Skip to main content

SIFT Flow: Dense Correspondence Across Scenes and Its Applications

  • Chapter
Book cover Dense Image Correspondences for Computer Vision

Abstract

While image alignment has been studied in different areas of computer vision for decades, aligning images depicting different scenes remains a challenging problem. Analogous to optical flow where an image is aligned to its temporally adjacent frame, we propose scale-invariant feature transform (SIFT) flow, a method to align an image to its nearest neighbors in a large image corpus containing a variety of scenes. The SIFT flow algorithm consists of matching densely sampled, pixel-wise SIFT features between two images while preserving spatial discontinuities. The SIFT features allow robust matching across different scene/object appearances, whereas the discontinuity-preserving spatial model allows matching of objects located at different parts of the scene. Experiments show that the proposed approach robustly aligns complex scene pairs containing significant spatial differences. Based on SIFT flow, we propose an alignment-based large database framework for image analysis and synthesis, where image information is transferred from the nearest neighbors to a query image according to the dense scene correspondence. This framework is demonstrated through concrete applications, such as motion field prediction from a single image, motion synthesis via object transfer, satellite image registration, and face recognition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Image source: http://www.msss.com/mars_images/moc/2006/12/06/gullies/sirenum_crater/index.html.

References

  1. Avidan, S.: Ensemble tracking. IEEE Trans. Pattern Anal. Mach. Intell. 29(2), 261–271 (2007)

    Article  Google Scholar 

  2. Baker, S., Scharstein, D., Lewis, J.P., Roth, S., Black, M.J., Szeliski, R.: A database and evaluation methodology for optical flow. In: Proceeding of ICCV (2007)

    Book  Google Scholar 

  3. Barron, J.L., Fleet, D.J., Beauchemin, S.S.: Systems and experiment performance of optical flow techniques. Int. J. Comput. Vis. 12(1), 43–77 (1994)

    Article  Google Scholar 

  4. Belongie, S., Malik, J., Puzicha, J.: Shape context: a new descriptor for shape matching and object recognition. In: Advances in Neural Information Processing Systems (NIPS) (2000)

    Google Scholar 

  5. Belongie, S., Malik, J., Puzicha, J.: Shape matching and object recognition using shape contexts. IEEE Trans. Pattern Anal. Mach. Intell. 24(4), 509–522 (2002)

    Article  Google Scholar 

  6. Berg, A., Berg., T., Malik, J.: Shape matching and object recognition using low distortion correspondence. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2005)

    Google Scholar 

  7. Bergen, J.R., Anandan, P., Hanna, K.J., Hingorani, R.: Hierarchical model-based motion estimation. In: European Conference on Computer Vision (ECCV), pp. 237–252 (1992)

    Google Scholar 

  8. Black, M.J., Anandan, P.: The robust estimation of multiple motions: parametric and piecewise-smooth flow fields. Comput. Vis. Image Underst. 63(1), 75–104 (1996)

    Article  Google Scholar 

  9. Boykov, Y., Veksler, O., Zabih, R.: Fast approximate energy minimization via graph cuts. IEEE Trans. Pattern Anal. Mach. Intell. 23(11), 1222–1239 (2001)

    Article  Google Scholar 

  10. Brox, T., Bruhn, A., Papenberg, N., Weickert, J.: High accuracy optical flow estimation based on a theory for warping. In: European Conference on Computer Vision (ECCV), pp. 25–36 (2004)

    Google Scholar 

  11. Brox, T., Bregler, C., Malik, J.: Large displacement optical flow. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2009)

    Google Scholar 

  12. Bruhn, A., Weickert, J., Schnörr, C.: Lucas/Kanade meets Horn/Schunk: combining local and global optical flow methods. Int. J. Comput. Vis. 61(3), 211–231 (2005)

    Article  Google Scholar 

  13. Cai, D., He, X., Hu, Y., Han, J., Huang, T.: Learning a spatially smooth subspace for face recognition. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2007)

    Google Scholar 

  14. Carson, C., Belongie, S., Greenspan, H., Malik, J.: Blobworld: color- and texture-based image segmentation using EM and its application to image querying and classification. IEEE Trans. Pattern Anal. Mach. Intell. 24(8), 1026–1038 (2002)

    Article  Google Scholar 

  15. Cootes, T.F., Edwards, G.J., Taylor, C.J.: Active appearance models. In: European Conference on Computer Vision (ECCV), vol. 2, pp. 484–498 (1998)

    Google Scholar 

  16. Cornelis, N., Gool, L.V.: Real-time connectivity constrained depth map computation using programmable graphics hardware. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1099–1104 (2005)

    Google Scholar 

  17. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2005)

    Google Scholar 

  18. Fei-Fei, L., Perona, P.: A bayesian hierarchical model for learning natural scene categories. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), vol. 2, pp. 524–531 (2005)

    Google Scholar 

  19. Felzenszwalb, P., Huttenlocher, D.: Pictorial structures for object recognition. Int. J. Comput. Vis. 61(1), 55–79 (2005)

    Article  Google Scholar 

  20. Felzenszwalb, P.F., Huttenlocher, D.P.: Efficient belief propagation for early vision. Int. J. Comput. Vis. 70(1), 41–54 (2006)

    Article  Google Scholar 

  21. Fleet, D.J., Jepson, A.D., Jenkin, M.R.M.: Phase-based disparity measurement. Comput. Vis. Graph. Image Process. 53(2), 198–210 (1991)

    MATH  Google Scholar 

  22. Freeman, W.T., Pasztor, E.C., Carmichael, O.T.: Learning low-level vision. Int. J. Comput. Vis. 40(1), 25–47 (2000)

    Article  MATH  Google Scholar 

  23. Gorkani, M.M., Picard, R.W.: Texture orientation for sorting photos at a glance. In: IEEE International Conference on Pattern Recognition (ICPR), vol. 1, pp. 459–464 (1994)

    Google Scholar 

  24. Grauman, K., Darrell, T.: Pyramid match kernels: discriminative classification with sets of image features. In: IEEE International Conference on Computer Vision (ICCV) (2005)

    Google Scholar 

  25. Grimson, W.E.L.: Computational experiments with a feature based stereo algorithm. IEEE Trans. Pattern Anal. Mach. Intell. 7(1), 17–34 (1985)

    Article  Google Scholar 

  26. Hannah, M.J.: Computer matching of areas in stereo images. Ph.D. thesis, Stanford University (1974)

    Google Scholar 

  27. Harris, C., Stephens, M.: A combined corner and edge detector. In: Proceedings of the 4th Alvey Vision Conference, pp. 147–151 (1988)

    Google Scholar 

  28. Hays, J., Efros, A.A.: Scene completion using millions of photographs. ACM SIGGRAPH 26(3) (2007)

    Google Scholar 

  29. Horn, B.K.P., Schunck, B.G.: Determinig optical flow. Artif. Intell. 17, 185–203 (1981)

    Article  Google Scholar 

  30. Jones, D.G., Malik, J.: A computational framework for determining stereo correspondence from a set of linear spatial filters. In: European Conference on Computer Vision (ECCV), pp. 395–410 (1992)

    Google Scholar 

  31. Kolmogorov, V., Zabih, R.: Computing visual correspondence with occlusions using graph cuts. In: IEEE International Conference on Computer Vision (ICCV), pp. 508–515 (2001)

    Google Scholar 

  32. Lazebnik, S., Schmid, C., Ponce, J.: Beyond bags of features: spatial pyramid matching for recognizing natural scene categories. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), vol. II, pp. 2169–2178 (2006)

    Google Scholar 

  33. Liu, C., Freeman, W.T., Adelson, E.H.: Analysis of contour motions. In: Advances in Neural Information Processing Systems (NIPS) (2006)

    Google Scholar 

  34. Liu, C., Yuen, J., Torralba, A., Sivic, J., Freeman, W.T.: SIFT flow: dense correspondence across different scenes. In: European Conference on Computer Vision (ECCV) (2008)

    Google Scholar 

  35. Liu, C., Freeman, W.T., Adelson, E.H., Weiss, Y.: Human-assisted motion annotation. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2008)

    Google Scholar 

  36. Liu, C., Yuen, J., Torralba, A.: Nonparametric scene parsing: label transfer via dense scene alignment. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2009)

    Google Scholar 

  37. Lowe, D.G.: Object recognition from local scale-invariant features. In: IEEE International Conference on Computer Vision (ICCV), Kerkyra, pp. 1150–1157 (1999)

    Google Scholar 

  38. Lucas, B., Kanade, T.: An iterative image registration technique with an application to stereo vision. In: Proceedings of the International Joint Conference on Artificial Intelligence, pp. 674–679 (1981)

    Google Scholar 

  39. Oliva, A., Torralba, A.: Modeling the shape of the scene: a holistic representation of the spatial envelope. Int. J. Comput. Vis. 42(3), 145–175 (2001)

    Article  MATH  Google Scholar 

  40. Pérez, P., Gangnet, M., Blake, A.: Poisson image editing. ACM SIGGRAPH 22(3), 313–318 (2003)

    Article  Google Scholar 

  41. Rother, C., Minka, T., Blake, A., Kolmogorov, V.: Cosegmentation of image pairs by histogram matching – incorporating a global constraint into MRFs. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), vol. 1, pp. 993–1000 (2006)

    Google Scholar 

  42. Russell, B.C., Torralba, A., Liu, C., Fergus, R., Freeman, W.T.: Object recognition by scene alignment. In: Advances in Neural Information Processing Systems (NIPS) (2007)

    Google Scholar 

  43. Russell, B.C., Torralba, A., Murphy, K.P., Freeman, W.T.: LabelMe: a database and web-based tool for image annotation. Int. J. Comput. Vis. 77(1–3), 157–173 (2008)

    Article  Google Scholar 

  44. Samaria, F., Harter, A.: Parameterization of a stochastic model for human face identification. In: IEEE Workshop on Applications of Computer Vision (1994)

    Google Scholar 

  45. Scharstein, D., Szeliski, R.: A taxonomy and evaluation of dense two-frame stereo correspondence algorithms. Int. J. Comput. Vis. 47(1), 7–42 (2002)

    Article  MATH  Google Scholar 

  46. Schmid, C., Mohr, R., Bauckhage, C.: Evaluation of interest point detectors. Int. J. Comput. Vis. 37(2), 151–172 (2000)

    Article  MATH  Google Scholar 

  47. Shekhovtsov, A., Kovtun, I., Hlavac, V.: Efficient MRF deformation model for non-rigid image matching. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2007)

    Google Scholar 

  48. Sivic, J., Zisserman, A.: Video Google: a text retrieval approach to object matching in videos. In: IEEE International Conference on Computer Vision (ICCV) (2003)

    Google Scholar 

  49. Sun, J., Zheng, N., Shum, H.: Stereo matching using belief propagation. IEEE Trans. Pattern Anal. Mach. Intell. 25(7), 787–800 (2003)

    Article  MATH  Google Scholar 

  50. Swain, M.J., Ballard, D.H.: Color indexing. Int. J. Comput. Vis. 7(1), 11–32 (1991)

    Article  Google Scholar 

  51. Szeliski, R.: Image alignment and stitching: a tutorial. Found. Trends Comput. Graph. Comput. Vis. 2(1), 1–104 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  52. Szeliski, R., Zabih, R., Scharstein, D., Veksler, O., Kolmogorov, V., Agarwala, A., Tappen, M., Rother, C.: A comparative study of energy minimization methods for Markov random fields with smoothness-based priors. IEEE Trans. Pattern Anal. Mach. Intell. 30(6), 1068–1080 (2008)

    Article  Google Scholar 

  53. Torralba, A., Fergus, R., Freeman, W.T.: 80 million tiny images: a large dataset for non-parametric object and scene recognition. IEEE Trans. Pattern Anal. Mach. Intell. 30(11), 1958–1970 (2008)

    Article  Google Scholar 

  54. Viola, P., Wells, W., III: Alignment by maximization of mutual information. In: IEEE International Conference on Computer Vision (ICCV), pp. 16–23 (1995)

    Google Scholar 

  55. Weiss, Y.: Interpreting images by propagating bayesian beliefs. In: Advances in Neural Information Processing Systems (NIPS), pp. 908–915 (1997)

    Google Scholar 

  56. Weiss, Y.: Smoothness in layers: motion segmentation using nonparametric mixture estimation. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 520–527 (1997)

    Google Scholar 

  57. Winn, J., Jojic, N.: Locus: learning object classes with unsupervised segmentation. In: IEEE International Conference on Computer Vision (ICCV), pp. 756–763 (2005)

    Google Scholar 

  58. Yang, G., Stewart, C.V., Sofka, M., Tsai, C.L.: Registration of challenging image pairs: initialization, estimation, and decision. IEEE Trans. Pattern Anal. Mach. Intell. 29(11), 1973–1989 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ce Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Liu, C., Yuen, J., Torralba, A. (2016). SIFT Flow: Dense Correspondence Across Scenes and Its Applications. In: Hassner, T., Liu, C. (eds) Dense Image Correspondences for Computer Vision. Springer, Cham. https://doi.org/10.1007/978-3-319-23048-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-23048-1_2

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-23047-4

  • Online ISBN: 978-3-319-23048-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics