Skip to main content

Learning Spatial Models for Navigation

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9368))

Abstract

Typically, autonomous robot navigation relies on a detailed, accurate map. The associated representations, however, do not readily support human-friendly interaction. The approach reported here offers an alternative: navigation with a spatial model and commonsense qualitative spatial reasoning. Both are based on research about how people experience and represent space. The spatial model quickly develops as the result of incremental learning while the robot moves through its environment. In extensive empirical testing, qualitative spatial reasoning principles that reference this model support increasingly effective navigation in a variety of built spaces.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Arkin, R.C.: Integrating behavioral, perceptual, and world knowledge in reactive navigation. Robot. Auton. Syst. 6, 105–122 (1990)

    Article  Google Scholar 

  2. Bailey, T., Durrant-Whyte, H.: Simultaneous localization and mapping: part II. IEEE Robot. Autom. Mag. 13(3), 108–117 (2006)

    Article  Google Scholar 

  3. Björnsson, Y., Halldórsson, K.: Improved heuristics for optimal path-finding on game maps. In: Laird, J., Schaeffer, J. (eds.) AIIDE 2006, pp. 9–14. AAAI, Marina del Rey (2006)

    Google Scholar 

  4. Botea, A., Harabor, D.: Path planning with compressed all-pairs shortest paths data. In: Borrajo, D., Fratini, S., Kambhampati, S., Oddi, A. (eds.) ICAPS-2013, pp. 288–292. AAAI, Rome (2013)

    Google Scholar 

  5. Brooks, R.A.: Intelligence without representation. Artif. Intell. 47(1–3), 139–160 (1991)

    Article  Google Scholar 

  6. Durrant-Whyte, H., Bailey, T.: Simultaneous localization and mapping: part I. IEEE Robot. Autom. Mag. 13(2), 99–110 (2006)

    Article  Google Scholar 

  7. Epstein, S.L.: For the right reasons: the FORR architecture for learning in a skill domain. Cogn. Sci. 18(3), 479–511 (1994)

    Article  Google Scholar 

  8. Epstein, S.L.: Spatial representation for pragmatic navigation. In: Hirtle, S.C., Frank, A.U. (eds.) COSIT 1997. LNCS, vol. 1329, pp. 373–388. Springer, Heidelberg (1997)

    Chapter  Google Scholar 

  9. Epstein, S.L.: Pragmatic navigation: reactivity, heuristics, and search. Artif. Intell. 100(1–2), 275–322 (1998)

    Article  MATH  Google Scholar 

  10. Epstein, S., Schneider, E., Ozgelen, A.T., Munoz, J.P., Costantino, M., Sklar, E.I., Parsons, S.: Applying FORR to human/multi-robot teams. In: Human-Agent-Robot Teamwork Workshop at 7th ACM/IEEE International Conference on Human-Robot Interaction (2012)

    Google Scholar 

  11. Frommberger, L., Wolter, D.: Spatial abstraction: aspectualization, coarsening, and conceptual classification. In: Freksa, C., Newcombe, N.S., Gärdenfors, P., Wölfl, S. (eds.) Spatial Cognition VI. LNCS (LNAI), vol. 5248, pp. 311–327. Springer, Heidelberg (2008)

    Google Scholar 

  12. Gat, E.: On three-layer architectures. In: Kortenkamp, D., Bonnasso, R.P., Murphy, R. (eds.) Artificial Intelligence and Mobile Robots. AAAI Press, Cambridge (1998)

    Google Scholar 

  13. Gerkey, B., Vaughan, R., Howard, A.: The player/stage project: tools for multi-robot and distributed sensor systems. In: The International Conference on Advanced Robotics, pp. 317–323 (2003)

    Google Scholar 

  14. Gibson, J.J.: The theory of affordances. In: Shaw, R., Bransford, J. (eds.) Perceiving, Acting, and Knowing: Toward an Ecological Psychology, pp. 67–82. Lawrence Erlbaum, Mahwah (1977)

    Google Scholar 

  15. Golledge, R.G.: Path selection and route preference in human navigation: a progress report. In: Kuhn, W., Frank, A.U. (eds.) COSIT 1995. LNCS, vol. 988. Springer, Heidelberg (1995)

    Google Scholar 

  16. Golledge, R.G.: Human wayfinding and cognitive maps. In: Golledge, R.G. (ed.) Wayfinding Behavior, pp. 5–45. Hopkins University Press, Baltimore (1999)

    Google Scholar 

  17. Hamburger, K., Dienelt, L.E., Strickrodt, M., Röser, F.: Spatial cognition: the return path. In: Knauff, M., Pauen, M., Sebanz, N., Wachsmuth, I. (eds.) Cognitive Science 2013, pp. 537–542. Cognitive Science Society, Austin (2013)

    Google Scholar 

  18. Hart, P.E., Nilsson, N.J., Raphael, B.: A formal basis for the heuristic determination of minimum cost paths. IEEE Trans. Syst. Sci. Cybern. SSC4 4(2), 100–107 (1968)

    Article  Google Scholar 

  19. Hölscher, C., Tenbrink, T., Wiener, J.M.: Would you follow your own route description? cognitive strategies in urban route planning. Cognition 121, 228–247 (2011)

    Article  Google Scholar 

  20. Jonietz, D., Timpf, S.: An affordance-based simulation framework for assessing spatial suitability. In: Tenbrink, T., Stell, J., Galton, A., Wood, Z. (eds.) COSIT 2013. LNCS, vol. 8116, pp. 169–184. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  21. Joshi, S., Schermerhorn, P., Khardon, R., Scheutz, M.: Abstract planning for reactive robots. In: Parker, L.E. (ed.) ICRA 2012, pp. 4379–4384. IEEE, Saint Paul (2012)

    Google Scholar 

  22. Koenig, S., Likhachev, M., Furcy, D.: Lifelong planning A*. Artif. Intell. 155(1), 93–146 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  23. Kostavelis, I., Gasteratos, A.: Semantic mapping for mobile robotics tasks: a survey. Robot. Auton. Syst. 66, 86–103 (2015)

    Article  Google Scholar 

  24. Mataric, M.: Integration of representation into goal-driven behavior-based robots. IEEE Trans. Robot. Autom. 8(3), 304–312 (1992)

    Article  Google Scholar 

  25. Meilinger, T.: The network of reference frames theory: a synthesis of graphs and cognitive maps. In: Freksa, C., Newcombe, N.S., Gärdenfors, P., Wölfl, S. (eds.) Spatial Cognition VI. LNCS (LNAI), vol. 5248, pp. 344–360. Springer, Heidelberg (2008)

    Google Scholar 

  26. Montello, D.R., Sas, C.: Human factors of wayfinding in navigation. In: Karwowski, W. (ed.) International Encyclopedia of Ergonomics and Human Factors, 2nd edn, pp. 2003–2008. CRC Press, London (2006)

    Google Scholar 

  27. Mozos, Ó.M., Triebel, R., Jensfelt, P., Rottmann, A., Burgard, W.: Supervised semantic labeling of places using information extracted from sensor data. Robot. Auton. Syst. 55, 391–402 (2007)

    Article  Google Scholar 

  28. Ozgelen, A.T., Sklar, E.I.: Toward a human-centric task complexity model for interaction with multi-robot teams. In: Workshop on Human-Agent Interaction Design and Models (HAIDM) at AAMAS-2014 (2014)

    Google Scholar 

  29. Ratterman, M.J., Epstein, S.L.: Skilled like a person: a comparison of human and computer game playing. In: Moore, J.D., Lehman, J.F. (eds.) Cognitive Science 95, pp. 709–714. Lawrence Erlbaum Associates, Pittsburgh (1995)

    Google Scholar 

  30. Reineking, T., Kohlhagen, C., Zetzsche, C.: Efficient wayfinding in hierarchically regionalized spatial environments. In: Freksa, C., Newcombe, N.S., Gärdenfors, P., Wölfl, S. (eds.) Spatial Cognition VI. LNCS (LNAI), vol. 5248, pp. 56–70. Springer, Heidelberg (2008)

    Google Scholar 

  31. Sklar, E.I., Ozgelen, A.T., Munoz, J.P., Gonzalez, J., Manashirov, M., Epstein, S.L., Parsons, S.: Designing the HRTeam framework: lessons learned from a rough-and-ready human/multi-robot team. In: Dechesne, F., Hattori, H., ter Mors, A., Such, J.M., Weyns, D., Dignum, F. (eds.) AAMAS 2011 Workshops. LNCS, vol. 7068, pp. 232–251. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  32. Speekenbrink, M., Konstantinidis, E.: Uncertainty and exploration in a restless bandit task. In: Bello, P., Gaurini, M., McShane, M., Scassellati, B. (eds.) Cognitive Science 2014, pp. 1491–1496. Cognitive Science Society, Austin (2014)

    Google Scholar 

  33. Takemiya, M., Ishikawa, T.: Strategy-based dynamic real-time route prediction. In: Tenbrink, T., Stell, J., Galton, A., Wood, Z. (eds.) COSIT 2013. LNCS, vol. 8116, pp. 149–168. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  34. Tenbrink, T., Bergmann, E., Konieczny L.: Wayfinding and description strategies in an unfamiliar complex building. In: 33rd Annual Conference of the Cognitive Science Society, pp. 1262–1267 (2011)

    Google Scholar 

  35. Thrun, S., Bücken, A., Burgard, W., Fox, D., Fröhlinghaus, T., Hennig, D., Hofman, T., Krell, M., Schmidt, T.: Map learning and high-speed navigation in RHINO. In: Kortenkamp, D., Bonasso, R.P., Murphy, R. (eds.) AI-based Mobile Robots: Case Studies of Successful Robot Systems, pp. 21–52. MIT Press, Cambridge (1998)

    Google Scholar 

  36. Tversky, B.: Cognitive maps, cognitive collages, and spatial mental models. In: Frank, A.U., Campari, I. (eds.) Spatial Information Theory: A Theoretical Basis for GIS. LNCS, vol. 716, pp. 14–24. Springer, Berlin (1993)

    Chapter  Google Scholar 

  37. Vasardani, M., Timpf, S., Winter, S., Tomko, M.: From descriptions to depictions: a conceptual framework. In: Tenbrink, T., Stell, J., Galton, A., Wood, Z. (eds.) COSIT 2013. LNCS, vol. 8116, pp. 299–319. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  38. Vasudevan, S., Gächter, S., Nguyen, V., Siegwart, R.: Cognitive maps for mobile robots —an object based approach. Robot. Auton. Syst. 55(5), 359–371 (2007)

    Article  Google Scholar 

  39. Weiser, P., Frank, A.U.: Cognitive transactions – a communication model. In: Tenbrink, T., Stell, J., Galton, A., Wood, Z. (eds.) COSIT 2013. LNCS, vol. 8116, pp. 129–148. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  40. Wolf, D.F., Sukhatme, G.S.: Semantic mapping using mobile robots. IEEE Trans. Robot. 24(2), 245–258 (2008)

    Article  Google Scholar 

  41. Zetzsche, C., Galbraith, C., Wolter, J., Schill, K.: Representation of space: image-like or sensorimotor? Spat. Vis. 22(5), 409–424 (2009)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the National Science Foundation under IIS 11-17000, IIS 11-16843 and CNS 08-51901, and by The City University of New York, Collaborative Incentive Research Grant 1642. We thank Tuna Ozgelen, Eric Schneider, and our anonymous reviewers for their insights and guidance. Tereza Shterenberg produced the map in Fig. 6.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susan L. Epstein .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Epstein, S.L., Aroor, A., Evanusa, M., Sklar, E.I., Parsons, S. (2015). Learning Spatial Models for Navigation. In: Fabrikant, S., Raubal, M., Bertolotto, M., Davies, C., Freundschuh, S., Bell, S. (eds) Spatial Information Theory. COSIT 2015. Lecture Notes in Computer Science(), vol 9368. Springer, Cham. https://doi.org/10.1007/978-3-319-23374-1_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-23374-1_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-23373-4

  • Online ISBN: 978-3-319-23374-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics