Abstract
This paper proposed an automated three-dimensional (3D) lumbar intervertebral disc (IVD) segmentation strategy from Magnetic Resonance Imaging (MRI) data. Starting from two user supplied landmarks, the geometrical parameters of all lumbar vertebral bodies and intervertebral discs are automatically extracted from a mid-sagittal slice using a graphical model based template matching approach. Based on the estimated two-dimensional (2D) geometrical parameters, a 3D variable-radius soft tube model of the lumbar spine column is built by model fitting to the 3D data volume. Taking the geometrical information from the 3D lumbar spine column as constraints and segmentation initialization, the disc segmentation is achieved by a multi-kernel diffeomorphic registration between a 3D template of the disc and the observed MRI data. Experiments on 15 patient data sets showed the robustness and the accuracy of the proposed algorithm.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Modic M, Ross J (2007) Lumbar degenerative disk disease. Radiology 1:43–61
Parizel P, Goethem JV, den Hauwe LV, Voormolen M (2007) Degenerative disc disease. In Van Goethem J (ed) Spinal imaging—diagnostic imaging of the spine and spinal cord. Springer, Berlin, pp 122–133
Tsai M, Jou J, Hsieh M (2002) A new method for lumbar herniated intervertebral disc diagnosis based on image analysis of transverse sections. Comput Med Imaging Graph 26:369–380
Niemelainen R, Videman T, Dhillon S, Battie M (2008) Quantitative measurement of intervertebral disc signal using MRI. Clin Radiol 63:252–255
Schmidt S, Kappes JH, Bergtholdt M, Pekar V, Dries S, Bystrov D, Schnorr C (2007) Spine detection and labeling using a parts-based graphical model. In: Karssemeijer N, BL (ed) IPMI 2007. Springer, Berlin, pp 122–133
Corso J, Alomari R, Chaudhary V (2008) Lumbar disc localization and labeling with a probabilistic model on both pixel and object features. In: Metaxas D (ed) MICCAI 2008. Springer, Berlin, pp 202–210
Chevrefils C, Cheriet F, Aubin C, Grimard G (2009) Texture analysis for automatic segmentation of intervertebral disks of scoliotic spines from MR images. IEEE Trans Inf Technol Biomed 13:608–620
Michopoulou S, Costaridou L, Panagiotopoulos E, Speller R, Panayiotakis G, Todd-Pokropek A (2009) Atlas-based segmentation of degenerated lumbar intervertebral discs from MR images of the spine. IEEE Trans Biomed Eng 56:2225–2231
Ayed IB, Punithakumar K, Garvin G, Romano W, Li S (2011) Graph cuts with invariant object-interaction priors: application to intervertebral disc segmentation. In: Szekely G, HH (ed) IPMI 2011. Springer, Berlin, pp 221–232
Neubert A, Fripp J, Schwarz R, Lauer L, Salvado O, Crozier S (2012) Automated detection, 3d segmentation and analysis of high resolution spine MR images using statistical shape models. Phys Med Biol 57:8357–8376
Law M, Tay K, Leung A, Garvin G, Li S (2013) Intervertebral disc segmentation in MR images using anisotropic oriented flux. Med Image Anal 17:43–61
Glocker B, Feulner J, Criminisi A, Haynor D, Konukoglu E (2012) Automatic localization and identification of vertebrae in arbitrary field-of-view CT scans. In Ayache N (ed) MICCAI 2012. Springer, Berlin, pp 590–598
Glocker B, Zikic D, Konukoglu E, Haynor D, Criminisi A (2013) Vertebrae localization in pathological spine CT via dense classification from sparse annotations. In Mori K (ed) MICCAI 2013. Springer, Berlin, pp 262–270
Dong X, Lu H, Sakurai Y, Yamagata H, Zheng G, Reyes M (2010) Automated intervertebral disc detection from low resolution, sparse MRI images for the planning of scan geometries. In: Wang F, Yan P, Suzuki K, Shen D (eds) MLMI2010. Springer, Berlin, pp 10–17
Dong X, Zheng G (2015) Automated 3D lumbar intervertebral disc segmentation from MRI data sets. In: Yao J, Glocker B, Klinder T, Li S (eds) Recent advances in computational methods and clinical applications for spine imaging. Lecture notes in computational vision and biomechanics, vol 20. Springer, Berlin, pp 131–142
Risser L, Vialard FX, Wolz R, Murgasova M, Holm DD, Rueckert D (2011) Simultaneous multiscale registration using large deformation diffeomorphic metric mapping. IEEE Trans Med Imaging 30:1746–1759
Grenander U, Miller MI (1998) Computational anatomy: an emerging discipline. Q Appl Math 4:617–694
Sommer S, Nielsen M, Lauze F, Pennec X (2011) A multi-scale kernel bundle for LDDMM: towards sparse deformation description across space and scales. In: Szekely G, HH (ed) IPMI2011. Springer, Berlin, pp 624–635
Beg MF, Miller MI, Trouv A, Younes L (2005) Computing large deformation metric mappings via geodesic flow of diffeomorphisms. Int J Comput Vision 61:139–157
Miller MI, Trouv A, Younes L (2006) Geodesic shooting for computational anatomy. J Math Imaging Vision 24:209–228
Bruveris M, Gay-Balmaz F, Holm DD, Ratiu TS (2011) The momentum map representation of images. J Nonlinear Sci 21:115–150
Hart GL, Zach C, Niethammer M (2009) An optimal control approach for deformable registration. In: CVPR2009, pp 9–16
Vialard FX, Risser L, Rueckert D, Cotter CJ (2012) Diffeomorphic 3d image registration via geodesic shooting using an efficient adjoint calculation. Int J Comput Vision 97:229–241
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this chapter
Cite this chapter
Dong, X., Zheng, G. (2016). Automated 3D Lumbar Intervertebral Disc Segmentation from MRI Data Sets. In: Zheng, G., Li, S. (eds) Computational Radiology for Orthopaedic Interventions. Lecture Notes in Computational Vision and Biomechanics, vol 23. Springer, Cham. https://doi.org/10.1007/978-3-319-23482-3_2
Download citation
DOI: https://doi.org/10.1007/978-3-319-23482-3_2
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-23481-6
Online ISBN: 978-3-319-23482-3
eBook Packages: EngineeringEngineering (R0)