Skip to main content

Nanodiamonds: Behavior in Biological Systems and Emerging Bioapplications

  • Chapter
  • First Online:
Carbon Nanomaterials for Biomedical Applications

Abstract

In the past decade, nanodiamonds (NDs) have been recognized as a promising nanomaterial for bioapplications such as bioimaging and drug delivery in nanoscale medicine. Here, we present a comprehensive survey of current research on ND interactions with biological systems, including their biocompatibility, cellular internalization, localization, and targeting by surface-attached ligands. We critically assess the differences between different types of NDs, such as detonation NDs and high-pressure high-temperature (HPHT) NDs. We describe NDs’ physicochemical properties, structure, and available synthetic modifications by small molecules and biomolecules. Finally, we discuss emerging medical applications and bioapplications of these low-toxicity carbon nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. V.V. Danilenko, On the history of the discovery of nanodiamond synthesis. Phys. Solid State 46, 595–599 (2004)

    Article  Google Scholar 

  2. V.N. Mochalin, O. Shenderova, D. Ho, Y. Gogotsi, The properties and applications of nanodiamonds. Nat. Nanotechnol. 7, 11–23 (2011). doi:10.1038/nnano.2011.209

    Article  Google Scholar 

  3. A. Krueger (2010) Nanodiamond. In: Carbon Materials and Nanotechnology. (Wiley-VCH Verlag GmbH & Co. KGaA, p 329–388)

    Google Scholar 

  4. K.B. Holt, Diamond at the nanoscale: applications of diamond nanoparticles from cellular biomarkers to quantum computing. Philos. Trans. A. Math. Phys. Eng. Sci. 365, 2845–2861 (2007). doi:10.1098/rsta.2007.0005

    Article  Google Scholar 

  5. A. Krueger, Beyond the shine: recent progress in applications of nanodiamond. J. Mater. Chem. 21, 12571 (2011). doi:10.1039/c1jm11674f

    Article  Google Scholar 

  6. A.M. Schrand, S.A.C. Hens, O.A. Shenderova, Nanodiamond particles: properties and perspectives for bioapplications. Crit. Rev. Solid State Mater. Sci. 34, 18–74 (2009). doi:10.1080/10408430902831987

    Article  Google Scholar 

  7. A. Krueger, New carbon materials: biological applications of functionalized nanodiamond materials. Chemistry 14, 1382–1390 (2008). doi:10.1002/chem.200700987

    Article  Google Scholar 

  8. B.I. Kharisov, O.V. Kharissova, L. Chávez-Guerrero, Synthesis techniques, properties, and applications of nanodiamonds. Synth. React. Inorg. Metal-Org. Nano-Metal Chem. 40, 84–101 (2010)

    Google Scholar 

  9. A. Krueger, D. Lang, Functionality is key: recent progress in the surface modification of nanodiamond. Adv. Funct. Mater. 22, 890–906 (2012). doi:10.1002/adfm.201102670

    Article  Google Scholar 

  10. A. Krueger, The structure and reactivity of nanoscale diamond. J. Mater. Chem. 18, 1485 (2008). doi:10.1039/b716673g

    Article  Google Scholar 

  11. J. Wrachtrup, F. Jelezko, B. Grotz, L. McGuinness, Nitrogen-vacancy centers close to surfaces. MRS Bull. 38, 149–154 (2013). doi:10.1557/mrs.2013.22

    Article  Google Scholar 

  12. I. Aharonovich, A.D. Greentree, S. Prawer, Diamond photonics. Nat. Photonics 5, 397–405 (2011). doi:10.1038/nphoton.2011.54

    Article  Google Scholar 

  13. F. Jelezko, J. Wrachtrup, Single defect centres in diamond: a review. Phys. Status Solidi A 203, 3207–3225 (2006). doi:10.1002/pssa.200671403

    Article  Google Scholar 

  14. V. Vaijayanthimala, H.C. Chang, Functionalized fluorescent nanodiamonds for biomedical applications. Nanomedicine 4, 47–55 (2009). doi:10.2217/17435889.4.1.47

    Article  Google Scholar 

  15. J.H. Liu, S.T. Yang, X.X. Chen, H. Wang, Fluorescent carbon dots and nanodiamonds for biological imaging: preparation, application, pharmacokinetics and toxicity. Curr. Drug Metab. 13, 1046–1056 (2012). doi:10.2174/138920012802850083

    Article  Google Scholar 

  16. Y.Y. Hui, C.L. Cheng, H.C. Chang, Nanodiamonds for optical bioimaging. J. Phys. Appl. Phys. 43, 374021 (2010)

    Article  Google Scholar 

  17. A.S. Barnard, Diamond standard in diagnostics: nanodiamond biolabels make their mark. Analyst 134, 1751 (2009). doi:10.1039/b908532g

    Article  Google Scholar 

  18. A. Krueger, Diamond nanoparticles: jewels for chemistry and physics. Adv. Mater. 20, 2445–2449 (2008). doi:10.1002/adma.200701856

    Article  Google Scholar 

  19. Y. Zhu, The biocompatibility of nanodiamonds and their application in drug delivery systems. Theranostics 2, 302–312 (2012). doi:10.7150/thno.3627

    Article  Google Scholar 

  20. D. Ho, Nanodiamonds: applications in biology and nanoscale medicine. (Springerverlag, USA, 2010)

    Book  Google Scholar 

  21. H.B. Man, D. Ho, Diamond as a nanomedical agent for versatile applications in drug delivery, imaging, and sensing. Phys. Status Solidi A 209, 1609–1618 (2012). doi:10.1002/pssa.201200470

    Article  Google Scholar 

  22. D. Ho, Beyond the sparkle: the impact of nanodiamonds as biolabeling and therapeutic agents. ACS. Nano. 3, 3825–3829 (2009). doi:10.1021/nn9016247

    Article  Google Scholar 

  23. C. Frondel, U.B. Marvin, Lonsdaleite, a hexagonal polymorph of diamond. Nature 214, 587–589 (1967). doi:10.1038/214587a0

    Article  Google Scholar 

  24. O.A. Shenderova, V.V. Zhirnov, D.W. Brenner, Carbon nanostructures. Crit. Rev. Solid State Mater. Sci. 27, 227–356 (2002). doi:10.1080/10408430208500497

    Article  Google Scholar 

  25. A.K. Geim, K.S. Novoselov, The rise of graphene. Nat. Mater. 6, 183–191 (2007). doi:10.1038/nmat1849

    Article  Google Scholar 

  26. O.A. Williams, J. Hees, C. Dieker, W. Jäger, L. Kirste, C.E. Nebel, Size-dependent reactivity of diamond nanoparticles. ACS. Nano. 46, 595–599 (2004)

    Google Scholar 

  27. D.S. Zhao, M. Zhao, Q. Jiang, Size and temperature dependence of nanodiamond-nanographite transition related with surface stress. Diam. Relat. Mater. 11, 234–236 (2002). doi:10.1016/S0925-9635(01)00694-X

    Article  Google Scholar 

  28. Q. Jiang, Z.P. Chen, Thermodynamic phase stabilities of nanocarbon. Carbon 44, 79–83 (2006). doi:10.1016/j.carbon.2005.07.014

    Article  Google Scholar 

  29. J.Y. Raty, G. Galli, Ultradispersity of diamond at the nanoscale. Nat. Mater. 2, 792–795 (2003). doi:10.1038/nmat1018

    Article  Google Scholar 

  30. A.S. Barnard, M. Sternberg, Crystallinity and surface electrostatics of diamond nanocrystals. J. Mater. Chem. 17, 4811–4819 (2007). doi:10.1039/B710189A

    Article  Google Scholar 

  31. O.A. Williams, Nanocrystalline diamond. Diam. Relat. Mater. 20, 621–640 (2011). doi:10.1016/j.diamond.2011.02.015

    Article  Google Scholar 

  32. G.W. Yang, J.B. Wang, Q.X. Liu, Preparation of nano-crystalline diamonds using pulsed laser induced reactive quenching. J. Phys. Condens. Matter 10, 7923 (1998)

    Article  Google Scholar 

  33. T.L. Daulton, M.A. Kirk, R.S. Lewis, L.E. Rehn, Production of nanodiamonds by high-energy ion irradiation of graphite at room temperature. Nucl. Instrum. Methods Phys. Res. Sect. B. Beam Interact. Mater. Atoms 175–177, 12–20 (2001). doi:10.1016/S0168-583 × (00)00603-0

    Article  Google Scholar 

  34. F. Banhart, P.M. Ajayan, Carbon onions as nanoscopic pressure cells for diamond formation. Nature 382, 433–435 (1996). doi:10.1038/382433a0

    Article  Google Scholar 

  35. V.Y. Dolmatov, Detonation-synthesis nanodiamonds: synthesis, structure, properties and applications. Russ. Chem. Rev. 76, 339–360 (2007). doi:10.1070/RC2007v076n04ABEH003643

    Google Scholar 

  36. A. Krueger, F. Kataoka, M. Ozawa, T. Fujino, Y. Suzuki, A.E. Aleksenskii, A.Y. Vul, E. Osawa, Unusually tight aggregation in detonation nanodiamond: identification and disintegration. Carbon 43, 1722–1730 (2005). doi:10.1016/j.carbon.2005.02.020

    Article  Google Scholar 

  37. S. Osswald, G. Yushin, V. Mochalin, S.O. Kucheyev, Y. Gogotsi, Control of sp2/sp3 carbon ratio and surface chemistry of nanodiamond powders by selective oxidation in air. J. Am. Chem. Soc. 128, 11635–11642 (2006). doi:10.1021/ja063303n

    Article  Google Scholar 

  38. V. Pichot, M. Comet, E. Fousson, C. Baras, A. Senger, L. Normand F, D. Spitzer, An efficient purification method for detonation nanodiamonds. Diam. Relat. Mater. 17, 13–22 (2008). doi:10.1016/j.diamond.2007.09.011

    Article  Google Scholar 

  39. V.G. Sushchev, V.Y. Dolmatov, V.A. Marchukov, M.V. Veretennikova, Fundamentals of chemical purification of detonation nanodiamond soot using nitric acid. J. Superhard Mater. 30, 297–304 (2008). doi:10.3103/S1063457608050031

    Article  Google Scholar 

  40. NATO Advanced Research Workshop on Synthesis, Properties and Applications of Ultrananocrystalline Diamond, Synthesis, properties, and applications of ultrananocrystalline diamond. (Springer, Dordrecht, 2005)

    Google Scholar 

  41. O. Shenderova, I. Petrov, J. Walsh, V. Grichko, V. Grishko, T. Tyler, G. Cunningham, Modification of detonation nanodiamonds by heat treatment in air. Diam. Relat. Mater. 15, 1799–1803 (2006). doi:10.1016/j.diamond.2006.08.032

    Article  Google Scholar 

  42. I. Petrov, O. Shenderova, V. Grishko, V. Grichko, T. Tyler, G. Cunningham, G. McGuire, Detonation nanodiamonds simultaneously purified and modified by gas treatment. Diam. Relat. Mater. 16, 2098–2103 (2007). doi:10.1016/j.diamond.2007.05.013

    Article  Google Scholar 

  43. Q. Xu, X. Zhao, Electrostatic interactions versus van der Waals interactions in the self-assembly of dispersed nanodiamonds. J. Mater. Chem. 22, 16416 (2012). doi:10.1039/c2jm32918b

    Article  Google Scholar 

  44. A.S. Barnard, Self-assembly in nanodiamond agglutinates. J. Mater. Chem. 18, 4038 (2008). doi:10.1039/b809188a

    Article  Google Scholar 

  45. L.Y. Chang, E. Ōsawa, A.S. Barnard, Confirmation of the electrostatic self-assembly of nanodiamonds. Nanoscale 3, 958 (2011). doi:10.1039/c0nr00883d

    Article  Google Scholar 

  46. M. Ozawa, M. Inaguma, M. Takahashi, F. Kataoka, A. Krueger, E. Ōsawa, Preparation and behavior of brownish, clear nanodiamond colloids. Adv. Mater. 19, 1201–1206 (2007). doi:10.1002/adma.200601452

    Article  Google Scholar 

  47. E.D. Eidelman, V.I. Siklitsky, L.V. Sharonova, M.A. Yagovkina, A.Y. Vul’, M. Takahashi, M. Inakuma, M. Ozawa, E. Ōsawa, A stable suspension of single ultrananocrystalline diamond particles. Diam. Relat. Mater. 14, 1765–1769 (2005). doi:10.1016/j.diamond.2005.08.057

    Article  Google Scholar 

  48. Y. Liang, M. Ozawa, A. Krueger, A general procedure to functionalize agglomerating nanoparticles demonstrated on nanodiamond. ACS. Nano. 3, 2288–2296 (2009). doi:10.1021/nn900339s

    Article  Google Scholar 

  49. A. Pentecost, S. Gour, V. Mochalin, I. Knoke, Y. Gogotsi, Deaggregation of nanodiamond powders using salt- and sugar-assisted milling. ACS. Appl. Mater. Interfaces 2, 3289–3294 (2010). doi:10.1021/am100720n

    Article  Google Scholar 

  50. J.P. Boudou, P.A. Curmi, F. Jelezko, J. Wrachtrup, P. Aubert, M. Sennour, G. Balasubramanian, R. Reuter, A. Thorel, E. Gaffet, High yield fabrication of fluorescent nanodiamonds. Nanotechnology 20, 235602 (2009). doi:10.1088/0957-4484/20/23/235602

    Article  Google Scholar 

  51. J. Philip, P. Hess, T. Feygelson, J.E. Butler, S. Chattopadhyay, K.H. Chen, L.C. Chen, Elastic, mechanical, and thermal properties of nanocrystalline diamond films. J. Appl. Phys. 93, 2164–2171 (2003). doi:10.1063/1.1537465

    Article  Google Scholar 

  52. J.E. Butler, A.V. Sumant, The CVD of nanodiamond materials. Chem. Vap. Depos. 14, 145–160 (2008). doi:10.1002/cvde.200700037

    Article  Google Scholar 

  53. J.J. Gracio, Q.H. Fan, J.C. Madaleno, Diamond growth by chemical vapour deposition. J. Phys. Appl. Phys. 43, 374017 (2010). doi:10.1088/0022-3727/43/37/374017

    Article  Google Scholar 

  54. Z.H. Yongwei, X. Shen, Z. Feng, X. Xu, B. Wang, On the zeta-potential of nanodiamond in aqueous systems. J. Mater. Sci. Technol. 20, 469 (2004)

    Google Scholar 

  55. H. Boehm, Surface oxides on carbon and their analysis: a critical assessment. Carbon 40, 145–149 (2002). doi:10.1016/S0008-6223(01)00165-8

    Article  Google Scholar 

  56. E. Fuente, J.A. Menéndez, D. Suárez, M.A. Montes-Morán, Basic surface oxides on carbon materials: a global view. Langmuir 19, 3505–3511 (2003). doi:10.1021/la026778a

    Article  Google Scholar 

  57. M.A. Montes-Morán, D. Suárez, J.A. Menéndez, E. Fuente, On the nature of basic sites on carbon surfaces: an overview. Carbon 42, 1219–1225 (2004). doi:10.1016/j.carbon.2004.01.023

    Article  Google Scholar 

  58. O. Shenderova, S. Hens, G. McGuire, Seeding slurries based on detonation nanodiamond in DMSO. Diam. Relat. Mater. 19, 260–267 (2010)

    Article  Google Scholar 

  59. M. Ozawa, M. Inaguma, M. Takahashi, F. Kataoka, A. Krueger, E. Osawa, Preparation and behavior of brownish, clear nanodiamond colloids. Adv. Mater. 19, 1201–1206 (2007). doi:10.1002/adma.200601452

    Article  Google Scholar 

  60. C.C. Li, C.L. Huang, Preparation of clear colloidal solutions of detonation nanodiamond in organic solvents. Colloids Surf. Physicochem. Eng. Asp. 353, 52–56 (2010). doi:10.1016/j.colsurfa.2009.10.019

    Article  Google Scholar 

  61. X. Xu, Z. Yu, Y. Zhu, B. Wang, Effect of sodium oleate adsorption on the colloidal stability and zeta potential of detonation synthesized diamond particles in aqueous solutions. Diam. Relat. Mater. 14, 206–212 (2005)

    Article  Google Scholar 

  62. U. Maitra, A. Gomathi, C.N.R. Rao, Covalent and noncovalent functionalisation and solubilisation of nanodiamond. J. Exp. Nanosci. 3, 271–278 (2008). doi:10.1080/17458080802574155

    Article  Google Scholar 

  63. V.N. Mochalin, Y. Gogotsi, Wet chemistry route to hydrophobic blue fluorescent nanodiamond. J. Am. Chem. Soc. 131, 4594–4595 (2009). doi:10.1021/ja9004514

    Article  Google Scholar 

  64. S.A. Dahoumane, M.N. Nguyen, A. Thorel, J.P. Boudou, M.M. Chehimi, C. Mangeney, Protein-functionalized hairy diamond nanoparticles. Langmuir 25, 9633–9638 (2009). doi:10.1021/la9009509

    Article  Google Scholar 

  65. V.K.A. Sreenivasan, E.A. Ivukina, W. Deng, T.A. Kelf, T.A. Zdobnova, S.V. Lukash, B.V. Veryugin, O.A. Stremovskiy, A.V. Zvyagin, S.M. Deyev, Barstar:barnase—a versatile platform for colloidal diamond bioconjugation. J. Mater. Chem. 21, 65 (2011). doi:10.1039/c0jm02819c

    Article  Google Scholar 

  66. Y. Liang, T. Meinhardt, G. Jarre, M. Ozawa, P. Vrdoljak, A. Schöll, F. Reinert, A. Krueger, Deagglomeration and surface modification of thermally annealed nanoscale diamond. J. Colloid. Interface Sci. 354, 23–30 (2011). doi:10.1016/j.jcis.2010.10.044

    Article  Google Scholar 

  67. L. Zhao, T. Takimoto, M. Ito, N. Kitagawa, T. Kimura, N. Komatsu, Chromatographic separation of highly soluble diamond nanoparticles prepared by polyglycerol grafting. Angew. Chem. Int. Ed. Engl. 50, 1388–1392 (2011). doi:10.1002/anie.201006310

    Article  Google Scholar 

  68. T. Nguyen, H.C. Chang, V.W.K. Wu, Adsorption and hydrolytic activity of lysozyme on diamond nanocrystallites. Diam. Relat. Mater. 16, 872–876 (2007)

    Article  Google Scholar 

  69. T. Jiang, K. Xu, FTIR study of ultradispersed diamond powder synthesized by explosive detonation. Carbon 33, 1663–1671 (1995). doi:10.1016/0008-6223(95)00115-1

    Article  Google Scholar 

  70. V. Mochalin, S. Osswald, Y. Gogotsi, Contribution of functional groups to the raman spectrum of nanodiamond powders. Chem. Mater. 21, 273–279 (2009). doi:10.1021/cm802057q

    Article  Google Scholar 

  71. J.S. Tu, E. Perevedentseva, P.H. Chung, C.L. Cheng, Size-dependent surface CO stretching frequency investigations on nanodiamond particles. J. Chem. Phys. 125, 174713-174713-7 (2006). doi:10.1063/1.2370880

    Article  Google Scholar 

  72. J. Cheng, J. He, C. Li, Y. Yang, Facile approach to functionalize nanodiamond particles with V-shaped polymer brushes. Chem. Mater. 20, 4224–4230 (2008). doi:10.1021/cm800357g

    Article  Google Scholar 

  73. D. Mitev, R. Dimitrova, M. Spassova, C. Minchev, S. Stavrev, Surface peculiarities of detonation nanodiamonds in dependence of fabrication and purification methods. Diam. Relat. Mater. 16, 776–780 (2007). doi:10.1016/j.diamond.2007.01.005

    Article  Google Scholar 

  74. L. Rondin, G. Dantelle, A. Slablab, F. Grosshans, F. Treussart, P. Bergonzo, S. Perruchas, T. Gacoin, M. Chaigneau, H.C. Chang, V. Jacques, J.F. Roch, Surface-induced charge state conversion of nitrogen-vacancy defects in nanodiamonds. Phys. Rev. B (2010). doi:10.1103/PhysRevB.82.115449

    Google Scholar 

  75. B.R. Smith, D. Gruber, T. Plakhotnik, The effects of surface oxidation on luminescence of nano diamonds. Diam. Relat. Mater. 19, 314–318 (2010). doi:10.1016/j.diamond.2009.12.009

    Article  Google Scholar 

  76. A. Krueger, Y. Liang, G. Jarre, J. Stegk, Surface functionalisation of detonation diamond suitable for biological applications. J. Mater. Chem. 16, 2322–2328 (2006). doi:10.1039/B601325B

    Article  Google Scholar 

  77. A. Krueger, M. Ozawa, G. Jarre, Y. Liang, J. Stegk, L. Lu, Deagglomeration and functionalisation of detonation diamond. Phys. Status Solidi A 204, 2881–2887 (2007). doi:10.1002/pssa.200776330

    Article  Google Scholar 

  78. W.W. Zheng, Y.H. Hsieh, Y.C. Chiu, S.J. Cai, C.L. Cheng, C. Chen, Organic functionalization of ultradispersed nanodiamond: synthesis and applications. J. Mater. Chem. 19, 8432–8441 (2009). doi:10.1039/B904302K

    Article  Google Scholar 

  79. S.C. Hens, G. Cunningham, T. Tyler, S. Moseenkov, V. Kuznetsov, O. Shenderova, Nanodiamond bioconjugate probes and their collection by electrophoresis. Diam. Relat. Mater. 17, 1858–1866 (2008). doi:10.1016/j.diamond.2008.03.020

    Article  Google Scholar 

  80. R. Martín, P.C. Heydorn, M. Alvaro, H. Garcia, General strategy for high-density covalent functionalization of diamond nanoparticles using Fenton chemistry. Chem. Mater. 21, 4505–4514 (2009). doi:10.1021/cm9012602

    Article  Google Scholar 

  81. R. Martín, M. Álvaro, J.R. Herance, H. García, Fenton-treated functionalized diamond nanoparticles as gene delivery system. ACS. Nano. 4, 65–74 (2010). doi:10.1021/nn901616c

    Article  Google Scholar 

  82. B.V. Spitsyn, S.A. Denisov, N.A. Skorik, A.G. Chopurova, S.A. Parkaeva, L.D. Belyakova, O.G. Larionov, The physical-chemical study of detonation nanodiamond application in adsorption and chromatography. Diam. Relat. Mater. 19, 123–127 (2010). doi:10.1016/j.diamond.2009.10.020

    Article  Google Scholar 

  83. S. Ida, T. Tsubota, O. Hirabayashi, M. Nagata, Y. Matsumoto, A. Fujishima, Chemical reaction of hydrogenated diamond surface with peroxide radical initiators. Diam. Relat. Mater. 12, 601–605 (2003). doi:10.1016/S0925-9635(02)00334-5

    Article  Google Scholar 

  84. H.A. Girard, J.C. Arnault, S. Perruchas, S. Saada, T. Gacoin, J.P. Boilot, P. Bergonzo, Hydrogenation of nanodiamonds using MPCVD: a new route toward organic functionalization. Diam. Relat. Mater. 19, 1117–1123 (2010). doi:10.1016/j.diamond.2010.03.019

    Article  Google Scholar 

  85. I.P. Chang, K.C. Hwang, J.A. Ho, C.C. Lin, R.J.R. Hwu, J.C. Horng, Facile surface functionalization of nanodiamonds. Langmuir 26, 3685–3689 (2010). doi:10.1021/la903162v

    Article  Google Scholar 

  86. V.L. Kuznetsov, A.L. Chuvilin, Y.V. Butenko, I.Y. Malkov, V.M. Titov, Onion-like carbon from ultra-disperse diamond. Chem. Phys. Lett. 222, 343–348 (1994). doi:10.1016/0009-2614(94)87072-1

    Article  Google Scholar 

  87. Y. Liang, T. Meinhardt, G. Jarre, M. Ozawa, P. Vrdoljak, A. Schöll, F. Reinert, A. Krueger, Deagglomeration and surface modification of thermally annealed nanoscale diamond. J. Colloid Interface Sci. 354, 23–30 (2011). doi:10.1016/j.jcis.2010.10.044

    Article  Google Scholar 

  88. Y. Liu, Z. Gu, J.L. Margrave, V.N. Khabashesku, Functionalization of nanoscale diamond powder: fluoro-, alkyl-, amino-, and amino acid-nanodiamond derivatives. Chem. Mater. 16, 3924–3930 (2004). doi:10.1021/cm048875q

    Article  Google Scholar 

  89. M.A. Ray, T. Tyler, B. Hook, A. Martin, G. Cunningham, O. Shenderova, J.L. Davidson, M. Howell, W.P. Kang, G. McGuire, Cool plasma functionalization of nano-crystalline diamond films. Diam. Relat. Mater. 16, 2087–2089 (2007). doi:10.1016/j.diamond.2007.07.016

    Article  Google Scholar 

  90. K.I. Sotowa, T. Amamoto, A. Sobana, K. Kusakabe, T. Imato, Effect of treatment temperature on the amination of chlorinated diamond. Diam. Relat. Mater. 13, 145–150 (2004). doi:10.1016/j.diamond.2003.10.029

    Article  Google Scholar 

  91. J.S. Hovis, S.K. Coulter, R.J. Hamers, M.P. D’Evelyn, J.N. Russell, J.E. Butler, Cycloaddition chemistry at surfaces: reaction of alkenes with the diamond(001)-2 × 1 surface. J. Am. Chem. Soc. 122, 732–733 (2000). doi:10.1021/ja9929077

    Article  Google Scholar 

  92. C.L. Park, A.Y. Jee, M. Lee, S. Lee Gelation, functionalization, and solution behaviors of nanodiamonds with ionic liquids. Chem. Commun. (Camb). 37, 5576–5578. (2009). doi:10.1039/B910836J

    Article  Google Scholar 

  93. A. Barras, S. Szunerits, L. Marcon, N. Monfilliette-Dupont, R. Boukherroub, Functionalization of diamond nanoparticles using “click”. chemistry. Langmuir 26, 13168–13172 (2010). doi:10.1021/la101709q

    Article  Google Scholar 

  94. A. Krueger, T. Boedeker, Deagglomeration and functionalisation of detonation nanodiamond with long alkyl chains. Diam. Relat. Mater. 17, 1367–1370 (2008). doi:10.1016/j.diamond.2008.01.033

    Article  Google Scholar 

  95. H.A. Girard, T. Petit, S. Perruchas, T. Gacoin, C. Gesset, J.C. Arnault, P. Bergonzo, Surface properties of hydrogenated nanodiamonds: a chemical investigation. Phys. Chem. Chem. Phys. 13, 11517–11523 (2011). doi:10.1039/C1CP20424F

    Article  Google Scholar 

  96. T. Nakamura, T. Ohana, Y. Hagiwara, T. Tsubota, Chemical modification of diamond powder with optically active functionalities and its chiral recognition behavior. Appl. Surf. Sci. 257, 1368–1370 (2010). doi:10.1016/j.apsusc.2010.08.051

    Article  Google Scholar 

  97. G. Jarre, Y. Liang, P. Betz, D. Lang, A. Krueger, Playing the surface game-Diels-Alder reactions on diamond nanoparticles. Chem. Commun. (Camb). 47, 544–546 (2010). doi:10.1039/C0CC02931A

    Article  Google Scholar 

  98. D. Lang, A. Krueger, The Prato reaction on nanodiamond: surface functionalization by formation of pyrrolidine rings. Diam. Relat. Mater. 20, 101–104 (2011). doi:10.1016/j.diamond.2010.09.001

    Article  Google Scholar 

  99. L. Marcon, Z. Kherrouche, J. Lyskawa, D. Fournier, D. Tulasne, P. Woisel, R. Boukherroub, Preparation and characterization of Zonyl-coated nanodiamonds with antifouling properties. Chem. Commun. (Camb). 47, 5178–5180 (2011). doi:10.1039/C1CC10338E

    Article  Google Scholar 

  100. T. Meinhardt, D. Lang, H. Dill, A. Krueger, Pushing the functionality of diamond nanoparticles to new horizons: orthogonally functionalized nanodiamond using click chemistry. Adv. Funct. Mater. 21, 494–500 (2011). doi:10.1002/adfm.201001219

    Article  Google Scholar 

  101. V.N. Mochalin, I. Neitzel, B.J.M. Etzold, A. Peterson, G. Palmese, Y. Gogotsi, Covalent incorporation of aminated nanodiamond into an epoxy polymer network. ACS. Nano. 5, 7494–7502 (2011). doi:10.1021/nn2024539

    Article  Google Scholar 

  102. T. Takimoto, T. Chano, S. Shimizu, H. Okabe, M. Ito, M. Morita, T. Kimura, T. Inubushi, N. Komatsu, Preparation of fluorescent diamond nanoparticles stably dispersed under a physiological environment through multistep organic transformations. Chem. Mater. 22, 3462–3471 (2010). doi:10.1021/cm100566v

    Article  Google Scholar 

  103. X. Zhang, C. Fu, L. Feng, Y. Ji, L. Tao, Q. Huang, S. Li, Y. Wei, PEGylation and polyPEGylation of nanodiamond. Polymer 53, 3178–3184 (2012). doi:10.1016/j.polymer.2012.05.029

    Article  Google Scholar 

  104. I. Cha, K. Shirai, K. Fujiki, T. Yamauchi, N. Tsubokawa, Suface grafting of polymers onto nanodiamond by ligand-exchange reaction of ferrocene moieties of polymers with polycondensed aromatic rings of the surface. Diam. Relat. Mater. 20, 439–444 (2011). doi:10.1016/j.diamond.2011.01.014

    Article  Google Scholar 

  105. L. Li, J.L. Davidson, C.M. Lukehart, Surface functionalization of nanodiamond particles via atom transfer radical polymerization. Carbon 44, 2308–2315 (2006). doi:10.1016/j.carbon.2006.02.023

    Article  Google Scholar 

  106. N.A. Hutter, A. Reitinger, N. Zhang, M. Steenackers, O.A. Williams, J.A. Garrido, R. Jordan, Microstructured poly(2-oxazoline) bottle-brush brushes on nanocrystalline diamond. Phys. Chem. Chem. Phys. 12, 4360 (2010). doi:10.1039/b923789p

    Article  Google Scholar 

  107. M. Steenackers, S.Q. Lud, M. Niedermeier, P. Bruno, D.M. Gruen, P. Feulner, M. Stutzmann, J.A. Garrido, R. Jordan, Structured polymer grafts on diamond. J. Am. Chem. Soc. 129, 15655–15661 (2007). doi:10.1021/ja075378c

    Article  Google Scholar 

  108. Q. Zhang, K. Naito, Y. Tanaka, Y. Kagawa, Grafting polyimides from nanodiamonds. Macromolecules 41, 536–538 (2008). doi:10.1021/ma702268x

    Article  Google Scholar 

  109. S.H. Kim, D. Debnath, W.S. Lee, K.E. Geckeler, Poly (vinylpyrrolidone) as a tool: aqueous dispersion of nanodiamonds by wrapping in the solid state. Polym. Int. 61, 1228–1233 (2012). doi:10.1002/pi.4269

    Article  Google Scholar 

  110. H.B. Man, R. Lam, M. Chen, E. Osawa, D. Ho, Nanodiamond-therapeutic complexes embedded within poly(ethylene glycol) diacrylate hydrogels mediating sequential drug elution. Phys. Status Solidi A 209, 1811–1818 (2012). doi:10.1002/pssa.201200073

    Article  Google Scholar 

  111. E. von Haartman, H. Jiang, A.A. Khomich, J. Zhang, S.A. Burikov, T.A. Dolenko, J. Ruokolainen, H. Gu, O.A. Shenderova, I.I. Vlasov, J.M. Rosenholm, Core-shell designs of photoluminescent nanodiamonds with porous silica coatings for bioimaging and drug delivery I: fabrication. J. Mater. Chem. B 1, 2358–2366 (2013). doi:10.1039/C3TB20308E

    Article  Google Scholar 

  112. N. Prabhakar, T. Nareoja, E. von Haartman, D. Karaman, H. Jiang, S. Koho, T.A. Dolenko, P.E. Hanninen, D.I. Vlasov, V.G. Ralchenko, S. Hosomi, I.I. Vlasov, C. Sahlgren, J.M. Rosenholm, Core-shell designs of photoluminescent nanodiamonds with porous silica coatings for bioimaging and drug delivery II: application. Nanoscale 5, 3713 (2013). doi:10.1039/c3nr33926b

    Article  Google Scholar 

  113. A. Bumb, S.K. Sarkar, N. Billington, M.W. Brechbiel, K.C. Neuman, Silica encapsulation of fluorescent nanodiamonds for colloidal stability and facile surface functionalization. J. Am. Chem. Soc. 135, 7815–7818 (2013). doi:10.1021/ja4016815

    Article  Google Scholar 

  114. T.S. Huang, Y. Tzeng, Y.K. Liu, Y.C. Chen, K.R. Walker, R. Guntupalli, C. Liu, Immobilization of antibodies and bacterial binding on nanodiamond and carbon nanotubes for biosensor applications. Diam. Relat. Mater. 13, 1098–1102 (2004). doi:10.1016/j.diamond.2003.11.047

    Article  Google Scholar 

  115. M. Mkandawire, A. Pohl, T. Gubarevich, V. Lapina, D. Appelhans, G. Rödel, W. Pompe, J. Schreiber, J. Opitz, Selective targeting of green fluorescent nanodiamond conjugates to mitochondria in HeLa cells. J. Biophotonics. 2, 596–606 (2009). doi:10.1002/jbio.200910002

    Article  Google Scholar 

  116. K.V. Purtov, A.I. Petunin, A.E. Burov, A.P. Puzyr, V.S. Bondar, Nanodiamonds as carriers for address delivery of biologically active substances. Nanoscale Res. Lett. 5, 631–636 (2010). doi:10.1007/s11671-010-9526-0

    Article  Google Scholar 

  117. Y. Fu, N. An, S. Zheng, A. Liang, Y. Li, BmK CT-conjugated fluorescence nanodiamond as potential glioma-targeted imaging and drug. Diam. Relat. Mater. 21, 73–76 (2012). doi:10.1016/j.diamond.2011.10.010

    Article  Google Scholar 

  118. K.K. Liu, M.F. Chen, P.Y. Chen, T.J.F. Lee, C.L. Cheng, C.C. Chang, Y.P. Ho, J.I. Chao, Alpha-bungarotoxin binding to target cell in a developing visual system by carboxylated nanodiamond. Nanotechnology 19, 205102 (2008). doi:10.1088/0957-4484/19/20/205102

    Article  Google Scholar 

  119. A.P. Puzyr, K.V. Purtov, O.A. Shenderova, M. Luo, D.W. Brenner, V.S. Bondar, The adsorption of aflatoxin B1 by detonation-synthesis nanodiamonds. Biochem. Biophys. 417, 299–301 (2007). doi:10.1134/S1607672907060026

    Google Scholar 

  120. E. Nicolau, J. Méndez, J.J. Fonseca, K. Griebenow, C.R. Cabrera, Bioelectrochemistry of non-covalent immobilized alcohol dehydrogenase on oxidized diamond nanoparticles. Bioelectrochemistry 85, 1–6 (2012). doi:10.1016/j.bioelechem.2011.11.002

    Article  Google Scholar 

  121. L. Wei, W. Zhang, H. Lu, P. Yang, Immobilization of enzyme on detonation nanodiamond for highly efficient proteolysis. Talanta 80, 1298–1304 (2010)

    Article  Google Scholar 

  122. P.H. Chung, E. Perevedentseva, J.S. Tu, C.C. Chang, C.L. Cheng, Spectroscopic study of bio-functionalized nanodiamonds. Diam. Relat. Mater. 15, 622–625 (2006). doi:10.1016/j.diamond.2005.11.019

    Article  Google Scholar 

  123. E. Perevedentseva, P.J. Cai, Y.C. Chiu, C.L. Cheng, Characterizing protein activities on the lysozyme and nanodiamond complex prepared for bio applications. Langmuir 27, 1085–1091 (2011). doi:10.1021/la103155c

    Article  Google Scholar 

  124. E. Perevedentseva, C.Y. Cheng, P.H. Chung, J.S. Tu, Y.H. Hsieh, C.L. Cheng, The interaction of the protein lysozyme with bacteria E. coli observed using nanodiamond labelling. Nanotechnology 18, 315102 (2007). doi:10.1088/0957-4484/18/31/315102

    Article  Google Scholar 

  125. V.W.K. Wu, Preparation for optimal conformation of lysozyme with nanodiamond and nanosilica as carriers. Chin. J. Chem. 28, 2520–2526 (2010)

    Article  Google Scholar 

  126. Y. Li, X. Zhou, Transferrin-coupled fluorescence nanodiamonds as targeting intracellular transporters: an investigation of the uptake mechanism. Diam. Relat. Mater. 19, 1163–1167 (2010)

    Article  Google Scholar 

  127. M.F. Weng, S.Y. Chiang, N.S. Wang, H. Niu, Fluorescent nanodiamonds for specifically targeted bioimaging: application to the interaction of transferrin with transferrin receptor. Diam. Relat. Mater. 18, 587–591 (2009)

    Article  Google Scholar 

  128. M.F. Weng, B.J. Chang, S.Y. Chiang, N.S. Wang, H. Niu, Cellular uptake and phototoxicity of surface-modified fluorescent nanodiamonds. Diam. Relat. Mater. 22, 96–104 (2012). doi:10.1016/j.diamond.2011.12.035

    Article  Google Scholar 

  129. J. Li, Y. Zhu, W. Li, X. Zhang, Y. Peng, Q. Huang, Nanodiamonds as intracellular transporters of chemotherapeutic drug. Biomaterials 31, 8410–8418 (2010). doi:10.1016/j.biomaterials.2010.07.058

    Article  Google Scholar 

  130. N. Mohan, C.S. Chen, H.H. Hsieh, Y.C. Wu, H.C. Chang, In vivo imaging and toxicity assessments of fluorescent nanodiamonds in Caenorhabditis elegans. Nano Lett. 10, 3692–3699 (2010). doi:10.1021/nl1021909

    Article  Google Scholar 

  131. Y.K. Tzeng, O. Faklaris, B.M. Chang, Y. Kuo, J.H. Hsu, H.C. Chang, Superresolution imaging of albumin-conjugated fluorescent nanodiamonds in cells by stimulated emission depletion. Angew. Chem. Int. Ed. Engl. 50, 2262–2265 (2011). doi:10.1002/anie.201007215

    Article  Google Scholar 

  132. H.D. Wang, C.H. Niu, Q. Yang, I. Badea, Study on protein conformation and adsorption behaviors in nanodiamond particle-protein complexes. Nanotechnology 22, 145703 (2011). doi:10.1088/0957-4484/22/14/145703

    Article  Google Scholar 

  133. A. Krueger, J. Stegk, Y. Liang, L. Lu, G. Jarre, Biotinylated nanodiamond: simple and efficient functionalization of detonation diamond. Langmuir 24, 4200–4204 (2008). doi:10.1021/la703482v

    Article  Google Scholar 

  134. F. Neugart, A. Zappe, F. Jelezko, C. Tietz, J.P. Boudou, A. Krueger, J. Wrachtrup, Dynamics of diamond nanoparticles in solution and cells. Nano Lett. 7, 3588–3591 (2007). doi:10.1021/nl0716303

    Article  Google Scholar 

  135. B. Zhang, Y. Li, C.Y. Fang, C.C. Chang, C.S. Chen, Y.Y. Chen, H.C. Chang, Receptor-mediated cellular uptake of folate-conjugated fluorescent nanodiamonds: a combined ensemble and single-particle study. Small 5, 2716–2721 (2009). doi:10.1002/smll.200900725

    Article  Google Scholar 

  136. R.A. Shimkunas, E. Robinson, R. Lam, S. Lu, X. Xu, X.Q. Zhang, H. Huang, E. Osawa, D. Ho, Nanodiamond-insulin complexes as pH-dependent protein delivery vehicles. Biomaterials 30, 5720–5728 (2009). doi:10.1016/j.biomaterials.2009.07.004

    Article  Google Scholar 

  137. S. Vial, C. Mansuy, S. Sagan, T. Irinopoulou, F. Burlina, J.P. Boudou, G. Chassaing, S. Lavielle, Peptide-grafted nanodiamonds: preparation, cytotoxicity and uptake in cells. Chembiochem. 9, 2113–2119 (2008). doi:10.1002/cbic.200800247

    Article  Google Scholar 

  138. H. Huang, E. Pierstorff, E. Osawa, D. Ho, Active nanodiamond hydrogels for chemotherapeutic delivery. Nano Lett. 7, 3305–3314 (2007). doi:10.1021/nl071521o

    Article  Google Scholar 

  139. A. Alhaddad, M.P. Adam, J. Botsoa, G. Dantelle, S. Perruchas, T. Gacoin, C. Mansuy, S. Lavielle, C. Malvy, F. Treussart, J.R. Bertrand, Nanodiamond as a vector for siRNA delivery to Ewing sarcoma cells. Small 7, 3087–3095 (2011). doi:10.1002/smll.201101193

    Article  Google Scholar 

  140. X.Q. Zhang, M. Chen, R. Lam, X. Xu, E. Osawa, D. Ho, Polymer-functionalized nanodiamond platforms as vehicles for gene delivery. ACS. Nano. 3, 2609–2616 (2009). doi:10.1021/nn900865g

    Article  Google Scholar 

  141. L.C.L. Huang, H.C. Chang, Adsorption and immobilization of cytochrome c on nanodiamonds. Langmuir 20, 5879–5884 (2004). doi:10.1021/la0495736

    Article  Google Scholar 

  142. E. Mahon, A. Salvati, F. Baldelli Bombelli, I. Lynch, K.A. Dawson, Designing the nanoparticle-biomolecule interface for “targeting and therapeutic delivery”. J. Control Release 161, 164–174 (2012). doi:10.1016/j.jconrel.2012.04.009

    Article  Google Scholar 

  143. K.V. Purtov, L.P. Burakova, A.P. Puzyr, V.S. Bondar, The interaction of linear and ring forms of DNA molecules with nanodiamonds synthesized by detonation. Nanotechnology 19, 325101 (2008). doi:10.1088/0957-4484/19/32/325101

    Article  Google Scholar 

  144. C.C. Fu, H.Y. Lee, K. Chen, T.S. Lim, H.Y. Wu, P.K. Lin, P.K. Wei, P.H. Tsao, H.C. Chang, W. Fann, Characterization and application of single fluorescent nanodiamonds as cellular biomarkers. Proc. Natl. Acad. Sci. U S A 104, 727–732 (2007)

    Article  Google Scholar 

  145. X.L. Kong, L.C.L. Huang, C.M. Hsu, W.H. Chen, C.C. Han, H.C. Chang, High-affinity capture of proteins by diamond nanoparticles for mass spectrometric analysis. Anal. Chem. 77, 259–265 (2005). doi:10.1021/ac048971a

    Article  Google Scholar 

  146. C.Y. Cheng, E. Perevedentseva, J.S. Tu, P.H. Chung, C.L. Cheng, K.K. Liu, J.I. Chao, P.H. Chen, C.C. Chang, Direct and in vitro observation of growth hormone receptor molecules in A549 human lung epithelial cells by nanodiamond labeling. Appl. Phys. Lett. 90, 163903 (2007). doi:10.1063/1.2727557

    Article  Google Scholar 

  147. L. Cao, Immobilised enzymes: science or art? Curr. Opin. Chem. Biol. 9, 217–226 (2005). doi:10.1016/j.cbpa.2005.02.014

    Article  Google Scholar 

  148. W.S. Yeap, Y.Y. Tan, K.P. Loh, Using detonation nanodiamond for the specific capture of glycoproteins. Anal. Chem. 80, 4659–4665 (2008). doi:10.1021/ac800009v

    Article  Google Scholar 

  149. A.A. Vertegel, R.W. Siegel, J.S. Dordick, Silica nanoparticle size influences the structure and enzymatic activity of adsorbed lysozyme. Langmuir 20, 6800–6807 (2004). doi:10.1021/la0497200

    Article  Google Scholar 

  150. D.F. Williams (ed.), Biomaterials ES for definitions in biomaterials, in Proceedings of a Consensus Conference of the European Society for Biomaterials, Chester, England, March 3–5, 1986 (Elsevier, 1987)

    Google Scholar 

  151. Y. Liu, Y. Zhao, B. Sun, C. Chen, Understanding the toxicity of carbon nanotubes. Acc. Chem. Res. 46, 702–713 (2013). doi:10.1021/ar300028m

    Article  Google Scholar 

  152. A.M. Schrand, H. Huang, C. Carlson, J.J. Schlager, E. Osawa, S.M. Hussain, L. Dai, Are diamond nanoparticles cytotoxic? J. Phys. Chem. B. 111, 2–7 (2007)

    Article  Google Scholar 

  153. A.M. Schrand, L. Dai, J.J. Schlager, S.M. Hussain, E. Osawa, Differential biocompatibility of carbon nanotubes and nanodiamonds. Diam. Relat. Mater. 16, 2118–2123 (2007). doi:10.1016/j.diamond.2007.07.020

    Article  Google Scholar 

  154. A.M. Schrand, J.B. Lin, S.C. Hens, S.M. Hussain, Temporal and mechanistic tracking of cellular uptake dynamics with novel surface fluorophore-bound nanodiamonds. Nanoscale 3, 435 (2011). doi:10.1039/c0nr00408a

    Article  Google Scholar 

  155. K. Bakowicz-Mitura, G. Bartosz, S. Mitura, Influence of diamond powder particles on human gene expression. Surf. Coat. Technol. 201, 6131–6135 (2007). doi:10.1016/j.surfcoat.2006.08.142

    Article  Google Scholar 

  156. M. Horie, L.K. Komaba, H. Kato, A. Nakamura, K. Yamamoto, S. Endoh, K. Fujita, S. Kinugasa, K. Mizuno, Y. Hagihara, Y. Yoshida, H. Iwahashi, Evaluation of cellular influences induced by stable nanodiamond dispersion; the cellular influences of nanodiamond are small. Diam. Relat. Mater. 24, 15–24 (2012). doi:10.1016/j.diamond.2012.01.037

    Article  Google Scholar 

  157. A.V. Karpukhin, N.V. Avkhacheva, R.Y. Yakovlev, I.I. Kulakova, V.A. Yashin, G.V. Lisichkin, V.G. Safronova, Effect of detonation nanodiamonds on phagocyte activity. Cell Biol. Int. 35, 727–733 (2011). doi:10.1042/CBI20100548

    Article  Google Scholar 

  158. L. Marcon, F. Riquet, D. Vicogne, S. Szunerits, J.F. Bodart, R. Boukherroub, Cellular and in vivo toxicity of functionalized nanodiamond in Xenopus embryos. J. Mater. Chem. 20, 8064 (2010). doi:10.1039/c0jm01570a

    Article  Google Scholar 

  159. R. Martín, C. Menchón, N. Apostolova, V.M. Victor, M. Álvaro, J.R. Herance, H. García, Nano-jewels in biology. Gold and platinum on diamond nanoparticles as antioxidant systems against cellular oxidative stress. ACS. Nano. 4, 6957–6965 (2010). doi:10.1021/nn1019412

    Article  Google Scholar 

  160. A.P. Puzyr, D.A. Neshumayev, S.V. Tarskikh, G.V. Makarskaya, V.Y. Dolmatov, V.S. Bondar, Destruction of human blood cells in interaction with detonation nanodiamonds in experiments in vitro. Diam. Relat. Mater. 13, 2020–2023 (2004). doi:10.1016/j.diamond.2004.06.003

    Article  Google Scholar 

  161. K. Solarska, A. Gajewska, J. Skolimowski, R. Woś, G. Bartosz, K. Mitura, Effect of non-modified and modified nanodiamond particles by Fenton reaction on human endothelial cells. Manuf. Eng. 43, 603–607 (2010)

    Google Scholar 

  162. K. Solarska, A. Gajewska, G. Bartosz, K. Mitura, Induction of apoptosis in human endothelial cells by nanodiamond particles. J. Nanosci. Nanotechnol. 12, 5117–5121 (2012). doi:10.1166/jnn.2012.4952

    Article  Google Scholar 

  163. K. Solarska, A. Gajewska, W. Kaczorowski, G. Bartosz, K. Mitura, Effect of nanodiamond powders on the viability and production of reactive oxygen and nitrogen species by human endothelial cells. Diam. Relat. Mater. 21, 107–113 (2012). doi:10.1016/j.diamond.2011.10.020

    Article  Google Scholar 

  164. K. Solarska-Ściuk, A. Gajewska, J. Skolimowski, K. Mitura, G. Bartosz, Stimulation of production of reactive oxygen and nitrogen species in endothelial cells by unmodified and Fenton-modified ultradisperse detonation diamond. Biotechnol. Appl. Biochem. 60, 259–265 (2013). doi:10.1002/bab.1071

    Article  Google Scholar 

  165. Y. Xing, W. Xiong, L. Zhu, E. Osawa, S. Hussin, L. Dai, DNA damage in embryonic stem cells caused by nanodiamonds. ACS. Nano. 5, 2376 (2011)

    Article  Google Scholar 

  166. X. Zhang, W. Hu, J. Li, L. Tao, Y. Wei, A comparative study of cellular uptake and cytotoxicity of multi-walled carbon nanotubes, graphene oxide, and nanodiamond. Toxicol. Res. 1, 62 (2012). doi:10.1039/c2tx20006f

    Article  Google Scholar 

  167. K.K. Liu, C.L. Cheng, C.C. Chang, J.I. Chao, Biocompatible and detectable carboxylated nanodiamond on human cell. Nanotechnology 18, 325102 (2007)

    Article  Google Scholar 

  168. P. Villalba, M.K. Ram, H. Gomez, V. Bhethanabotla, M.N. Helms, A. Kumar, A. Kumar, Cellular and in vitro toxicity of nanodiamond-polyaniline composites in mammalian and bacterial cell. Mater. Sci. Eng. C. 32, 594–598 (2012). doi:10.1016/j.msec.2011.12.017

    Article  Google Scholar 

  169. S.J. Yu, M.W. Kang, H.C. Chang, K.M. Chen, Y.C. Yu, Bright fluorescent nanodiamonds: no photobleaching and low cytotoxicity. J. Am. Chem. Soc. 127, 17604–17605 (2005). doi:10.1021/ja0567081

    Article  Google Scholar 

  170. V. Vaijayanthimala, Y.K. Tzeng, H.C. Chang, C.L. Li, The biocompatibility of fluorescent nanodiamonds and their mechanism of cellular uptake. Nanotechnology 20, 425103 (2009). doi:10.1088/0957–4484/20/42/425103

    Article  Google Scholar 

  171. O. Faklaris, D. Garrot, V. Joshi, F. Druon, J.P. Boudou, T. Sauvage, P. Georges, P.A. Curmi, F. Treussart, Detection of single photoluminescent diamond nanoparticles in cells and study of the internalization pathway. Small 4, 2236–2239 (2008)

    Article  Google Scholar 

  172. J.W. Lee, S. Lee, S. Jang, K.Y. Han, Y. Kim, J. Hyun, S.K. Kim, Y. Lee, Preparation of non-aggregated fluorescent nanodiamonds (FNDs) by non-covalent coating with a block copolymer and proteins for enhancement of intracellular uptake. Mol. Biosyst. 9, 1004 (2013). doi:10.1039/c2mb25431j

    Article  Google Scholar 

  173. S.P. Blaber, C.J. Hill, R.A. Webster, J.M. Say, L.J. Brown, S.C. Wang, G. Vesey, B.R. Herbert, Effect of labeling with iron oxide particles or nanodiamonds on the functionality of adipose-derived mesenchymal stem cells. PLoS ONE 8, e52997 (2013). doi:10.1371/journal.pone.0052997

    Article  Google Scholar 

  174. C.Y. Fang, V. Vaijayanthimala, C.A. Cheng, S.H. Yeh, C.F. Chang, C.L. Li, H.C. Chang, The exocytosis of fluorescent nanodiamond and its use as a long-term cell tracker. Small 7, 3363–3370 (2011). doi:10.1002/smll.201101233

    Article  Google Scholar 

  175. K.K. Liu, C.C. Wang, C.L. Cheng, J.I. Chao, Endocytic carboxylated nanodiamond for the labeling and tracking of cell division and differentiation in cancer and stem cells. Biomaterials 30, 4249–4259 (2009). doi:10.1016/j.biomaterials.2009.04.056

    Article  Google Scholar 

  176. V. Thomas, B.A. Halloran, N. Ambalavanan, S.A. Catledge, Y.K. Vohra, In vitro studies on the effect of particle size on macrophage responses to nanodiamond wear debris. Acta Biomater 8, 1939–1947 (2012). doi:10.1016/j.actbio.2012.01.033

    Article  Google Scholar 

  177. Y.C. Lin, E. Perevedentseva, L.W. Tsai, K.T. Wu, C.L. Cheng, Nanodiamond for intracellular imaging in the microorganisms in vivo. J. Biophotonics 5, 838–847 (2012). doi:10.1002/jbio.201200088

    Article  Google Scholar 

  178. J.I. Chao, E. Perevedentseva, P.H. Chung, K.K. Liu, C.Y. Cheng, C.C. Chang, C.L. Cheng, Nanometer-sized diamond particle as a probe for biolabeling. Biophys. J. 93, 2199–2208 (2007)

    Article  Google Scholar 

  179. T. Burleson, N. Yusuf, A. Stanishevsky, Surface modification of nanodiamonds for biomedical application and analysis by infrared spectroscopy. J. Achiev. Mat. Manuf. Eng. 37, 258–263 (2009)

    Google Scholar 

  180. A. Alhaddad, C. Durieu, G. Dantelle, L. Cam E, C. Malvy, F. Treussart, J.R. Bertrand, Influence of the internalization pathway on the efficacy of siRNA delivery by cationic fluorescent nanodiamonds in the Ewing sarcoma cell model. PLoS. ONE 7, e52207 (2012). doi:10.1371/journal.pone.0052207

    Article  Google Scholar 

  181. O. Faklaris, V. Joshi, T. Irinopoulou, P. Tauc, M. Sennour, H. Girard, C. Gesset, J.C. Arnault, A. Thorel, J.P. Boudou, Photoluminescent diamond nanoparticles for cell labeling: study of the uptake mechanism in mammalian cells. ACS. Nano. 3, 3955–3962 (2009)

    Article  Google Scholar 

  182. S. Rojas, J.D. Gispert, R. Martín, S. Abad, C. Menchón, D. Pareto, V.M. Víctor, M. Álvaro, H. García, J.R. Herance, Biodistribution of amino-functionalized diamond nanoparticles. In vivo studies based on 18F radionuclide emission. ACS. Nano. 5, 5552–5559 (2011). doi:10.1021/nn200986z

    Article  Google Scholar 

  183. X. Zhang, J. Yin, C. Kang, J. Li, Y. Zhu, W. Li, Q. Huang, Z. Zhu, Biodistribution and toxicity of nanodiamonds in mice after intratracheal instillation. Toxicol. Lett. 198, 237–243 (2010). doi:10.1016/j.toxlet.2010.07.001

    Article  Google Scholar 

  184. E.K. Chow, X.Q. Zhang, M. Chen, R. Lam, E. Robinson, H. Huang, D. Schaffer, E. Osawa, A. Goga, D. Ho, Nanodiamond therapeutic delivery agents mediate enhanced chemoresistant tumor treatment. Sci. Transl. Med. 3, 73ra21 (2011)

    Article  Google Scholar 

  185. Q. Wei, L. Zhan, B. Juanjuan, W. Jing, W. Jianjun, S. Taoli, G. Yi’an, W. Wangsuo, Biodistribution of co-exposure to multi-walled carbon nanotubes and nanodiamonds in mice. Nanoscale Res. Lett. 7, 1–9 (2012)

    Article  Google Scholar 

  186. Y. Yuan, Y. Chen, J.H. Liu, H. Wang, Y. Liu, Biodistribution and fate of nanodiamonds in vivo. Diam. Relat. Mater. 18, 95–100 (2009). doi:10.1016/j.diamond.2008.10.031

    Article  Google Scholar 

  187. Y. Yuan, X. Wang, G. Jia, J.H. Liu, T. Wang, Y. Gu, S.T. Yang, S. Zhen, H. Wang, Y. Liu, Pulmonary toxicity and translocation of nanodiamonds in mice. Diam. Relat. Mater. 19, 291–299 (2010). doi:10.1016/j.diamond.2009.11.022

    Article  Google Scholar 

  188. A.P. Puzyr, A.V. Baron, K.V. Purtov, E.V. Bortnikov, N.N. Skobelev, O.A. Mogilnaya, V.S. Bondar, Nanodiamonds with novel properties: a biological study. Diam. Relat. Mater. 16, 2124–2128 (2007). doi:10.1016/j.diamond.2007.07.025

    Article  Google Scholar 

  189. V. Vaijayanthimala, P.Y. Cheng, S.H. Yeh, K.K. Liu, C.H. Hsiao, J.I. Chao, H.C. Chang, The long-term stability and biocompatibility of fluorescent nanodiamond as an in vivo contrast agent. Biomaterials 33, 7794–7802 (2012). doi:10.1016/j.biomaterials.2012.06.084

    Article  Google Scholar 

  190. Y.R. Chang, H.Y. Lee, K. Chen, C.C. Chang, D.S. Tsai, C.C. Fu, T.S. Lim, Y.K. Tzeng, C.Y. Fang, C.C. Han, H.C. Chang, W. Fann, Mass production and dynamic imaging of fluorescent nanodiamonds. Nat. Nanotechnol. 3, 284–288 (2008). doi:10.1038/nnano.2008.99

    Article  Google Scholar 

  191. A. Laraoui, J.S. Hodges, C.A. Meriles, Nitrogen-vacancy-assisted magnetometry of paramagnetic centers in an individual diamond nanocrystal. Nano. Lett. 12, 3477–3482 (2012). doi:10.1021/nl300964g

    Article  Google Scholar 

  192. F. Dolde, H. Fedder, M.W. Doherty, T. Nöbauer, F. Rempp, G. Balasubramanian, T. Wolf, F. Reinhard, L.C.L. Hollenberg, F. Jelezko, J. Wrachtrup, Electric-field sensing using single diamond spins. Nat. Phys. 7, 459–463 (2011). doi:10.1038/nphys1969

    Article  Google Scholar 

  193. H.J. Mamin, M. Kim, M.H. Sherwood, C.T. Rettner, K. Ohno, D.D. Awschalom, D. Rugar, Nanoscale nuclear magnetic resonance with a nitrogen-vacancy spin sensor. Science 339, 557–560 (2013). doi:10.1126/science.1231540

    Article  Google Scholar 

  194. J.R. Maze, P.L. Stanwix, J.S. Hodges, S. Hong, J.M. Taylor, P. Cappellaro, L. Jiang, M.V.G. Dutt, E. Togan, A.S. Zibrov, A. Yacoby, R.L. Walsworth, M.D. Lukin, Nanoscale magnetic sensing with an individual electronic spin in diamond. Nature 455, 644–647 (2008). doi:10.1038/nature07279

    Article  Google Scholar 

  195. A.M. Zaitsev, Vibronic spectra of impurity-related optical centers in diamond. Phys. Rev. B. 61, 12909–12922 (2000). doi:10.1103/PhysRevB.61.12909

    Article  Google Scholar 

  196. C.L. Wang, C. Kurtsiefer, H. Weinfurter, B. Burchard, Single photon emission from SiV centres in diamond produced by ion implantation. J. Phys. B-At. Mol. Opt. Phys. 39, 37–41 (2006). doi:10.1088/0953-4075/39/1/005

    Article  Google Scholar 

  197. E. Neu, D. Steinmetz, J. Riedrich-Moeller, S. Gsell, M. Fischer, M. Schreck, C. Becher, Single photon emission from silicon-vacancy colour centres in chemical vapour deposition nano-diamonds on iridium. New J. Phys. (2011). doi:10.1088/1367-2630/13/2/025012

    Google Scholar 

  198. E. Wu, J.R. Rabeau, G. Roger, F. Treussart, H. Zeng, P. Grangier, S. Prawer, J.-F. Roch, Room temperature triggered single-photon source in the near infrared. New J. Phys. (2007). doi:10.1088/1367-2630/9/12/434

    Google Scholar 

  199. J.R. Rabeau, Y.L. Chin, S. Prawer, F. Jelezko, T. Gaebel, J. Wrachtrup, Fabrication of single nickel-nitrogen defects in diamond by chemical vapor deposition. Appl. Phys. Lett. (2005). doi:10.1063/1.1896088

    Google Scholar 

  200. I. Aharonovich, S. Castelletto, B.C. Johnson, J.C. McCallum, D.A. Simpson, A.D. Greentree, S. Prawer, Chromium single-photon emitters in diamond fabricated by ion implantation. Phys. Rev. B (2010). doi:10.1103/PhysRevB.81.121201

    Google Scholar 

  201. I. Aharonovich, S. Castelletto, D.A. Simpson, A. Stacey, J. McCallum, A.D. Greentree, S. Prawer, Two-level ultrabright single photon emission from diamond nanocrystals. Nano Lett. 9, 3191–3195 (2009). doi:10.1021/nl9014167

    Article  Google Scholar 

  202. B. Naydenov, R. Kolesov, A. Batalov, J. Meijer, S. Pezzagna, D. Rogalla, F. Jelezko, J. Wrachtrup, Engineering single photon emitters by ion implantation in diamond. Appl. Phys. Lett. (2009). doi:10.1063/1.3257976

    Google Scholar 

  203. J. Havlik, V. Petrakova, I. Rehor, V. Petrak, M. Gulka, J. Stursa, J. Kucka, J. Ralis, T. Rendler, S.Y. Lee, R. Reuter, J. Wrachtrup, M. Ledvina, M. Nesladek, P. Cigler, Boosting nanodiamond fluorescence: towards development of brighter probes. Nanoscale 5, 3208–3211 (2013). doi:10.1039/c2nr32778c

    Article  Google Scholar 

  204. G. Dantelle, A. Slablab, L. Rondin, F. Lainé, F. Carrel, P. Bergonzo, S. Perruchas, T. Gacoin, F. Treussart, J.F. Roch, Efficient production of NV colour centres in nanodiamonds using high-energy electron irradiation. J. Lumin. 130, 1655–1658 (2010). doi:10.1016/j.jlumin.2009.12.003

    Article  Google Scholar 

  205. B. Slepetz, I. Laszlo, Y. Gogotsi, D. Hyde-Volpe, M. Kertesz, Characterization of large vacancy clusters in diamond from a generational algorithm using tight binding density functional theory. Phys. Chem. Chem. Phys. 12, 14017–14022 (2010). doi:10.1039/c0cp00523a

    Article  Google Scholar 

  206. I. Kratochvilova, A. Kovalenko, A. Taylor, F. Fendrych, V. Rezacova, J. Vlcek, S. Zalis, J. Sebera, P. Cigler, M. Ledvina, M. Nesladek, The fluorescence of variously terminated nanodiamond particles: quantum chemical calculations. Phys. Status Solidi A 207, 2045–2048 (2010). doi:10.1002/pssa.201000012

    Article  Google Scholar 

  207. A. Gruber, A. Drabenstedt, C. Tietz, L. Fleury, J. Wrachtrup, C. von Borczyskowski, Scanning confocal optical microscopy and magnetic resonance on single defect centers. Science 276, 2012–2014 (1997). doi:10.1126/science.276.5321.2012

    Article  Google Scholar 

  208. J. Tisler, R. Reuter, A. Lammle, F. Jelezko, G. Balasubramanian, P.R. Hemmer, F. Reinhard, J. Wrachtrup, Highly efficient FRET from a single nitrogen-vacancy center in nanodiamonds to a single organic molecule. ACS. Nano. 5, 7893–7898 (2011). doi:10.1021/nn2021259

    Article  Google Scholar 

  209. K. Iakoubovskii, G.J. Adriaenssens, M. Nesladek, Photochromism of vacancy-related centres in diamond. J. Phys. Condens. Matter 12, 189–199 (2000). doi:10.1088/0953-8984/12/2/308

    Article  Google Scholar 

  210. T. Gaebel, M. Domhan, C. Wittmann, I. Popa, F. Jelezko, J. Rabeau, A. Greentree, S. Prawer, E. Trajkov, P.R. Hemmer, J. Wrachtrup, Photochromism in single nitrogen-vacancy defect in diamond. Appl. Phys. B. 82, 243–246 (2006). doi:10.1007/s00340-005-2056-2

    Article  Google Scholar 

  211. G. Davies, M. Hamer, Optical studies of 1.945 Ev vibronic band in diamond. Proc. R. Soc. Lond. Ser. –Math. Phys. Sci. 348, 285–298 (1976). doi:10.1098/rspa.1976.0039

    Article  Google Scholar 

  212. N.B. Manson, J.P. Harrison, M.J. Sellars, Nitrogen-vacancy center in diamond: model of the electronic structure and associated dynamics. Phys. Rev. B. (2006). doi:10.1103/PhysRevB.74.104303

    Google Scholar 

  213. G. Balasubramanian, I.Y. Chan, R. Kolesov, M. Al-Hmoud, J. Tisler, C. Shin, C. Kim, A. Wojcik, P.R. Hemmer, A. Krueger, T. Hanke, A. Leitenstorfer, R. Bratschitsch, F. Jelezko, J. Wrachtrup, Nanoscale imaging magnetometry with diamond spins under ambient conditions. Nature 455, 648–651 (2008). doi:10.1038/nature07278

    Article  Google Scholar 

  214. A. Hegyi, E. Yablonovitch, Molecular imaging by optically detected electron spin resonance of nitrogen-vacancies in nanodiamonds. Nano Lett. 13, 1173–1178 (2013). doi:10.1021/nl304570b

    Article  Google Scholar 

  215. N. Zhao, J. Honert, B. Schmid, M. Klas, J. Isoya, M. Markham, D. Twitchen, F. Jelezko, R.-B. Liu, H. Fedder, J. Wrachtrup, Sensing single remote nuclear spins. Nat. Nanotechnol. 7, 657–662 (2012). doi:10.1038/NNANO.2012.152

    Article  Google Scholar 

  216. Y. Chi, G. Chen, F. Jelezko, E. Wu, H. Zeng, Enhanced photoluminescence of single-photon emitters in nanodiamonds on a gold film. IEEE Photonics Technol. Lett. 23, 374–376 (2011). doi:10.1109/LPT.2011.2106488

    Article  Google Scholar 

  217. S. Schietinger, M. Barth, T. Aichele, O. Benson, Plasmon-enhanced single photon emission from a nanoassembled metal-diamond hybrid structure at room temperature. Nano Lett. 9, 1694–1698 (2009). doi:10.1021/nl900384c

    Article  Google Scholar 

  218. G. Davies, S.C. Lawson, A.T. Collins, A. Mainwood, S.J. Sharp, Vacancy-related centers in diamond. Phys. Rev. B. 46, 13157 (1992). doi:10.1103/PhysRevB.46.13157

    Article  Google Scholar 

  219. J. Opitz, M. Sorge, N. Rose, M. Rudolph, P. Krueger, I. Hannstein, J. Schreiber, M. Mkandawire, W. Pompe, G. Roedel, V.A. Lapina, D. Appelhans, Green fluorescent nanodiamond conjugates and their possible applications for biosensing in Mohseni H; Society of Photo-Optical Instrumentation Engineers -SPIE-, Bellingham/Wash.: Biosensing III, August 2010 (technical conference, San Diego, California, United States, 2010), pp. 775914–775918

    Google Scholar 

  220. V. Petrakova, A. Taylor, I. Kratochvilova, F. Fendrych, J. Vacik, J. Kucka, J. Stursa, P. Cigler, M. Ledvina, A. Fiserova, P. Kneppo, M. Nesladek, Luminescence of nanodiamond driven by atomic functionalization: towards novel detection principles. Adv. Funct. Mater. 22, 812–819 (2012). doi:10.1002/adfm.201101936

    Article  Google Scholar 

  221. V. Petrakova, M. Nesladek, A. Taylor, F. Fendrych, P. Cigler, M. Ledvina, J. Vacik, J. Stursa, J. Kucka, Luminescence properties of engineered nitrogen vacancy centers in a close surface proximity. Phys. Status Solidi A 208, 2051–2056 (2011). doi:10.1002/pssa.201100035

    Article  Google Scholar 

  222. K.M.C. Fu, C. Santori, P.E. Barclay, R.G. Beausoleil, Conversion of neutral nitrogen-vacancy centers to negatively charged nitrogen-vacancy centers through selective oxidation. Appl. Phys. Lett. 96, 121907 (2010). doi:10.1063/1.3364135

    Article  Google Scholar 

  223. M.V. Hauf, B. Grotz, B. Naydenov, M. Dankerl, S. Pezzagna, J. Meijer, F. Jelezko, J. Wrachtrup, M. Stutzmann, F. Reinhard, J.A. Garrido, Chemical control of the charge state of nitrogen-vacancy centers in diamond. Phys. Rev. B. (2011). doi:10.1103/PhysRevB.83.081304

    Google Scholar 

  224. B. Grotz, M.V. Hauf, M. Dankerl, B. Naydenov, S. Pezzagna, J. Meijer, F. Jelezko, J. Wrachtrup, M. Stutzmann, F. Reinhard, J.A. Garrido, Charge state manipulation of qubits in diamond. Nat. Commun. 3, 729 (2012). doi:10.1038/ncomms1729

    Article  Google Scholar 

  225. A. Stacey, T.J. Karle, L.P. McGuinness, B.C. Gibson, K. Ganesan, S. Tomljenovic-Hanic, A.D. Greentree, A. Hoffman, R.G. Beausoleil, S. Prawer, Depletion of nitrogen-vacancy color centers in diamond via hydrogen passivation. Appl. Phys. Lett. 100, 071902–071902 (2012)

    Article  Google Scholar 

  226. W. Hu, Z. Li, J. Yang, J. Hou, Nondecaying long range effect of surface decoration on the charge state of NV center in diamond. J. Chem. Phys. 138, 034702 (2013). doi:10.1063/1.4775364

    Article  Google Scholar 

  227. H. Pinto, R. Jones, D.W. Palmer, J.P. Goss, A.K. Tiwari, P.R. Briddon, N.G. Wright, A.B. Horsfall, M.J. Rayson, S. Öberg, First-principles studies of the effect of (001) surface terminations on the electronic properties of the negatively charged nitrogen-vacancy defect in diamond. Phys. Rev. B. (2012). doi:10.1103/PhysRevB.86.045313

    Google Scholar 

  228. J.J. Sakon, G.J. Ribeill, J.M. Garguilo, J. Perkins, K.R. Weninger, R.J. Nemanich, Fluorescence quenching effects of nanocrystalline diamond surfaces. Diam. Relat. Mater. 18, 82–87 (2009). doi:10.1016/j.diamond.2008.10.028

    Article  Google Scholar 

  229. C. Bradac, T. Gaebel, C.I. Pakes, J.M. Say, A.V. Zvyagin, J.R. Rabeau, Effect of the nanodiamond host on a nitrogen-vacancy color-centre emission state. Small 9, 132–139 (2013). doi:10.1002/smll.201200574

    Article  Google Scholar 

  230. H. Pinto, R. Jones, D.W. Palmer, J.P. Goss, P.R. Briddon, S. Öberg, Theory of the surface effects on the luminescence of the NV-defect in nanodiamond. Phys. Status Solidi A 208, 2045–2050 (2011). doi:10.1002/pssa.201100013

    Article  Google Scholar 

  231. E. Perevedentseva, N. Melnik, C.Y. Tsai, Y.C. Lin, M. Kazaryan, C.L. Cheng, Effect of surface adsorbed proteins on the photoluminescence of nanodiamond. J. Appl. Phys. 109, 034704 (2011). doi:10.1063/1.3544312

    Article  Google Scholar 

  232. U. Resch-Genger, M. Grabolle, S. Cavaliere-Jaricot, R. Nitschke, T. Nann, Quantum dots versus organic dyes as fluorescent labels. Nat. Methods 5, 763–775 (2008). doi:10.1038/nmeth.1248

    Article  Google Scholar 

  233. H. Sahoo, Fluorescent labeling techniques in biomolecules: a flashback. RSC. Adv. 2, 7017–7029 (2012). doi:10.1039/C2RA20389H

    Article  Google Scholar 

  234. C. Bradac, T. Gaebel, N. Naidoo, M.J. Sellars, J. Twamley, L.J. Brown, A.S. Barnard, T. Plakhotnik, A.V. Zvyagin, J.R. Rabeau, Observation and control of blinking nitrogen-vacancy centres in discrete nanodiamonds. Nat. Nanotechnol. 5, 345–349 (2010). doi:10.1038/nnano.2010.56

    Article  Google Scholar 

  235. R. Weissleder, V. Ntziachristos, Shedding light onto live molecular targets. Nat. Med. 9, 123–128 (2003). doi:10.1038/nm0103-123

    Article  Google Scholar 

  236. Y. Kuo, T.Y. Hsu, Y.C. Wu, J.H. Hsu, H.C. Chang, in Fluorescence lifetime imaging microscopy of nanodiamonds in vivo, ed. by Z.U. Hasan, P.R. Hemmer, H. Lee, C.M. Santori, 2013, p 863503–863503-7

    Google Scholar 

  237. R. Igarashi, Y. Yoshinari, H. Yokota, T. Sugi, F. Sugihara, K. Ikeda, H. Sumiya, S. Tsuji, I. Mori, H. Tochio, Y. Harada, M. Shirakawa, Real-time background-free selective imaging of fluorescent nanodiamonds in vivo. Nano Lett. 12, 5726–5732 (2012). doi:10.1021/nl302979d

    Article  Google Scholar 

  238. O. Faklaris, D. Garrot, F. Treussart, V. Joshi, P. Curmi, J.P. Boudou, T. Sauvage Comparison of the photoluminescence properties of semiconductor quantum dots and non-blinking diamond nanoparticles. Observation of the diffusion of diamond nanoparticles in living cells. ArXiv Prepr. ArXiv09042648 2009

    Google Scholar 

  239. K.K. Liu, W.W. Zheng, C.C. Wang, Y.C. Chiu, C.L. Cheng, Y.S. Lo, C. Chen, J.I. Chao, Covalent linkage of nanodiamond-paclitaxel for drug delivery and cancer therapy. Nanotechnology 21, 315106 (2010). doi:10.1088/0957-4484/21/31/315106

    Article  Google Scholar 

  240. T.L. Wee, Y.W. Mau, C.Y. Fang, H.L. Hsu, C.C. Han, H.C. Chang, Preparation and characterization of green fluorescent nanodiamonds for biological applications. Diam. Relat. Mater. 18, 567–573 (2009). doi:10.1016/j.diamond.2008.08.012

    Article  Google Scholar 

  241. J.W. Jakub, S. Pendas, D.S. Reintgen, Current status of sentinel lymph node mapping and biopsy: facts and controversies. Oncologist 8, 59–68 (2003). doi:10.1634/theoncologist.8-1-59

    Article  Google Scholar 

  242. L.T. Hall, G.C.G. Beart, E.A. Thomas, D.A. Simpson, L.P. McGuinness, J.H. Cole, J.H. Manton, R.E. Scholten, F. Jelezko, J. Wrachtrup, S. Petrou, L.C.L. Hollenberg High spatial and temporal resolution wide-field imaging of neuron activity using quantum NV-diamond. Sci. Rep. 2, (2012). doi:10.1038/srep00401

    Google Scholar 

  243. L.P. McGuinness, Y. Yan, A. Stacey, D.A. Simpson, L.T. Hall, D. Maclaurin, S. Prawer, P. Mulvaney, J. Wrachtrup, F. Caruso, R.E. Scholten, L.C.L. Hollenberg, Quantum measurement and orientation tracking of fluorescent nanodiamonds inside living cells. Nat. Nanotechnol. 6, 358–363 (2011). doi:10.1038/nnano.2011.64

    Article  Google Scholar 

  244. A. Adnan, R. Lam, H. Chen, J. Lee, D.J. Schaffer, A.S. Barnard, G.C. Schatz, D. Ho, W.K. Liu, Atomistic simulation and measurement of pH dependent cancer therapeutic interactions with nanodiamond carrier. Mol. Pharm. 8, 368–374 (2011). doi:10.1021/mp1002398

    Article  Google Scholar 

  245. J. Yan, Y. Guo, A. Altawashi, B. Moosa, S. Lecommandoux, N.M. Khashab, Experimental and theoretical evaluation of nanodiamonds as pH triggered drug carriers. New J. Chem. 36, 1479 (2012). doi:10.1039/c2nj40226b

    Article  Google Scholar 

  246. B. Guan, F. Zou, J. Zhi, Nanodiamond as the pH-responsive vehicle for an anticancer drug. Small 6, 1514–1519 (2010). doi:10.1002/smll.200902305

    Article  Google Scholar 

  247. X. Li, J. Shao, Y. Qin, C. Shao, T. Zheng, L. Ye, TAT-conjugated nanodiamond for the enhanced delivery of doxorubicin. J. Mater. Chem. 21, 7966 (2011). doi:10.1039/c1jm10653h

    Article  Google Scholar 

  248. Y. Li, X. Zhou, D. Wang, B. Yang, P. Yang, Nanodiamond mediated delivery of chemotherapeutic drugs. J. Mater. Chem. 21, 16406 (2011). doi:10.1039/c1jm10926j

    Article  Google Scholar 

  249. M. Chen, E.D. Pierstorff, R. Lam, S.Y. Li, H. Huang, E. Osawa, D. Ho, Nanodiamond-mediated delivery of water-insoluble therapeutics. ACS. Nano. 3, 2016–2022 (2009). doi:10.1021/nn900480m

    Article  Google Scholar 

  250. L. Moore, E.K.H. Chow, E. Osawa, J.M. Bishop, D. Ho, Diamond-lipid hybrids enhance chemotherapeutic tolerance and mediate tumor regression. Adv. Mater. 25, 3532–3541 (2013). doi:10.1002/adma.201300343

    Article  Google Scholar 

  251. M. Chen, X.Q. Zhang, H.B. Man, R. Lam, E.K. Chow, D. Ho, Nanodiamond vectors functionalized with polyethylenimine for siRNA delivery. J. Phys. Chem. Lett. 1, 3167–3171 (2010). doi:10.1021/jz1013278

    Article  Google Scholar 

  252. I. Badea, R. Kaur, D. Michel, J.M. Chitanda, J. Maley, P. Yang, F. Borondics, R.E. Verrall, Lysine-functionalized nanodiamonds: synthesis, physiochemical characterization, and nucleic acid binding studies. Int. J. Nanomedicine 3851 (2012). doi:10.2147/IJN.S32877

    Google Scholar 

  253. P. Zhang, J. Yang, W. Li, W. Wang, C. Liu, M. Griffith, W. Liu, Cationic polymer brush grafted-nanodiamond via atom transfer radical polymerization for enhanced gene delivery and bioimaging. J. Mater. Chem. 21, 7755 (2011). doi:10.1039/c1jm10813a

    Article  Google Scholar 

  254. X. Kong, P. Cheng, Application of nanodiamonds in biomolecular mass spectrometry. Materials 3, 1845–1862 (2010). doi:10.3390/ma3031845

    Article  Google Scholar 

  255. W.H. Chen, S.C. Lee, S. Sabu, H.C. Fang, S.C. Chung, C.C. Han, H.C. Chang, Solid-phase extraction and elution on diamond (SPEED): a fast and general platform for proteome analysis with mass spectrometry. Anal. Chem. 78, 4228–4234 (2006). doi:10.1021/ac052085y

    Article  Google Scholar 

  256. X. Kong, S. Sahadevan, Rapid MALDI mass spectrometric analysis with prestructured membrane filters and functionalized diamond nanocrystals. Anal. Chim. Acta. 659, 201–207 (2010). doi:10.1016/j.aca.2009.11.037

    Article  Google Scholar 

  257. S. Sabu, F.C. Yang, Y.S. Wang, W.H. Chen, M.I. Chou, H.C. Chang, C.C. Han, Peptide analysis: solid phase extraction-elution on diamond combined with atmospheric pressure matrix-assisted laser desorption/ionization-Fourier transform ion cyclotron resonance mass spectrometry. Anal. Biochem. 367, 190–200 (2007). doi:10.1016/j.ab.2007.04.033

    Article  Google Scholar 

  258. L.M. Wei, Y. Xue, X.W. Zhou, H. Jin, Q. Shi, H.J. Lu, P.Y. Yang, Nanodiamond MALDI support for enhancing the credibility of identifying proteins. Talanta 74, 1363–1370 (2008). doi:10.1016/j.talanta.2007.09.020

    Article  Google Scholar 

  259. X.L. Kong, Nanodiamonds used as a platform for studying noncovalent interaction by MALDI-MS. Chin. J. Chem. 26, 1811–1815 (2008). doi:10.1002/cjoc.200890326

    Article  Google Scholar 

  260. C.K. Chang, C.C. Wu, Y.S. Wang, H.C. Chang, Selective extraction and enrichment of multiphosphorylated peptides using polyarginine-coated diamond nanoparticles. Anal. Chem. 80, 3791–3797 (2008). doi:10.1021/ac702618h

    Article  Google Scholar 

  261. X. Kong, L.C.L. Huang, S.C.V. Liau, C.C. Han, H.C. Chang, Polylysine-coated diamond nanocrystals for MALDI-TOF mass analysis of DNA oligonucleotides. Anal. Chem. 77, 4273–4277 (2005). doi:10.1021/ac050213c

    Article  Google Scholar 

  262. G. Xu, W. Zhang, L. Wei, H. Lu, P. Yang, Boronic acid-functionalized detonation nanodiamond for specific enrichment of glycopeptides in glycoproteome analysis. Analyst 138, 1876–1885 (2013). doi:10.1039/C3AN36623E

    Article  Google Scholar 

  263. U.T. Bornscheuer, Immobilizing enzymes: how to create more suitable biocatalysts. Angew. Chem. Int. Ed. Engl. 42, 3336–3337 (2003)

    Article  Google Scholar 

  264. N. Kossovsky, A. Gelman, H.J. Hnatyszyn, S. Rajguru, R.L. Garrell, S. Torbati, S.S. Freitas, G.M. Chow, Surface-modified diamond nanoparticles as antigen delivery vehicles. Bioconjug. Chem. 6, 507–511 (1995)

    Article  Google Scholar 

  265. J.B. Zang, Y.H. Wang, S.Z. Zhao, L.Y. Bian, J. Lu, Electrochemical properties of nanodiamond powder electrodes. Diam. Relat. Mater. 16, 16–20 (2007). doi:10.1016/j.diamond.2006.03.010

    Article  Google Scholar 

  266. W. Zhao, J.J. Xu, Q.Q. Qiu, H.Y. Chen, Nanocrystalline diamond modified gold electrode for glucose biosensing. Biosens. Bioelectron 22, 649–655 (2006). doi:10.1016/j.bios.2006.01.026

    Article  Google Scholar 

  267. K.B. Holt, C. Ziegler, D.J. Caruana, J. Zang, E.J. Millán-Barrios, J. Hu, J.S. Foord, Redox properties of undoped 5 nm diamond nanoparticles. Phys. Chem. Chem. Phys. 10, 303 (2008). doi:10.1039/b711049a

    Article  Google Scholar 

  268. A. Kraft, Doped diamond: a compact review on a new, versatile electrode material. Int. J. Electrochem. Sci. 2, 355–385 (2007)

    Google Scholar 

  269. K.B. Holt, Undoped diamond nanoparticles: origins of surface redox chemistry. Phys. Chem. Chem. Phys. 12, 2048 (2010). doi:10.1039/b920075d

    Article  Google Scholar 

  270. S. Shahrokhian, M. Ghalkhani, Glassy carbon electrodes modified with a film of nanodiamond-graphite/chitosan: application to the highly sensitive electrochemical determination of azathioprine. Electrochim. Acta 55, 3621–3627 (2010). doi:10.1016/j.electacta.2010.01.099

    Article  Google Scholar 

  271. A.I. Gopalan, S. Komathi, G. Sai Anand, K.P. Lee, Nanodiamond based sponges with entrapped enzyme: a novel electrochemical probe for hydrogen peroxide. Biosens. Bioelectron 46, 136–141 (2013). doi:10.1016/j.bios.2013.02.036

    Article  Google Scholar 

  272. N. Gibson, O. Shenderova, T.J.M. Luo, S. Moseenkov, V. Bondar, A. Puzyr, K. Purtov, Z. Fitzgerald, D.W. Brenner, Colloidal stability of modified nanodiamond particles. Diam. Relat. Mater. 18, 620–626 (2009). doi:10.1016/j.diamond.2008.10.049

    Article  Google Scholar 

  273. C.C. Chang, P.H. Chen, H.L. Chu, T.C. Lee, C.C. Chou, J.I. Chao, C.Y. Su, J.S. Chen, J.S. Tsai, C.M. Tsai, Y.P. Ho, K.W. Sun, C.L. Cheng, F.R. Chen, Laser induced popcornlike conformational transition of nanodiamond as a nanoknife. Appl. Phys. Lett. 93, 033905 (2008). doi:10.1063/1.2955840

    Article  Google Scholar 

  274. L.C. Cheng, H.M. Chen, T.C. Lai, Y.C. Chan, R.S. Liu, J.C. Sung, M. Hsiao, C.H. Chen, L.J. Her, D.P. Tsai, Targeting polymeric fluorescent nanodiamond-gold/silver multi-functional nanoparticles as a light-transforming hyperthermia reagent for cancer cells. Nanoscale 5, 3931–3940 (2013). doi:10.1039/C3NR34091K

    Article  Google Scholar 

  275. Q. Zhang, V.N. Mochalin, I. Neitzel, I.Y. Knoke, J. Han, C.A. Klug, J.G. Zhou, P.I. Lelkes, Y. Gogotsi, Fluorescent PLLA-nanodiamond composites for bone tissue engineering. Biomaterials 32, 87–94 (2011). doi:10.1016/j.biomaterials.2010.08.090

    Article  Google Scholar 

  276. L. Pramatarova, R. Dimitrova, E. Pecheva, T. Spassov, M. Dimitrova, Peculiarities of hydroxyapatite/nanodiamond composites as novel implants. J. Phys. Conf. Ser. 93, 012049 (2007). doi:10.1088/1742-6596/93/1/012049

    Article  Google Scholar 

  277. I.O. Pozdnyakova, Design of a luminescent biochip with nanodiamonds and bacterial luciferase. Phys. Solid State 46, 761–763 (2004)

    Article  Google Scholar 

  278. Y.L. Liu, K.W. Sun, Protein functionalized nanodiamond arrays. Nanoscale Res. Lett. 5, 1045–1050 (2010). doi:10.1007/s11671-010-9600-7

    Article  Google Scholar 

  279. A. Barras, F.A. Martin, O. Bande, J.S. Baumann, J.M. Ghigo, R. Boukherroub, C. Beloin, A. Siriwardena, S. Szunerits, Glycan-functionalized diamond nanoparticles as potent E. coli anti-adhesives. Nanoscale 5, 2307 (2013). doi:10.1039/c3nr33826f

    Article  Google Scholar 

  280. Chien-Min Sung, Healthcare and cosmetic compositions containing nanodiamond (US patent Nr. 2007184121)

    Google Scholar 

  281. A.O. Schenderova, V.P. Grichko, Nanodiamond UV protectant formulations (Patent WO2007027656)

    Google Scholar 

Download references

Acknowledgment

This work was supported by the MZ-VES project no. 15-33094A.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petr Cígler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Řehoř, I. et al. (2016). Nanodiamonds: Behavior in Biological Systems and Emerging Bioapplications. In: Zhang, M., Naik, R., Dai, L. (eds) Carbon Nanomaterials for Biomedical Applications. Springer Series in Biomaterials Science and Engineering, vol 5. Springer, Cham. https://doi.org/10.1007/978-3-319-22861-7_11

Download citation

Publish with us

Policies and ethics