Skip to main content

Blind Calibration of Mobile Sensors Using Informed Nonnegative Matrix Factorization

  • Conference paper
  • First Online:
Latent Variable Analysis and Signal Separation (LVA/ICA 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9237))

Abstract

In this paper, we assume several heterogeneous, geolocalized, and time-stamped sensors to observe an area over time. We also assume that most of them are uncalibrated and we propose a novel formulation of the blind calibration problem as a Nonnegative Matrix Factorization (NMF) with missing entries. Our proposed approach is generalizing our previous informed and weighted NMF method, which is shown to be accurate for the considered application and to outperform blind calibration based on matrix completion and nonnegative least squares.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Using calibrated and uncalibrated sensors has also been considered in BFSC [1, 11].

  2. 2.

    The case of multiple scenes—out of the scope of this paper—is discussed in Sect. 5.

  3. 3.

    Some authors, e.g., [9], consider the sensor responses to drift over time.

  4. 4.

    Actually, if no calibrated sensor is available, it is still possible to perform a relative calibration, thus providing some consistency in the sensor responses [1, 4, 11].

  5. 5.

    An alternative might consist of successively (i) updating F or G with usual update rules and (ii) replacing the known entries by their actual values at each iteration. However, this strategy yielded a low performance in some preliminary tests.

  6. 6.

    Actually, we get k fixed, calibrated, and accurate sensors whose obtained values are modeled as those of the m-th sensor in the BMSC problem.

  7. 7.

    RMSEs computed over the second line of F—not shown for space consideration—are similar to those plotted in Fig. 2.

References

  1. Balzano, L., Nowak, R.: Blind calibration of sensor networks. In: Proceedings of IPSN, pp. 79–88 (2007)

    Google Scholar 

  2. Becker, S., Candès, E., Grant, M.: Templates for convex cone problems with applications to sparse signal recovery. Math. Program. Comput. 3(3), 165–218 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  3. Benachir, D., Deville, Y., Hosseini, S., Karoui, M.S., Hameurlain, A.: Hyperspectral image unmixing by non-negative matrix factorization initialized with modified independent component analysis. In: Proceedings of WHISPERS (2013)

    Google Scholar 

  4. Bilen, C., Puy, G., Gribonval, R., Daudet, L.: Convex optimization approaches for blind sensor calibration using sparsity. IEEE Trans. Signal Process. 62(18), 4847–4856 (2014)

    Article  MathSciNet  Google Scholar 

  5. Choo, J., Lee, C., Reddy, C., Park, H.: Weakly supervised nonnegative matrix factorization for user-driven clustering. Data Min. Knowl. Disc. 1–24 (2014)

    Google Scholar 

  6. Cochran, E., Lawrence, J., Kaiser, A., Fry, B., Chung, A., Christensen, C.: Comparison between low-cost and traditional MEMS accelerometers: a case study from the M7.1 Darfield, New Zealand, aftershock deployment. Ann. Geophys. 54(6), 728–737 (2012)

    Google Scholar 

  7. D’Hondt, E., Stevens, M., Jacobs, A.: Participatory noise mapping works! An evaluation of participatory sensing as an alternative to standard techniques for environmental monitoring. Pervasive Mobile Comput. 9(5), 681–694 (2013)

    Article  Google Scholar 

  8. Ganti, R., Ye, F., Lei, H.: Mobile crowdsensing: current state and future challenges. IEEE Commun. Mag. 49(11), 32–39 (2011)

    Article  Google Scholar 

  9. Lee, B.T., Son, S.C., Kang, K.: A blind calibration scheme exploiting mutual calibration relationships for a dense mobile sensor network. IEEE Sens. J. 14(5), 1518–1526 (2014)

    Article  Google Scholar 

  10. Limem, A., Delmaire, G., Puigt, M., Roussel, G., Courcot, D.: Non-negative matrix factorization under equality constraints–a study of industrial source identification. Appl. Numer. Math. 85, 1–15 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  11. Lipor, J., Balzano, L.: Robust blind calibration via total least squares. In: Proceedings of ICASSP, pp. 4244–4248, May 2014

    Google Scholar 

  12. Miluzzo, E., Lane, N.D., Campbell, A.T., Olfati-Saber, R.: CaliBree: a self-calibration system for mobile sensor networks. In: Nikoletseas, S.E., Chlebus, B.S., Johnson, D.B., Krishnamachari, B. (eds.) DCOSS 2008. LNCS, vol. 5067, pp. 314–331. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  13. Plouvin, M., Limem, A., Puigt, M., Delmaire, G., Roussel, G., Courcot, D.: Enhanced NMF initialization using a physical model for pollution source apportionment. In: Proceedings of ESANN, pp. 261–266 (2014)

    Google Scholar 

  14. Saukh, O., Hasenfratz, D., Thiele, L.: Reducing multi-hop calibration errors in large-scale mobile sensor networks. In: Proceedings of IPSN (2015)

    Google Scholar 

  15. Saukh, O., Hasenfratz, D., Walser, C., Thiele, L.: On rendezvous in mobile sensing networks. In: Langendoen, K., Hu, W., Ferrari, F., Zimmerling, M., Mottola, L. (eds.) Real-World Wireless Sensor Networks, Part I. LNEE, vol. 281, pp. 29–42. Springer, Switzerland (2014)

    Chapter  Google Scholar 

  16. Schulke, C., Caltagirone, F., Krzakala, F., Zdeborova, L.: Blind calibration in compressed sensing using message passing algorithms. In: Proceedings of NIPS, vol. 26, pp. 566–574 (2013)

    Google Scholar 

  17. Sharp Corp.: GP2Y1010AU0F compact optical dust sensor (2006), datasheet

    Google Scholar 

  18. Wang, C., Ramanathan, P., Saluja, K.: Moments based blind calibration in mobile sensor networks. In: Proceedings of ICC 2008, pp. 896–900, May 2008

    Google Scholar 

Download references

Acknowledgments

This work was funded by the “OSCAR” project within the Région Nord – Pas de Calais “Chercheurs Citoyens” Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthieu Puigt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Dorffer, C., Puigt, M., Delmaire, G., Roussel, G. (2015). Blind Calibration of Mobile Sensors Using Informed Nonnegative Matrix Factorization. In: Vincent, E., Yeredor, A., Koldovský, Z., Tichavský, P. (eds) Latent Variable Analysis and Signal Separation. LVA/ICA 2015. Lecture Notes in Computer Science(), vol 9237. Springer, Cham. https://doi.org/10.1007/978-3-319-22482-4_58

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-22482-4_58

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-22481-7

  • Online ISBN: 978-3-319-22482-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics