Skip to main content

Geomorphic Features of the Eastern Pamirs, with a Focus on the Occurrence of Intermontane Basins

  • Chapter
  • First Online:
Mapping Transition in the Pamirs

Part of the book series: Advances in Asian Human-Environmental Research ((AAHER))

Abstract

The geomorphic landscape of the Pamirs differs distinctly between the western and eastern areas. The Western Pamirs (west of ~73°E) are characterised by a combination of predominantly west–east-trending mountain ranges with altitudes of 5000–7000 m and deep, narrow valleys. In contrast, the Eastern Pamirs (east of ~73°E) are generally distinguished as broad valleys and basins bordered by more subdued mountain ranges with altitudes of 5000–6000 m. Twelve intermontane basins—Khargush Pamir (Lake Karakul Basin), the basin at the confluence of the Kokuibel and Zartosh Rivers, Muji Basin, the upper reaches of the Gez River, Karasu Valley, Taghdumbash Pamir (Tashkurgan Valley), Rangkul Pamir, Sarez Pamir, Aksu Valley, Alichur Pamir, Great Pamir, and Little Pamir—are identified in the Eastern Pamirs. I deduced from previous studies and observations of landforms using Google Earth that the occurrence of such basins is associated with regional tectonics, downstream damming, and glaciation. Khargush Pamir, the basin at the confluence of the Kokuibel and Zartosh Rivers, Muji Basin, the upper reaches of the Gez River, Karasu Valley, and Taghdumbash Pamir are extensional basins bounded by active normal faults, and the Rangkul Pamir likely originated from a Cenozoic tectonic basin. Sarez Pamir, Aksu Valley, Alichur Pamir, Great Pamir, and Little Pamir have been protected from fluvial incision because of downstream-damming-related upstream aggradation. Alichur Pamir, Great Pamir, and Little Pamir were primarily formed by extensive glacial denudation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    ‘Intermontane’ is an adjective that means ‘situated between or surrounded by mountains, mountain ranges, or mountain regions’ (Bates and Jackson 1987). Following to this definition, this chapter uses the term ‘intermontane basin’.

References

  • Abramowski U et al (2006) Pleistocene glaciations of central Asia: results from 10Be surface exposure ages of erratic boulders from the Pamir (Tajikistan), and the Alay-Turkestan range (Kyrgyzstan). Quat Sci Rev 25(9–10):1080–1096

    Article  Google Scholar 

  • Aizen VB (2011) Pamirs. In: Singh VP, Singh P, Haritashya UK (eds) Encyclopedia of snow, ice and glaciers. Springer, Dordrecht, pp 813–815

    Chapter  Google Scholar 

  • Aizen VB et al (2009) Stable-isotope and trace element time series from Fedchenko glacier (Pamirs) snow/firn cores. J Glaciol 55(190):275–291

    Article  Google Scholar 

  • Amidon WH, Hynek SA (2010) Exhumational history of the north central Pamir. Tectonics 29(5):TC5017

    Article  Google Scholar 

  • Arendt A et al (2012) Randolph glacier inventory: a dataset of global glacier outlines. In: Global land ice measurements from space. Digital Media, Boulder. http://www.glims.org/RGI/randolph.html. Accessed 03 Feb 2015

  • Arnaud NO, Brunel M, Cantagrel JM, Tapponnier P (1993) High cooling and denudation rate at kongur Shan, eastern Pamir (Xinjiang, china) revealed by 40Ar/39Ar alkali feldspar thermochronology. Tectonics 12(6):1335–1346

    Article  Google Scholar 

  • Arrowsmith JR, Strecker MR (1999) Seimotectonic range-front segmentation and mountain-belt growth in the Pamir-alai region, Kyrgyzstan (India-Eurasia collision zone). Geol Soc Am Bull 111(11):1665–1683

    Article  Google Scholar 

  • Bates RL, Jackson JA (1987) Glossary of geology, 3rd edn. American Geological Institute, Virginia, 788p

    Google Scholar 

  • Blisnuik PM, Strecker MR (1996) Kinematics of Holocene normal faulting in the northern Pamir. Eos, Transactions American Geophysical Union. 77(46) Fall Meet. Suppl., Abstract T21B-14

    Google Scholar 

  • Bond G et al (1992) Evidence for massive discharges of icebergs into the North Atlantic ocean during the last glacial period. Nature 360:245–249

    Article  Google Scholar 

  • Bond G et al (2001) Persistent solar influence on North Atlantic climate during the Holocene. Science 294:2130–2136

    Article  Google Scholar 

  • Brockfield ME (2008) Evolution of the great river system of southern Asia during the Cenozoic India-Asia collision: rivers draining north from the Pamir syntaxis. Geomorphology 100(3–4):296–311

    Article  Google Scholar 

  • Burtman VS (2000) Cenozoic crustal shortening between the Pamir and Tien Shan and a reconstruction of the Pamir—Tien Shan transition zone for the Cretaceous and Palaeogene. Tectonophysics 319(2):69–92

    Article  Google Scholar 

  • Burtman VS (2013) The geodynamics of the Pamir—Punjab Syntaxis. Geotectonics 47(1):31–51

    Article  Google Scholar 

  • Burtman VS, Molnar P (1993) Geological and geophysical evidence for deep subduction of the continental crust beneath the Pamir. Geol Soc Am Spec Pap 281:1–76

    Google Scholar 

  • Cao K et al (2013a) Focused Pliocene-Quaternary exhumation of the Eastern Pamir domes, western China. Earth Planet Sci Lett 363:16–26

    Article  Google Scholar 

  • Cao K et al (2013b) Cenozoic thermo-tectonic evolution of the northeastern Pamir revealed by zircon and apatite fission-track thermochronology. Tectonophysics 589:17–32

    Article  Google Scholar 

  • Coutand I et al (2002) Late Cenozoic tectonic development of the intramontane Alai Valley, (Pamir-Tien Shan region, central Asia): an example of intracontinental deformation due to the Indo-Eurasia collision. Tectonics 21(6):1053

    Article  Google Scholar 

  • Cowgill E (2010) Cenozoic right-slip faulting along the eastern margin of the Pamir salient, northwestern China. Geol Soc Am Bull 122(1–2):145–161

    Article  Google Scholar 

  • Fan G, Nil JF, Wallace TC (1994) Active tectonics of the Pamir and Karakorum. J Geophys Res 99(B4):7131–7160

    Article  Google Scholar 

  • Fuchs MC, Gloaguen R, Pohl E (2013) Tectonic and climatic forcing on the Panj river system during the Quaternary. Int J Earth Sci 102(7):1985–2003

    Article  Google Scholar 

  • Hauser M (2004) The Pamirs 1: 500,000. The Pamir Archive, Zürich.

    Google Scholar 

  • Iwata S (2009) Mapping features of Fedchenko Glacier, the Pamirs, Central Asia from space. Geogr Stud 84(1):33–43

    Article  Google Scholar 

  • Jarvis A, Reuter HI, Nelson A, Guevara E (2008) Hole-filled SRTM for the globe Version 4, available from the CGIAR-CSI SRTM 90 m Database. http://srtm.csi.cgiar.org

  • Komatsu T, Tsukamoto S (2015) Late Glacial lake-level changes in the Lake Karakul basin (a closed glacierized basin), eastern Pamirs, Tajikistan. Quat Res 83(1):137–149

    Article  Google Scholar 

  • Komatsu T, Watanabe T (2013) Glacier-related hazards and their assessment in the Tajik Pamir: a short review. Geogr Stud 88(2):117–131

    Article  Google Scholar 

  • Korup O, Tweed F (2007) Ice, Moraine, and landslide dams in mountainous terrain. Quat Sci Rev 26(25–28):3406–3422

    Article  Google Scholar 

  • Mayewski PA et al (2004) Holocene climate variability. Quat Res 62(3):243–255

    Article  Google Scholar 

  • Mechie J et al (2012) Crustal and uppermost mantle structure along a profile across the Pamir and southern Tien Shan as derived from project TIPAGE wide-angle seismic data. Geophys J Int 188(2):385–407

    Article  Google Scholar 

  • Mergili M, Schneider JF (2011) Regional-scale analysis of lake outburst hazards in the southwestern Pamir, Tajikistan, based on remote sensing and GIS. Nat Hazards Earth Syst Sci 11:1447–1462

    Article  Google Scholar 

  • Mohadjer S et al (2010) Partitioning of India-Eurasia convergence in the Pamir-Hindu Kush from GPS measurements. Geophys Res Lett 37(4):L04035

    Article  Google Scholar 

  • Owen LA et al (2012) Quaternary glaciation of the Tashkurgan Valley, Southeast Pamir. Quat Sci Rev 47:56–72

    Article  Google Scholar 

  • Reigber C et al (2001) New space geodetic constraints on the distribution of deformation in central Asia. Earth Planet Sci Lett 191(1–2):157–165

    Article  Google Scholar 

  • Robinson AC et al (2004) Tectonic evolution of the northeastern Pamir: constraints from the northern portion of the Cenozoic Kongur Shan extensional system, western China. Geol Soc Am Bull 116(7–8):953–973

    Article  Google Scholar 

  • Robinson AC et al (2007) Cenozoic evolution of the eastern Pamir: implications for strain-accommodation mechanisms at the western end of the Himalayan-Tibetan orogeny. Geol Soc Am Bull 119(7–8):882–896

    Article  Google Scholar 

  • Robinson AC, Yin A, Lovera OM (2010) The role of footwall deformation and denudation in controlling cooling age patterns of detachment systems: an application to the Kongur Shan extensional system in the Eastern Pamir, China. Tectonophysics 496(1–4):28–43

    Article  Google Scholar 

  • Robinson AC, Ducea M, Lapen TJ (2012) Detrital zircon and isotopic constrains on the crustal architecture and tectonic evolution of the northeastern Pamir. Tectonics 31:TC2016

    Article  Google Scholar 

  • Röhringer I et al (2012) The Pleistocene glaciation in the Bogchigir Valleys (Pamir, Tajikistan) based on 10Be surface exposure dating. Quat Res 78(3):590–597

    Article  Google Scholar 

  • Sawagaki T, Koaze T (1996) Landslides and relict ice margin landforms in adventdalen, central Spitsbergen, Svalbard. Polar Res 15(2):139–152

    Article  Google Scholar 

  • Schmidt J et al (2011) Cenozoic deep crust in the Pamir. Earth Planet Sci Lett 312(3–4):411–421

    Article  Google Scholar 

  • Schneider JF et al (2010) Remote geohazards in high mountain areas of Tajikistan. Assessment of hazards connected to lake outburst floods and large landslide dams in selected areas of the Pamir and Alai mountains. Report of the TajHaz-Project by the BOKU University Vienna and FOCUS Humanitarian Assistance, 342pp

    Google Scholar 

  • Schneider JF, Gruber FE, Mergili M (2011) Recent cases and geomorphic evidence of landslide-dammed lakes and related hazards in the mountains of Central Asia. Proceedings of the Second World Landslide Forum, Rome, pp 1–6, 3–7 October 2011

    Google Scholar 

  • Schurr B et al (2014) Seismotectonics of the Pamir. Tectonics 33(8):1501–1518

    Article  Google Scholar 

  • Seong YB, Owen LA, Yi C, Finkel RC (2009) Quaternary glaciation of Muztag Ata and kongur Shan: evidence for glacier response to rapid climate changes throughout the late glacial and Holocene in westernmost Tibet. Geol Soc Am Bull 121(3–4):348–365

    Article  Google Scholar 

  • Sobel ER et al (2011) Late Miocene-Pliocene deceleration of dextral slip between Pamir and Tarim: implications for Pamir orogenesis. Earth Planet Sci Lett 304(3–4):369–378

    Article  Google Scholar 

  • Storm A (2010) Landslide dams in central Asia region. J Jpn Landslide Soc 47(6):309–324

    Article  Google Scholar 

  • Storm A (2013) Geological prerequisites for landslide dam’s disaster assessment and mitigation in Central Asia. In: Wang F (ed) Progress of geo-disaster mitigation technology in Asia, Environmental science and engineering. Springer, Berlin, pp 17–53

    Chapter  Google Scholar 

  • Strecker MR et al (1995) Quaternary deformation in the eastern pamirs, Tadzhikistan and Kyrgyzstan. Tectonics 14(5):1061–1079

    Article  Google Scholar 

  • Strecker MR, Hilley GE, Arrowsmith JR, Coutand I (2003) Differential structural and geomorphic mountain-front evolution in an active continental collision zone: the northwest Pamir, southern Kyrgyzstan. Geol Soc Am Bull 115(2):166–181

    Article  Google Scholar 

  • Syverson KM, Mickelson DM (2009) Origin and significance of lateral meltwater channels formed along a temperate glacier margin, Glacier Bay, Alaska. Boreas 38(1):132–145

    Article  Google Scholar 

  • Williams MW, Konovalov VG (2008) Central Asia temperature and precipitation data, 1879–2003. USA National Snow and Ice Data Center, Boulder. Digital media http://nsidc.org/data/g02174

  • Zech R et al (2005a) Late quaternary glacial and climate history of the Pamir mountains derived from cosmogenic 10Be exposure ages. Quatern Res 64(2):212–220

    Article  Google Scholar 

  • Zech R et al (2005b) Evidence for long-lasting landform surface instability on hummocky moraines in the Pamir mountains from surface exposure dating. Earth Planet Sci Lett 237(3–4):453–461

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tetsuya Komatsu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Komatsu, T. (2016). Geomorphic Features of the Eastern Pamirs, with a Focus on the Occurrence of Intermontane Basins. In: Kreutzmann, H., Watanabe, T. (eds) Mapping Transition in the Pamirs. Advances in Asian Human-Environmental Research. Springer, Cham. https://doi.org/10.1007/978-3-319-23198-3_4

Download citation

Publish with us

Policies and ethics