Skip to main content

Ecotribology: Development, Prospects, and Challenges

  • Chapter
  • First Online:
Ecotribology

Part of the book series: Materials Forming, Machining and Tribology ((MFMT))

Abstract

Ecotribology is gaining increasing attention. Our view of the environment has changed from regarding it as a constant that provides resources and acts as a sink for waste toward a more complex view, where the environment is seen as a variable that can be influenced by our activities and on which we are utterly dependent. Ecotribology can be seen as the answer to this changed role of the environment. In the very word ecotribology economical and ecological aspects meet, and indeed the field comprises green tribology, sustainability, ecological aspects, economical aspects, environmentally compatible lubricants, environmentally friendly tribology, tribology of eco-friendly applications, tribology for energy conservation, tribology for life, and renewable energy tribology. This chapter deals with components, goals, optimization levers, challenges, and prospects of ecotribological systems and gives ample examples in which regard we can learn from living nature via biomimetic approaches to achieve efficient ecotribology, concerning materials, structures, and processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Agrawal A, Yun TH, Pesek SL, Chapman WG, Verduzco R (2014) Shape-responsive liquid crystal elastomer bilayers. Soft Matter 10:1411–1415

    Article  Google Scholar 

  2. Allchin D (1998) Values in science and in science education. In: Fraser BJ, Tobin KG (eds) International handbook of science education. Kluwer, Dordrecht

    Google Scholar 

  3. Allchin D (2001) Values in science: an educational perspective. In: Bevilacqua F et al (eds) Science education and culture: the contribution of history and philosophy of science. Springer, New York

    Google Scholar 

  4. Anderson CWN (2013) Hyperaccumulation by plants. In: Hunt AJ (ed) Element recovery and sustainability. Royal Society of Chemistry, London

    Google Scholar 

  5. Anderson CWN, Brooks RR, Chiarucci A, LaCoste CJ, Leblanc M, Robinson BH, Simcock R, Stewart RB (1999) Phytomining for nickel, thallium and gold. J Geochem Expl 67(1–3):407–415

    Google Scholar 

  6. Anonymous (2010) Summary: world tribology congress 2009 (WTC IV) International tribology council information 191. http://www.itctribology.org/itcnews.php?issue=191&Go2=Go. Accessed 3 June 2015

  7. Balazs AC, Aizenberg J (2014) Reconfigurable soft matter. Soft Matter 10:1244–1245. doi:10.1039/c4sm90006e

    Article  Google Scholar 

  8. Barnosky AD, Hadly EA, Bascompte J, Berlow EL, Brown JH, Fortelius M, Getz WM, Harte J, Hastings A, Marquet PA, Martinez ND, Mooers A, Roopnarine P, Vermeij G, Williams JW, Gillespie R, Kitzes J, Marshall C, Matzke N, Mindell DP, Revilla E, Smith AB (2012) Approaching a state shift in Earth’s biosphere. Nature 486:52–58

    Google Scholar 

  9. Barnosky AD, Matzke N, Tomiya S, Wogan GOU, Swartz B, Quental TB, Marshall C, McGuire JL, Lindsey EL, Maguire KC, Mersey B, Ferrer EA (2011) Has the Earth’s sixth mass extinction already arrived? Nature 471:51–57

    Google Scholar 

  10. Bartz WJ (2006) Ecotribology: environmentally acceptable tribological practices. Tribol Int 39:728–733

    Article  Google Scholar 

  11. Berne RW (2006) Nanotalk: conversations with scientists and engineers about ethics, meaning, and belief in the development of nanotechnology. Lawrence Erlbaum Associates, Mahwah

    Google Scholar 

  12. Bhushan B, Nosonovsky M (2008) Scale effects in mechanical properties and tribology. In: Bhushan B (ed) Nanotribology and nanomechanics—an introduction, 2nd edn. Springer, Berlin

    Google Scholar 

  13. Brooijmans RJW, Pastink MI, Siezen RJ (2009) Hydrocarbon-degrading bacteria: the oil-spill clean-up crew. Microbial Biotech 2(6):587–594

    Article  Google Scholar 

  14. Castro L, Blázquez ML, González F, Muñoz JA, Ballester A (2010) Extracellular biosynthesis of gold nanoparticles using sugar beet pulp. Chem Eng J 164(1):92–97

    Article  Google Scholar 

  15. Chaudhary K, Juarez JJ, Chen Q, Granick S, Lewis JA (2014) Reconfigurable assemblies of Janus rods in AC electric fields. Soft Matter 10:1320–1324

    Article  Google Scholar 

  16. Crawford RM, Gebeshuber IC (2006) Harmony of beauty and expediency. Sci First Hand 5(10):30–36

    Google Scholar 

  17. Diah SZM, Karman SB, Gebeshuber IC (2014) Nanostructural colouration in Malaysian plants: lessons for biomimetics and biomaterials. J Nanomat. doi:10.1155/2014/878409

    Google Scholar 

  18. Diamond J (2005) Collapse: how societies choose to fail or succeed. Viking Books, New York

    Google Scholar 

  19. Doucet SM, Meadows MG (2009) Iridescence: a functional perspective. J R Soc Interface 6:S115–S132

    Article  Google Scholar 

  20. Drack M (2002) Bionik und Ecodesign—Untersuchung biogener Materialien im Hinblick auf Prinzipien, die für eine umweltgerechte Produktgestaltung nutzbar sind. Dissertation, Vienna University

    Google Scholar 

  21. Drack M, Gebeshuber IC (2013) Comment on “Innovation through imitation: biomimetic, bioinspired and biokleptic research” by A. E. Rawlings, J. P. Bramble and S. S. Staniland. Soft Matter, 2012, 8, 6675. Soft Matter 9:2338–2340

    Google Scholar 

  22. Ehrlich H (2010) Biological materials of marine origin: invertebrates. Biologically-Inspired Systems. Springer, Dortrecht Heidelberg London New York

    Google Scholar 

  23. Fratzl P, Weinkamer R (2007) Nature’s hierarchical materials. Progr Mat Sci 52(8):1263–1334

    Article  Google Scholar 

  24. Gans C, Baic D (1977) Regional specialization of reptile scale surfaces: relation of texture and biologic role. Science 195:1348–1350

    Article  Google Scholar 

  25. Gebeshuber IC (2007) Biotribology inspires new technologies. Nano Today 2(5):30–37

    Google Scholar 

  26. Gebeshuber IC (2012) Green nanotribology and sustainable nanotribology in the frame of the global challenges for humankind. In: Nosonovsky M, Bhushan B (eds) Green tribology—biomimetics, energy conservation, and sustainability. Springer, Berlin

    Google Scholar 

  27. Gebeshuber IC (2012) Green nanotribology. Proc IMechE Part C J Mech Eng Sci 226(C2):374–386

    Google Scholar 

  28. Gebeshuber IC (2015) Biomineralization in marine organisms. In: Kim S-K (ed) Springer hand-book of marine biotechnology. Springer, Tokyo

    Google Scholar 

  29. Gebeshuber IC (2015) Innovision in ecotribology: biomimetic approaches. In: Masjuki H et al (eds) Malaysian international tribology conference 2015. Penang

    Google Scholar 

  30. Gebeshuber IC (2015) Value based science: what we can learn from micro- and nanotribology. Tribology. doi:10.1179/1751584X15Y.0000000008

  31. Gebeshuber IC, Crawford RM (2006) Micromechanics in biogenic hydrated silica: hinges and interlocking devices in diatoms. Proc IMechE Part J J Eng Tribol 220(J8):787–796

    Google Scholar 

  32. Gebeshuber IC, Macqueen MO (2013) New Asian case method for tribology: a structured approach for increased problem solving competence in tribology education and research. Tribology 7(2):69–73

    Google Scholar 

  33. Gebeshuber IC, Macqueen MO (2014) What is a physicist doing in the jungle? Biomimetics of the rainforest. Appl Mech Mat 461:152–162

    Google Scholar 

  34. Gebeshuber IC, Majlis BY (2010) New ways of scientific publishing and accessing human knowledge inspired by transdisciplinary approaches. Tribology 4(3):143–151

    Google Scholar 

  35. Gebeshuber IC, Gruber P, Drack M (2009) A gaze into the crystal ball—biomimetics in the year 2059. Proc IMechE Part C J Mech Eng Sci 223(C12):2899–2918

    Google Scholar 

  36. Gebeshuber IC, Lee DW (2016) Nanostructures for coloration (organisms other than animals). In: Bhushan B (ed) Springer encyclopedia of nanotechnology, 2nd edn. Springer, New York

    Google Scholar 

  37. Gebeshuber IC, Luo J, Prakash B, Rymuza Z (2013) Impulse talk: ecotribology—development, prospects and challenges. In: Ciulli E et al (ed) 5th World tribology congress WTC2013. Torino

    Google Scholar 

  38. Gebeshuber IC, Majlis BY, Stachelberger H (2011) Biomimetics in Tribology. In: Biomimetics—materials, structures and processes. Examples, ideas and case studies. Springer, Heidelberg

    Google Scholar 

  39. Gerwick WH, Lang NJ (1977) Structural, chemical and ecological studies on iridescence in Iridaea (Rhodophyta). J Phycol 13:121–127

    Article  Google Scholar 

  40. Geryak R, Tsukruk VV (2014) Reconfigurable and actuating structures from soft materials. Soft Matter 10:1246–1263

    Article  Google Scholar 

  41. Ghoreishi SM, Behpour M, Khayatkashani M (2011) Green synthesis of silver and gold nanoparticles using Rosa damascena and its primary application in electrochemistry. Physica E Low-Dim Sys Nanostruct 44(1):97–104

    Article  Google Scholar 

  42. Glenn JC, Gordon TJ, Florescu E (2012) 2012 State of the future. MP Publications, Washington

    Google Scholar 

  43. Glenn JC, Gordon TJ, Florescu E (2014) 2013–14 State of the future. MP Publications, Washington

    Google Scholar 

  44. Glotzer SC, Solomon MJ (2007) Anisotropy of building blocks and their assembly into complex structures. Nat Mat 6:557–562

    Article  Google Scholar 

  45. Godemann J (2008) Knowledge integration: a key challenge for transdisciplinary cooperation. Env Edu Res 14(6):625–641

    Article  Google Scholar 

  46. Gruber P, Bruckner D, Hellmich C, Schmiedmayer H-B, Stachelberger H, Gebeshuber IC (2011) Biomimetics—materials, structures and processes. examples, ideas and case studies. In: Ascheron C (ed) Series: biological and medical physics, biomedical engineering. Springer, Heidelberg Dordrecht London New York. p 266, 123 illus (53 in color), Hardcover, ISBN 978-3-642-11933-0, eISBN 978-3-642-11934-7

    Google Scholar 

  47. Guston DH (2006) Book review: a still small voice. Rosalyn W Berne 2006. Nanotalk: conversations with scientists and engineers about ethics, meaning, and belief in the development of nanotechnology (Lawrence Erlbaum Associates, Publishers: Mahwah, NJ). J Nanopart Res 8(1):149–152

    Google Scholar 

  48. Hamilton DP (1991) Research papers: who’s uncited now? Science 251:25

    Google Scholar 

  49. Hansen MT, Birkinshaw J (2007) The innovation value chain. Harvard Bus Rev 85(6):121–133

    Google Scholar 

  50. Herman A, Vandenbem C, Deparis O, Simonis P, Vigneron JP (2011) Nanoarchitecture in the black wings of Troides magellanus: a natural case of absorption enhancement in photonic materials. Proc SPIE 8094, Nanophotonic Materials VIII. doi:10.1117/12.890946

  51. Hinkel J (2008) Transdisciplinary knowledge integration. Cases from integrated assessment and vulnerability assessment. Dissertation, Wageningen University

    Google Scholar 

  52. Housman RF (1992) Sustainable living: Seeking instructions for the future: Indigenous peoples’ traditions and environmental protection. Touro J Int Law 141(3):151–152

    Google Scholar 

  53. Jacobson A, Kammen DM (2005) Science and engineering research that values the planet. Bridge 35(4):11–17

    Google Scholar 

  54. Johnson RD (2012) Custom labware: Chemical creativity with 3D printing. Nat Chem 4:338–339

    Google Scholar 

  55. Karman SB, Diah SZM, Gebeshuber IC (2015) Raw materials synthesis from heavy metal industry effluents with bioremediation and phytomining: a bio-mimetic resource management approach. Adv Mat Sci Eng. doi:10.1155/2015/185071

    Google Scholar 

  56. Kramb RC, Buskohl PR, Slone C, Smith ML, Vaia RA (2014) Autonomic composite hydrogels by reactive printing: materials and oscillatory response. Soft Matter 10:1329–1336. doi:10.1039/c3sm51650d

    Google Scholar 

  57. Kulkarni N, Muddapur U (2014) Biosynthesis of metal nanoparticles: a review. J Nanotech. doi:10.1155/2014/510246

    Google Scholar 

  58. Lee D (2007) Nature’s palette: the science of plant color. The University of Chicago Press, Chicago and London

    Book  Google Scholar 

  59. Lin J, Jiang W, Liu D (2003) Accumulation of copper by roots, hypocotyls, cotyledons and leaves of sunflower (Helianthus annuus L.). Biores Tech 86(2):151–155

    Google Scholar 

  60. Loo YY, Chieng BW, Nishibuchi M, Radu S (2012) Synthesis of silver nanoparticles by using tea leaf extract from Camellia sinensis. Int J Nanomed 7:4263–4267

    Google Scholar 

  61. Mann S (2002) Biomineralization. Oxford University Press, Oxford

    Google Scholar 

  62. Nachtigall W (1997) Vorbild Natur: Bionik-Design für funktionelles Gestalten. Springer, Berlin

    Book  Google Scholar 

  63. Narayanan KB, Sakthivel N (2010) Biological synthesis of metal nanoparticles by microbes. Adv Colloid Interf Sci 156(1–2):1–13

    Article  Google Scholar 

  64. Nihongaki Y, Kawano F, Nakajima T, Sato M (2015) Photoactivatable CRISPR-Cas9 for optogenetic genome editing. Nat Biotechnol. doi:10.1038/nbt.3245

    Google Scholar 

  65. Niu S, Li B, Mu Z, Yang M, Zhang J, Han Z, Ren L (2015) Excellent structure-based multifunction of Morpho butterfly wings: a review. J Bionic Eng 12(2):170–189

    Article  Google Scholar 

  66. Nosonovsky M, Bhushan B (2012) Green tribology—biomimetics, energy conservation, and sustainability. Series: green energy and technology, Springer Berlin Heidelberg

    Google Scholar 

  67. Peisker H, Michels J, Gorb SN (2013) Evidence for a material gradient in the adhesive tarsal setae of the ladybird beetle Coccinella septempunctata. Nat Commun. doi:10.1038/ncomms2576

    Google Scholar 

  68. Potyrailo RA, Starkey TA, Vukusic P, Ghiradella H, Vasudev M, Bunning T, Naik RR, Tang ZX, Larsen M, Deng T, Zhong S, Palacios M, Grande JC, Zorn G, Goddard G, Zalubovsky S (2013) Discovery of the surface polarity gradient on iridescent Morpho butterfly scales reveals a mechanism of their selective vapor response. Proc Natl Acad Sci 110:15567–15572

    Article  Google Scholar 

  69. Prasad KS, Patel H, Patel T, Patel K, Selvaraj K (2013) Biosynthesis of Se nanoparticles and its effect on UV-induced DNA damage. Coll Surf B Biointerf 103:261–266

    Article  Google Scholar 

  70. Rawlings DE, Johnson DB (2007) Biomining. Springer, Berlin

    Book  Google Scholar 

  71. Raymond JA, Knight CA (2003) Ice binding, recrystallization inhibition, and cryoprotective properties of ice-active substances associated with Antarctic sea ice diatoms. Cryobiol 46:174–181

    Article  Google Scholar 

  72. Reeves RD (2006) Hyperaccumulation of trace elements by plants. In: Morel JL, Echevarria G, Goncharova N (eds) Phytoremediation of metal-contaminated soils. Springer, New York

    Google Scholar 

  73. Rikken RSM, Nolte RJM, Maan JC, van Hest JCM, Wilson DA, Christianen PCM (2014) Manipulation of micro- and nanostructure motion with magnetic fields. Soft Matter 10:1295–1308

    Article  Google Scholar 

  74. Rockström J, Steffen W, Noone K, Persson Å, Chapin FS III, Lambin EF, Lenton TM, Scheffer M, Folke C, Schellnhuber HJ, Nykvist B, de Wit CA, Hughes T, van der Leeuw S, Rodhe H, Sörlin S, Snyder PK, Costanza R, Svedin U, Falkenmark M, Karlberg L, Corell RW, Fabry VJ, Hansen J, Walker B, Liverman D, Richardson K, Crutzen P, Foley JA (2009) A safe op-erating space for humanity. Nature 461:472–475

    Article  Google Scholar 

  75. Sandweiss J (2009) Essay: the future of scientific publishing. Phys Rev Lett. doi:10.1103/PhysRevLett.102.190001

  76. Sankar R, Karthik A, Prabu A, Karthik S, Shivashangari KS, Ravikumar V (2013) Origanum vulgare mediated biosynthesis of silver nanoparticles for its antibacterial and anticancer activity. Coll Surf B Biointerf 108:80–84

    Article  Google Scholar 

  77. Santoro AE, Lombardero MJ, Ayres MP, Ruel JJ (2001) Interactions between fire and bark beetles in an old growth pine forest. For Ecol Manage 144(1–3):245–254

    Article  Google Scholar 

  78. Sasaki S (2010) Environmentally friendly tribology (Eco-tribology). J Mech Sci Technol 24(1):67–71

    Article  Google Scholar 

  79. Scherge M, Gorb SN (2001) Biological micro- and nanotribology: nature’s solutions. Springer, Berlin

    Book  Google Scholar 

  80. Scherge M, Dienwiebel M (2010) Book of synopses 17th int coll tribology: solving friction and wear problems, Technische Akademie Esslingen TAE. In: Bartz WJ (ed) Levers of tribological optimization. Ostfildern, p 13

    Google Scholar 

  81. Seckbach J, Gordon R (2016) Bio-Communication. World Scientific, Singapore

    Google Scholar 

  82. Smith ML, Lee KM, White TJ, Vai RA (2014) Design of polarization-dependent, flexural-torsional deformation in photo responsive liquid crystalline polymer networks. Soft Matter 10:1400–1410. doi:10.1039/c3sm51865e

    Article  Google Scholar 

  83. Sneha K, Sathishkumar M, Kim S, Yun Y-S (2010) Counter ions and temperature incorporated tailoring of biogenic gold nanoparticles. Proc Biochem 45(9):1450–1458

    Article  Google Scholar 

  84. Steffen W, Richardson K, Rockström J, Cornell SE, Fetzer I, Bennett EM, Biggs R, Carpenter SR, de Vries W, de Wit CA, Folke C, Gerten D, Heinke J, Mace GM, Persson LM, Ramanathan V, Reyers B, Sörlin S (2015) Planetary boundaries: guiding human development on a changing planet. Science 347(6223). doi:10.1126/science.1259855

    Google Scholar 

  85. Studart AR, Erb RM (2014) Bioinspired materials that self-shape through programmed microstructures. Soft Matter 10:1284–1294. doi:10.1039/c3sm51883c

    Article  Google Scholar 

  86. Symes MD, Kitson PJ, Yan J, Richmond CJ, Cooper GJT, Bowman RW, Vilbrandt T, Cronin L (2012) Integrated 3D-printed reactionware for chemical synthesis and analysis. Nat Chem 4:349–354

    Article  Google Scholar 

  87. Tiffany MA, Gordon R, Gebeshuber IC (2010) Hyalodiscopsis plana, a sublittoral centric marine diatom, and its potential for nanotechnology as a natural zipper-like nanoclasp. Polish Bot J 55:27–41

    Google Scholar 

  88. Tomala A, Goecerler H, Gebeshuber IC (2013) Bridging nano- and microtriblogy in mechanical and biomolecular layers. In: Bhushan B (ed) Scanning probe microscopy in nanoscience and nanotechnology III. Springer, Heidelberg

    Google Scholar 

  89. Tripathi A, Shum H, Balazs AC (2014) Fluid-driven motion of passive cilia enables the layer to expel sticky particles. Soft Matter 10:1416–1427

    Article  Google Scholar 

  90. Urbakh M, Klafter J, Gourdon D, Israelachvili J (2004) The nonlinear nature of friction. Nature 430:525–528

    Article  Google Scholar 

  91. Ussing AP, Gordon R, Ector L, Buczkó K, Desnitski A, VanLandingham SL (2005) The colonial diatom “Bacillaria paradoxa”: chaotic gliding motility, Lindenmeyer model of colonial morphogenesis, and bibliography, with translation of OF Müller (1783), “About a peculiar being in the beach-water”. Diatom Monogr 5:1–140

    Google Scholar 

  92. Wang L, Nilsen-Hamilton M (2013) Biomineralization proteins: from vertebrates to bacteria. Front Biol 8(2):234–246

    Article  Google Scholar 

  93. Young JR, Henriksen K (2003) Biomineralization within vesicles: the calcite of coccoliths. Rev Min Geochem 54:189–215

    Article  Google Scholar 

  94. Zang D, Lin K, Wang W, Gu Y, Zhang Y, Geng X, Binks BP (2014) Tunable shape transformation of freezing liquid water marbles. Soft Matter 10:1309–1314

    Article  Google Scholar 

  95. Zheng B, Kong T, Jing X, Odoom-Wubah T, Li X, Sun D, Lu F, Zheng Y, Huang J, Li Q (2013) Plant-mediated synthesis of platinum nanoparticles and its bioreductive mechanism. J Colloid Interf Sci 396:138–145

    Article  Google Scholar 

  96. Zmud RW (1984) An examination of “push-pull” theory applied to process innovation in knowledge work’. Manag Sci 30(6):727–738

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ille C. Gebeshuber .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Gebeshuber, I.C. (2016). Ecotribology: Development, Prospects, and Challenges. In: Davim, J. (eds) Ecotribology. Materials Forming, Machining and Tribology. Springer, Cham. https://doi.org/10.1007/978-3-319-24007-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-24007-7_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-24005-3

  • Online ISBN: 978-3-319-24007-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics