. Kangawa, R. Toki, T. Yayama, B.M. Epelbaum, K. Kakimoto, Appl. Phys. Express 4, 095501 (2011)

    Article  Google Scholar 

  19. B.T. Adekore, K. Rakes, B. Wang, M.J. Callahan, S. Pendurti, Z. Sitar, J. Electron. Mater. 35, 1104 (2006)

    Article  Google Scholar 

  20. R. Dwilinski, R. Doradzinski, J. Garczynski, L. Sierzputowski, M. Palczewska, A. Wysmolek, M. Kaminska, MRS Internet J. Nitride Semicond. Res. 3, 1 (1998)

    Google Scholar 

  21. T. Kinoshita, K. Hironaka, T. Obata, T. Nagashima, R. Dalmau, R. Schlesser, B. Moody, J. Xie, S.-I. Inoue, Y. Kumagai, A. Koukitu, Z. Sitar, Appl. Phys. Express 5, 122101 (2012)

    Article  Google Scholar 

  22. Fr. Briegleb, A. Geuther, Justus Liebigs Ann. Chem. 123, 228 (1877)

    Google Scholar 

  23. W. Nakao, H. Fukuyama, K. Nagata, J. Am. Ceram. Soc. 84, 889 (2002)

    Google Scholar 

  24. W. Werdecker, F. Aldinger, I.E.E.E. Trans, Hybrids Manuf. Technol. 7, 399 (1984)

    Article  Google Scholar 

  25. L.M. Sheppard, Am. Ceram. Soc. Bull. 69, 1801 (1990)

    Google Scholar 

  26. G.A. Slack, M.R.S. Symp, Proc. 512, 35 (1998)

    Google Scholar 

  27. K.M. Taylor, C. Lenie, J. Electrochem. Soc. 107, 308 (1960)

    Article  Google Scholar 

  28. H.-D. Witzke, Phys. Status Solidi 2, 1109 (1962)

    Article  Google Scholar 

  29. J. Pastrnak, L. Roskovcova, Phys. Status Solidi 7, 331 (1964) (in German)

    Article  Google Scholar 

  30. G.A. Cox, D.O. Cummins, K. Kawabe, R.H. Tredgold, J. Phys. Chem. Solids 28, 543 (1967)

    Article  Google Scholar 

  31. G.A. Slack, T.F. McNelly, J. Cryst. Growth 42, 560 (1977)

    Article  Google Scholar 

  32. G.A. Slack, Aluminum Nitride Crystal Growth, U.S. Air Force Office of Scientific Research (1979). DTIC document ADA085932 (http://www.dtic.mil)

  33. W.W. Piper, S.J. Polich, J. Appl. Phys. 32, 1278 (1961)

    Article  Google Scholar 

  34. C.M. Balkas, Z. Sitar, T. Zheleva, L. Bergman, R. Nemanich, R.F. Davis, J. Cryst. Growth 179, 363 (1997)

    Article  Google Scholar 

  35. M. Tanaka, S. Nakahata, K. Sogabe, H. Nakata, M. Tobioka, Jpn. J. Appl. Phys. 36, L1062 (1997)

    Article  Google Scholar 

  36. J.C. Rojo, G.A. Slack, K. Morgan, B. Raghothamachar, M. Dudley, L.J. Schowalter, J. Cryst. Growth 231, 317 (2001)

    Article  Google Scholar 

  37. Yu.M. Tairov, Mater. Sci. Eng. B 29, 83 (1995)

    Article  Google Scholar 

  38. R. Schlesser, R. Dalmau, D. Zhuang, R. Collazo, Z. Sitar, J. Cryst. Growth 281, 75 (2005)

    Article  Google Scholar 

  39. R. Dalmau, B. Raghothamachar, M. Dudley, R. Schlesser, Z. Sitar, MRS Symp. Proc. 798, Y2.9 (2004)

    Google Scholar 

  40. B. Liu, J.H. Edgar, Z. Gu, D. Zhuang, B. Raghothamachar, M. Dudley, A. Sarua, M. Kuball, H.M. Meyer III, MRS Internet J. Nitride Semicond. Res. 9, 6 (2004)

    Google Scholar 

  41. G.A. Slack, J. Whitlock, K. Morgan, L.J. Schowalter, MRS Symp. Proc. 798, Y10.74 (2004)

    Google Scholar 

  42. B.M. Epelbaum, M. Bickermann, A. Winnacker, J. Cryst. Growth 275, e479 (2005)

    Article  Google Scholar 

  43. S.G. Mueller, R.T. Bondokov, K.E. Morgan, G.A. Slack, S.B. Schujman, J. Grandusky, J.A. Smart, L.J. Schowalter, Phys. Status Solidi A 206, 1153 (2009)

    Article  Google Scholar 

  44. R.R. Sumathi, P. Gille, Jpn. J. Appl. Phys. 52, 08JA02 (2013)

    Google Scholar 

  45. M. Bickermann, B.M. Epelbaum, O. Filip, B. Tautz, P. Heimann, A. Winnacker, Phys. Status Solidi C 9, 449 (2012)

    Article  Google Scholar 

  46. Z.G. Herro, D. Zhuang, R. Schlesser, Z. Sitar, J. Cryst. Growth 312, 2519 (2010)

    Article  Google Scholar 

  47. I. Nagai, T. Kato, T. Miura, H. Kamata, K. Naoe, K. Sanada, H. Okumura, J. Cryst. Growth 312, 2699 (2010)

    Article  Google Scholar 

  48. M. Miyanaga, N. Mizuhara, T. Kawase, S. Fujiwara, M. Shimazu, H. Nakahata, T. Kawase, J. Cryst. Growth 300, 45 (2007)

    Article  Google Scholar 

  49. Yu.N. Makarov, O.V. Avdeev, I.S. Barash, D.S. Bazarevskiy, T.Yu. Chemekova, E.N. Mokhov, S.S. Nagalyuk, A.D. Roenkov, A.S. Segal, Yu.A. Vodakov, M.G. Ramm, S. Davis, G. Huminic, H. Helava, J. Cryst. Growth 310, 881 (2008)

    Article  Google Scholar 

  50. J.R. Grandusky, J. Chen, S.R. Gibb, M.C. Mendrick, C.G. Moe, L. Rodak, G.A. Garrett, M. Wraback, L.J. Schowalter, Appl. Phys. Express 6, 032101 (2013)

    Article  Google Scholar 

  51. R. Collazo, S. Mita, J. Xie, A. Rice, J. Tweedie, R. Dalmau, Z. Sitar, Phys. Status Solidi C 8, 2031 (2011)

    Article  Google Scholar 

  52. T. Wunderer, C.L. Chua, Z. Yang, J.E. Northrup, N.M. Johnson, G.A. Garrett, H. Shen, M. Wraback, Appl. Phys. Express 4, 092101 (2011)

    Article  Google Scholar 

  53. M. Kneissl, Z. Yang, M. Teepe, C. Knollenberg, O. Schmidt, P. Kiesel, N.M. Johnson, S. Schujman, L.J. Schowalter, J. Appl. Phys. 101, 123103 (2007)

    Article  Google Scholar 

  54. M. Martens, F. Mehnke, C. Kuhn, C. Reich, V. Kueller, A. Knauer, C. Netzel, C. Hartmann, J. Wollweber, J. Rass, T. Wernicke, M. Bickermann, M. Weyers, M. Kneissl, IEEE Photonics Lett. 26, 342 (2014)

    Article  Google Scholar 

  55. J. Xie, S. Mita, Z. Bryan, W. Guo, L. Hussey, B. Moody, R. Schlesser, R. Kirste, M. Gerhold, R. Collazo, Z. Sitar, Appl. Phys. Lett. 102, 171102 (2013)

    Article  Google Scholar 

  56. T. Erlbacher, M. Bickermann, B. Kallinger, E. Meissner, A.J. Bauer, L. Frey, Phys. Status Solidi C 9, 968 (2012)

    Article  Google Scholar 

  57. G. Bu, D. Ciplys, M. Shur, L.J. Schowalter, S. Schujman, R. Gaska, IEEE Trans. Ultrasonics Ferroelectr. Freq. Control 53, 251 (2006)

    Article  Google Scholar 

  58. X. Hu, J. Deng, N. Pala, R. Gaska, M.S. Shur, C.Q. Chen, J. Yang, G. Simin, M.A. Khan, J.C. Rojo, L.J. Schowalter, Appl. Phys. Lett. 82, 1299 (2003)

    Article  Google Scholar 

  59. A. Dobrinsky, G. Simin, R. Gaska, M. Shur, ECS Trans. 58(4), 129 (2013)

    Article  Google Scholar 

  60. L. Siang-Chung, Mater. Sci. Lett. 16, 759 (1997)

    Article  Google Scholar 

  61. Y. Li, D.W. Brenner, Phys. Rev. Lett. 92, 075503 (2004)

    Article  Google Scholar 

  62. B.M. Epelbaum, M. Bickermann, S. Nagata, P. Heimann, O. Filip, A. Winnacker, J. Cryst. Growth 305, 317 (2007)

    Article  Google Scholar 

  63. V. Noveski, R. Schlesser, S. Mahajan, S. Beaudoin, Z. Sitar, J. Cryst. Growth 264, 369 (2004)

    Article  Google Scholar 

  64. Q.-S. Chen, V. Prasad, H. Zhang, M. Dudley, in: K. Byrappa, T. Ohachi (eds.), Crystal Growth Technology (Springer, Berlin, 2005). ISBN 978-3-540-00367-0, chap. 7

    Google Scholar 

  65. S.Yu. Karpov, D.V. Zimina, Yu.N. Makarov, E.N. Mokhov, A.D. Roenkov, M.G. Ramm, Yu.A. Vodakov, Phys. Status Solidi A 176, 435 (1999)

    Article  Google Scholar 

  66. A.S. Segal, S.Yu. Karpov, Yu.N. Makarov, E.N. Mokhov, A.D. Roenkov, M.G. Ramm, Yu.A. Vodakov, J. Cryst. Growth 211, 68 (2000)

    Article  Google Scholar 

  67. P. Heimann, B.M. Epelbaum, M. Bickermann, S. Nagata, A. Winnacker, Phys. Status Solidi C 3, 1575 (2006)

    Article  Google Scholar 

  68. S.Yu. Karpov, A.V. Kulik, I.N. Przhevalskii, M.S. Ramm, Yu.N. Makarov, Phys. Status Solidi C 0 1989 (2003)

    Google Scholar 

  69. M. Albrecht, J. Wollweber, M. Rossberg, M. Schmidbauer, C. Hartmann, R. Fornari, Appl. Phys. Lett. 88, 211904 (2006)

    Article  Google Scholar 

  70. Z.G. Herro, D. Zhuang, R. Schlesser, R. Collazo, Z. Sitar, J. Cryst. Growth 286, 205 (2006)

    Article  Google Scholar 

  71. M. Bickermann, B.M. Epelbaum, A. Winnacker, Phys. Status Solidi C 2, 2044 (2005)

    Article  Google Scholar 

  72. A. Dittmar, C. Guguschev, C. Hartmann, S. Golka, A. Kwasniewski, J. Wollweber, R. Fornari, J. Eur. Ceram. Soc. 31, 2733 (2011)

    Article  Google Scholar 

  73. C. Hartmann, J. Wollweber, M. Albrecht, I. Rasin, Phys. Status Solidi C 3, 1608 (2006)

    Article  Google Scholar 

  74. C. Guguschev, A. Dittmar, E. Moukhina, C. Hartmann, S. Golka, J. Wollweber, M. Bickermann, R. Fornari, J. Cryst. Growth 360, 185 (2012)

    Article  Google Scholar 

  75. M. Bickermann, B.M. Epelbaum, A. Winnacker, J. Cryst. Growth 269, 432 (2004)

    Article  Google Scholar 

  76. B.M. Epelbaum, C. Seitz, A. Magerl, M. Bickermann, A. Winnacker, J. Cryst. Growth 265, 577 (2004)

    Article  Google Scholar 

  77. B. Raghothamachar, J. Bai, M. Dudley, R. Dalmau, D. Zhuang, Z. Herro, R. Schlesser, Z. Sitar, B. Wang, M. Callahan, K. Rakes, P. Konkapaka, M. Spencer, J. Cryst. Growth 287, 349 (2006)

    Article  Google Scholar 

  78. C. Hartmann, J. Wollweber, A. Dittmar, K. Irmscher, A. Kwasniewski, F. Langhans, T. Neugut, M. Bickermann, Jpn. J. Appl. Phys. 52, 08JA06 (2013)

    Google Scholar 

  79. M. Bickermann, O. Filip, B.M. Epelbaum, P. Heimann, M. Feneberg, B. Neuschl, K. Thonke, E. Wedler, A. Winnacker, J. Cryst. Growth 339, 13 (2012)

    Article  Google Scholar 

  80. R.R. Sumathi, P. Gille, Cryst. Res. Technol. 47, 237 (2012)

    Article  Google Scholar 

  81. O. Filip, B.M. Epelbaum, M. Bickermann, P. Heimann, S. Nagata, A. Winnacker, Mater. Sci. Forum 615–617, 983 (2009)

    Article  Google Scholar 

  82. C. Hartmann, M. Albrecht, J. Wollweber, J. Schuppang, U. Juda, Ch. Guguschev, S. Golka, A. Dittmar, R. Fornari, J. Cryst. Growth 344, 19 (2012)

    Article  Google Scholar 

  83. M. Bickermann, B.M. Epelbaum, O. Filip, P. Heimann, S. Nagata, A. Winnacker, Phys. Status Solidi C 5, 1502 (2008)

    Article  Google Scholar 

  84. B.M. Epelbaum, M. Bickermann, A. Winnacker, Mater. Sci. Forum 433–436, 983 (2003)

    Article  Google Scholar 

  85. D. Zhuang, Z.G. Herro, R. Schlesser, Z. Sitar, J. Cryst. Growth 287, 372 (2006)

    Article  Google Scholar 

  86. O. Filip, B.M. Epelbaum, M. Bickermann, P. Heimann, A. Winnacker, J. Cryst. Growth 318, 427 (2011)

    Article  Google Scholar 

  87. D. Hofmann, M. Bickermann, W. Hartung, A. Winnacker, Mater. Sci. Forum 338–342, 445 (2000)

    Article  Google Scholar 

  88. H. Helava, E.N. Mokhov, O.A. Avdeev, M.G. Ramm, D.P. Litvin, A.V. Vasiliev, A.D. Roenkov, S.S. Nagalyuk, Yu.N. Makarov, Mater. Sci. Forum 740–742, 85 (2013)

    Article  Google Scholar 

  89. R. Dalmau, B. Moody, J. Xie, R. Collazo, Z. Sitar, Phys. Status Solidi A 208, 1545 (2011)

    Article  Google Scholar 

  90. R.T. Bondokov, K.E. Morgan, R. Shetty, W. Liu, G.A. Slack, M. Goorsky, L.J. Schowalter, MRS Symp. Proc. 892, FF30-03 (2006)

    Google Scholar 

  91. D. Zhuang, J.H. Edgar, Mater. Sci. Eng. R 48, 1 (2005)

    Article  Google Scholar 

  92. M. Bickermann, S. Schmidt, B.M. Epelbaum, P. Heimann, S. Nagata, A. Winnacker, J. Cryst. Growth 300, 299 (2007)

    Article  Google Scholar 

  93. B. Raghothamachar, M. Dudley, J.C. Rojo, K. Morgan, L.J. Schowalter, J. Cryst. Growth 250, 244 (2003)

    Article  Google Scholar 

  94. B. Raghothamachar, Y. Yang, R. Dalmau, B. Moody, S. Craft, R. Schlesser, M. Dudley, Z. Sitar, Mater. Sci. Forum 740–742, 91 (2013)

    Article  Google Scholar 

  95. M. Bickermann, S. Schimmel, B.M. Epelbaum, O. Filip, P. Heimann, S. Nagata, A. Winnacker, Phys. Status Solidi C 8, 2235 (2011)

    Article  Google Scholar 

  96. R.T. Bondokov, K.E. Morgan, R. Shetty, W. Liu, G.A. Slack, M. Goorsky, L.J. Schowalter, MRS Symp. Proc. 892, FF30-03 (2006)

    Google Scholar 

  97. R. Dalmau, R. Schlesser, Z. Sitar, Phys. Status Solidi C 2, 2036 (2005)

    Article  Google Scholar 

  98. M. Bickermann, P. Heimann, B.M. Epelbaum, Phys. Status Solidi C 3, 1902 (2006)

    Article  Google Scholar 

  99. M. Feneberg, R.A.R. Leute, B. Neuschl, K. Thonke, M. Bickermann, Phys. Rev. B 82, 075208 (2010)

    Article  Google Scholar 

  100. G.A. Slack, L.J. Schowalter, D. Morelli, J.A. Freitas Jr, J. Cryst. Growth 246, 287 (2002)

    Article  Google Scholar 

  101. M. Bickermann, B.M. Epelbaum, O. Filip, P. Heimann, S. Nagata, A. Winnacker, Phys. Status Solidi B 246, 1181 (2009)

    Article  Google Scholar 

  102. L. Gordon, J.L. Lyons, A. Janotti, C.G. Van de Walle, Phys. Rev. B 89, 085204 (2014)

    Article  Google Scholar 

  103. K. Irmscher, C. Hartmann, C. Guguschev, M. Pietsch, J. Wollweber, M. Bickermann, J. Appl. Phys. 114, 123505 (2013)

    Article  Google Scholar 

  104. N.T. Son, M. Bickermann, E. Janzén, Appl. Phys. Lett. 98, 092104 (2011)

    Article  Google Scholar 

  105. B. Neuschl, K. Thonke, M. Feneberg, S. Mita, X. Xie, R. Dalmau, R. Collazo, Z. Sitar, Phys. Status Solidi B 249, 511 (2012)

    Article  Google Scholar 

  106. M. Feneberg, R.A.R. Leute, B. Neuschl, K. Thonke, M. Bickermann, Phys. Rev. B 82, 075208 (2010)

    Article  Google Scholar 

  107. S.B. Orlinskii, J. Schmidt, P. Baranov, M. Bickermann, B.M. Epelbaum, A. Winnacker, Phys. Rev. Lett. 100, 256404 (2008)

    Article  Google Scholar 

  108. S.M. Evans, N.C. Giles, L.E. Halliburton, G.A. Slack, S.B. Shujman, L.J. Schowalter, Appl. Phys. Lett. 88, 062112 (2006)

    Article  Google Scholar 

  109. C. Stampfl, C.G. van de Walle, Phys. Rev. B 65, 155212 (2002)

    Article  Google Scholar 

  110. N.T. Son, A. Gali, Á. Szabó, M. Bickermann, T. Ohshima, J. Isoya, E. Janzén, Appl. Phys. Lett. 98, 242116 (2011)

    Article  Google Scholar 

  111. F. Tuomisto, J.-M. Mäki, T.Yu. Chemekova, Yu.N. Makarov, O.V. Avdeev, E.N. Mokhov, A.S. Segal, M.G. Ramm, S. Davis, G. Huminic, H. Helava, M. Bickermann, B.M. Epelbaum, J. Cryst. Growth 310, 3998 (2008)

    Article  Google Scholar 

  112. M. Bickermann, B.M. Epelbaum, O. Filip, P. Heimann, S. Nagata, A. Winnacker, Phys. Status Solidi C 7, 21 (2010)

    Article  Google Scholar 

  113. R. Collazo, J. Xie, B.E. Gaddy, Z. Bryan, R. Kirste, M. Hoffmann, R. Dalmau, B. Moody, Y. Kumagai, T. Nagashima, Y. Kubota, T. Kinoshita, A. Koukitu, D.L. Irving, Z. Sitar, Appl. Phys. Lett. 100, 191914 (2012)

    Article  Google Scholar 

  114. T. Nagashima, Y. Kubota, T. Kinoshita, Y. Kumagai, J. Xie, R. Collazo, H. Murakami, H. Okamoto, A. Koukitu, Z. Sitar, Appl. Phys. Express 5, 125501 (2012)

    Article  Google Scholar 

  115. L. Trinkler, B. Berzina, in: Advances in Ceramics: Characterization, Raw Materials, Processing, Properties, Degradation and Healing, C. Sikalidis (ed.), InTech Open Access Book (2011). ISBN 978-953-307-504-4, chap. 4

    Google Scholar 

  116. A. Sedhain, L. Du, J.H. Edgar, J.Y. Lin, H.X. Jiang, Appl. Phys. Lett. 95, 262104 (2009)

    Article  Google Scholar 

  117. B.E. Gaddy, Z. Bryan, I. Bryan, R. Kirste, J. Xie, R. Dalmau, B. Moody, Y. Kumagai, T. Nagashima, Y. Kubota, T. Kinoshita, A. Koukitu, Z. Sitar, R. Collazo, D.L. Irving, Appl. Phys. Lett. 103, 161901 (2013)

    Article  Google Scholar 

  118. T. Schulz, M. Albrecht, K. Irmscher, C. Hartmann, J. Wollweber, R. Fornari, Phys. Status Solidi B 248, 1513 (2011)

    Article  Google Scholar 

  119. M. Bickermann, B.M. Epelbaum, O. Filip, P. Heimann, M. Feneberg, S. Nagata, A. Winnacker, Phys. Status Solidi C 7, 1743 (2010)

    Article  Google Scholar 

  120. T. Mattila, R.M. Nieminen, Phys. Rev. B 55, 9571 (1997)

    Article  Google Scholar 

  121. K. Irmscher, T. Schulz, M. Albrecht, C. Hartmann, J. Wollweber, R. Fornari, Phys. B 401–402, 323 (2007)

    Article  Google Scholar 

  122. Note that the absorption spectra for samples 6 and 7 differ to the ones shown in [78], as they were measured on similar crystals with virtually the same impurity concentrations. Furthermore, absorption coefficients above 700 cm−1 (sample 6) contain measurement artifacts

    Google Scholar 

  123. The silicon concentrations of samples 1 through 7 are corrected to reflect a calibration error which was found after the values cited in the references [75,78,112] had been published

    Google Scholar 

Download references

Acknowledgments

The author acknowledges contributions of J. Wollweber, C Hartmann, A. Dittmar, K. Irmscher, T. Schulz, F. Langhans, S. Kollowa, C. Guguschev, M. Pietsch, A. Kwasniewski, M. Albrecht, M. Naumann, T. Neugut, and U. Juda from the Leibniz Institute for Crystal Growth. The author also thanks B.M. Epelbaum, O. Filip, P. Heimann, and A. Winnacker for the joint work on bulk AlN growth at the Department of Materials Science 6, University of Erlangen-Nuremberg, Germany, now continued in the company CrystAl-N.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Bickermann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bickermann, M. (2016). Growth and Properties of Bulk AlN Substrates. In: Kneissl, M., Rass, J. (eds) III-Nitride Ultraviolet Emitters. Springer Series in Materials Science, vol 227. Springer, Cham. https://doi.org/10.1007/978-3-319-24100-5_2

Download citation

Publish with us

Policies and ethics