Skip to main content

Part of the book series: SpringerBriefs in Stem Cells ((BRIEFSSTEM))

  • 801 Accesses

Abstract

Breast CSCs are a heterogeneous population. The heterogeneous characteristics are related to different mutations (that were detected in different subpopulations of stem cells or progenitor cells) and to the differentiation of breast CSCs. A specific combination of some mutated genes such as BRCA1 (in particular, certain gene profiles of mammary stem cells) is responsible for formation of the breast CSCs, which have key characteristics of both cancer and stem cells. Because of this phenotype, breast CSCs show strong resistance to anticancer treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abraham, B. K., Fritz, P., McClellan, M., Hauptvogel, P., Athelogou, M., & Brauch, H. (2005). Prevalence of CD44+/CD24-/low cells in breast cancer may not be associated with clinical outcome but may favor distant metastasis. Clinical Cancer Research, 11(3), 1154–1159.

    CAS  PubMed  Google Scholar 

  • Aktas, B., Tewes, M., Fehm, T., Hauch, S., Kimmig, R., & Kasimir-Bauer, S. (2009). Stem cell and epithelial-mesenchymal transition markers are frequently overexpressed in circulating tumor cells of metastatic breast cancer patients. Breast Cancer Research, 11(4), R46. doi:10.1186/bcr2333.

    Article  PubMed Central  PubMed  Google Scholar 

  • Albergaria, A., Ricardo, S., Milanezi, F., Carneiro, V., Amendoeira, I., Vieira, D., … Schmitt, F. (2011). Nottingham Prognostic Index in triple-negative breast cancer: A reliable prognostic tool? BMC Cancer, 11, 299. doi:10.1186/1471-2407-11-299.

  • Al-Hajj, M., Wicha, M. S., Benito-Hernandez, A., Morrison, S. J., & Clarke, M. F. (2003). Prospective identification of tumorigenic breast cancer cells. Proceedings of the National Academy of Sciences of the United States of America, 100(7), 3983–3988. doi:10.1073/pnas.0530291100.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ansieau, S. (2013). EMT in breast cancer stem cell generation. Cancer Letters, 338(1), 63–68. doi:10.1016/j.canlet.2012.05.014.

    Article  CAS  PubMed  Google Scholar 

  • Atkinson, R. L., Yang, W. T., Rosen, D. G., Landis, M. D., Wong, H., Lewis, M. T., … Chang, J. C. (2013). Cancer stem cell markers are enriched in normal tissue adjacent to triple negative breast cancer and inversely correlated with DNA repair deficiency. Breast Cancer Research, 15(5), R77. doi:10.1186/bcr3471.

  • Balic, M., Lin, H., Young, L., Hawes, D., Giuliano, A., McNamara, G., … Cote, R. J. (2006). Most early disseminated cancer cells detected in bone marrow of breast cancer patients have a putative breast cancer stem cell phenotype. Clinical Cancer Research, 12(19), 5615–5621. doi:10.1158/1078-0432.ccr-06-0169.

  • Bao, S., Wu, Q., McLendon, R. E., Hao, Y., Shi, Q., Hjelmeland, A. B., … Rich, J. N. (2006). Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature, 444(7120), 756–760. doi:10.1038/nature05236.

  • Britton, K. M., Eyre, R., Harvey, I. J., Stemke-Hale, K., Browell, D., Lennard, T. W., & Meeson, A. P. (2012). Breast cancer, side population cells and ABCG2 expression. Cancer Letters, 323(1), 97–105. doi:10.1016/j.canlet.2012.03.041.

  • Cabarcas, S. M., Mathews, L. A., & Farrar, W. L. (2011). The cancer stem cell niche—There goes the neighborhood? International Journal of Cancer, 129(10), 2315–2327. doi:10.1002/ijc.26312.

    Article  CAS  Google Scholar 

  • Cammareri, P., Scopelliti, A., Todaro, M., Eterno, V., Francescangeli, F., Moyer, M. P., … Stassi, G. (2010). Aurora-a is essential for the tumorigenic capacity and chemoresistance of colorectal cancer stem cells. Cancer Research, 70(11), 4655–4665. doi:10.1158/0008-5472.can-09-3953.

  • Carey, L. A., Perou, C. M., Livasy, C. A., Dressler, L. G., Cowan, D., Conway, K., … Millikan, R. C. (2006). Race, breast cancer subtypes, and survival in the Carolina Breast Cancer Study. JAMA, 295(21), 2492–2502. doi:10.1001/jama.295.21.2492.

  • Casbon, A. J., Reynaud, D., Park, C., Khuc, E., Gan, D. D., Schepers, K., … Werb, Z. (2015). Invasive breast cancer reprograms early myeloid differentiation in the bone marrow to generate immunosuppressive neutrophils. Proceedings of the National Academy of Sciences of the United States of America, 112(6), E566–E575. doi:10.1073/pnas.1424927112.

  • Chaffer, C. L., Thompson, E. W., & Williams, E. D. (2007). Mesenchymal to epithelial transition in development and disease. Cells, Tissues, Organs, 185(1–3), 7–19. doi:10.1159/000101298.

    Article  PubMed  Google Scholar 

  • Chanmee, T., Ontong, P., Konno, K., & Itano, N. (2014). Tumor-associated macrophages as major players in the tumor microenvironment. Cancers (Basel), 6(3), 1670–1690. doi:10.3390/cancers6031670.

    Article  CAS  Google Scholar 

  • Charafe-Jauffret, E., Ginestier, C., Iovino, F., Tarpin, C., Diebel, M., Esterni, B., … Wicha, M. S. (2010). Aldehyde dehydrogenase 1-positive cancer stem cells mediate metastasis and poor clinical outcome in inflammatory breast cancer. Clinical Cancer Research, 16(1), 45–55. doi:10.1158/1078-0432.ccr-09-1630.

  • Charafe-Jauffret, E., Ginestier, C., Iovino, F., Wicinski, J., Cervera, N., Finetti, P., … Wicha, M. S. (2009). Breast cancer cell lines contain functional cancer stem cells with metastatic capacity and a distinct molecular signature. Cancer Research, 69(4), 1302–1313. doi:10.1158/0008-5472.can-08-2741.

  • Charles, N., Ozawa, T., Squatrito, M., Bleau, A. M., Brennan, C. W., Hambardzumyan, D., & Holland, E. C. (2010). Perivascular nitric oxide activates notch signaling and promotes stem-like character in PDGF-induced glioma cells. Cell Stem Cell, 6(2), 141–152. doi:10.1016/j.stem.2010.01.001.

  • Chen, M. S., Woodward, W. A., Behbod, F., Peddibhotla, S., Alfaro, M. P., Buchholz, T. A., & Rosen, J. M. (2007). Wnt/beta-catenin mediates radiation resistance of Sca1+ progenitors in an immortalized mammary gland cell line. Journal of Cell Science, 120(Pt 3), 468–477. doi:10.1242/jcs.03348.

  • Chiba, T., Kita, K., Zheng, Y. W., Yokosuka, O., Saisho, H., Iwama, A., … Taniguchi, H. (2006). Side population purified from hepatocellular carcinoma cells harbors cancer stem cell-like properties. Hepatology, 44(1), 240–251. doi:10.1002/hep.21227.

  • Christgen, M., Ballmaier, M., Bruchhardt, H., von Wasielewski, R., Kreipe, H., & Lehmann, U. (2007). Identification of a distinct side population of cancer cells in the Cal-51 human breast carcinoma cell line. Molecular and Cellular Biochemistry, 306(1–2), 201–212. doi:10.1007/s11010-007-9570-y.

    Article  CAS  PubMed  Google Scholar 

  • Clay, M. R., Tabor, M., Owen, J. H., Carey, T. E., Bradford, C. R., Wolf, G. T., … Prince, M. E. (2010). Single-marker identification of head and neck squamous cell carcinoma cancer stem cells with aldehyde dehydrogenase. Head Neck, 32(9), 1195–1201. doi:10.1002/hed.21315.

  • Crabb, D. W., Matsumoto, M., Chang, D., & You, M. (2004). Overview of the role of alcohol dehydrogenase and aldehyde dehydrogenase and their variants in the genesis of alcohol-related pathology. Proceedings of the Nutrition Society, 63(1), 49–63.

    Article  CAS  PubMed  Google Scholar 

  • Croker, A. K., & Allan, A. L. (2012). Inhibition of aldehyde dehydrogenase (ALDH) activity reduces chemotherapy and radiation resistance of stem-like ALDHhiCD44(+) human breast cancer cells. Breast Cancer Research and Treatment, 133(1), 75–87. doi:10.1007/s10549-011-1692-y.

    Article  CAS  PubMed  Google Scholar 

  • Cuiffo, B. G., & Karnoub, A. E. (2012). Mesenchymal stem cells in tumor development: Emerging roles and concepts. Cell Adhesion & Migration, 6(3), 220–230. doi:10.4161/cam.20875.

    Article  Google Scholar 

  • Davis, H., Irshad, S., Bansal, M., Rafferty, H., Boitsova, T., Bardella, C., … Leedham, S. J. (2015). Aberrant epithelial GREM1 expression initiates colonic tumorigenesis from cells outside the stem cell niche. Nature Medicine, 21(1), 62–70. doi:10.1038/nm.3750.

  • Dontu, G., El-Ashry, D., & Wicha, M. S. (2004). Breast cancer, stem/progenitor cells and the estrogen receptor. Trends in Endocrinology and Metabolism, 15(5), 193–197. doi:10.1016/j.tem.2004.05.011.

    Article  CAS  PubMed  Google Scholar 

  • Duong, H. Q., Hwang, J. S., Kim, H. J., Kang, H. J., Seong, Y. S., & Bae, I. (2012). Aldehyde dehydrogenase 1A1 confers intrinsic and acquired resistance to gemcitabine in human pancreatic adenocarcinoma MIA PaCa-2 cells. International Journal of Oncology, 41(3), 855–861. doi:10.3892/ijo.2012.1516.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Dylla, S. J., Beviglia, L., Park, I. K., Chartier, C., Raval, J., Ngan, L., … Gurney, A. L. (2008). Colorectal cancer stem cells are enriched in xenogeneic tumors following chemotherapy. PLoS One, 3(6), e2428. doi:10.1371/journal.pone.0002428.

  • Fabbri, M. (2012). TLRs as miRNA receptors. Cancer Research, 72(24), 6333–6337. doi:10.1158/0008-5472.can-12-3229.

    Article  CAS  PubMed  Google Scholar 

  • Fan, C., Oh, D. S., Wessels, L., Weigelt, B., Nuyten, D. S., Nobel, A. B., … Perou, C. M. (2006). Concordance among gene-expression-based predictors for breast cancer. New England Journal of Medicine, 355(6), 560–569. doi:10.1056/NEJMoa052933.

  • Fletcher, J. I., Haber, M., Henderson, M. J., & Norris, M. D. (2010). ABC transporters in cancer: More than just drug efflux pumps. Nature Reviews Cancer, 10(2), 147–156. doi:10.1038/nrc2789.

    Article  CAS  PubMed  Google Scholar 

  • Foulkes, W. D., Smith, I. E., & Reis-Filho, J. S. (2010). Triple-negative breast cancer. New England Journal of Medicine, 363(20), 1938–1948. doi:10.1056/NEJMra1001389.

    Article  CAS  PubMed  Google Scholar 

  • Friedman, H. S., Colvin, O. M., Kaufmann, S. H., Ludeman, S. M., Bullock, N., Bigner, D. D., & Griffith, O. W. (1992). Cyclophosphamide resistance in medulloblastoma. Cancer Research, 52(19), 5373–5378.

    Google Scholar 

  • Gallmeier, E., Hermann, P. C., Mueller, M. T., Machado, J. G., Ziesch, A., De Toni, E. N., … Heeschen, C. (2011). Inhibition of ataxia telangiectasia- and Rad3-related function abrogates the in vitro and in vivo tumorigenicity of human colon cancer cells through depletion of the CD133(+) tumor-initiating cell fraction. Stem Cells, 29(3), 418–429. doi:10.1002/stem.595.

  • Giatromanolaki, A., Sivridis, E., Fiska, A., & Koukourakis, M. I. (2011). The CD44+/CD24- phenotype relates to ‘triple-negative’ state and unfavorable prognosis in breast cancer patients. Medical Oncology, 28(3), 745–752. doi:10.1007/s12032-010-9530-3.

    Article  CAS  PubMed  Google Scholar 

  • Gilbertson, R. J., & Rich, J. N. (2007). Making a tumour’s bed: Glioblastoma stem cells and the vascular niche. Nature Reviews Cancer, 7(10), 733–736. doi:10.1038/nrc2246.

    Article  CAS  PubMed  Google Scholar 

  • Ginestier, C., Hur, M. H., Charafe-Jauffret, E., Monville, F., Dutcher, J., Brown, M., … Dontu, G. (2007). ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell Stem Cell, 1(5), 555–567. doi:10.1016/j.stem.2007.08.014.

  • Goodell, M. A., Brose, K., Paradis, G., Conner, A. S., & Mulligan, R. C. (1996). Isolation and functional properties of murine hematopoietic stem cells that are replicating in vivo. Journal of Experimental Medicine, 183(4), 1797–1806.

    Article  CAS  PubMed  Google Scholar 

  • Gottesman, M. M. (2002). Mechanisms of cancer drug resistance. Annual Review of Medicine, 53, 615–627. doi:10.1146/annurev.med.53.082901.103929.

    Article  CAS  PubMed  Google Scholar 

  • Hall, E. J. (2000). In E. J. Hall (Ed.), Radiobiology for the radiologis (5th ed.). Philadelphia: Lippincott, Wiliams & Wilkins.

    Google Scholar 

  • Haraguchi, N., Inoue, H., Tanaka, F., Mimori, K., Utsunomiya, T., Sasaki, A., & Mori, M. (2006). Cancer stem cells in human gastrointestinal cancers. Human Cell, 19(1), 24–29. doi:10.1111/j.1749-0774.2005.00004.x.

  • Hay, E. D. (1995). An overview of epithelio-mesenchymal transformation. Acta Anatomica (Basel), 154(1), 8–20.

    Article  CAS  Google Scholar 

  • Hellsten, R., Johansson, M., Dahlman, A., Sterner, O., & Bjartell, A. (2011). Galiellalactone inhibits stem cell-like ALDH-positive prostate cancer cells. PLoS One, 6(7), e22118. doi:10.1371/journal.pone.0022118.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hu, Z., Fan, C., Oh, D. S., Marron, J. S., He, X., Qaqish, B. F., … Perou, C. M. (2006). The molecular portraits of breast tumors are conserved across microarray platforms. BMC Genomics, 7, 96. doi:10.1186/1471-2164-7-96.

  • Idowu, M. O., Kmieciak, M., Dumur, C., Burton, R. S., Grimes, M. M., Powers, C. N., & Manjili, M. H. (2012). CD44(+)/CD24(-/low) cancer stem/progenitor cells are more abundant in triple-negative invasive breast carcinoma phenotype and are associated with poor outcome. Human Pathology, 43(3), 364–373. doi:10.1016/j.humpath.2011.05.005.

  • Jaiswal, R., Luk, F., Dalla, P. V., Grau, G. E., & Bebawy, M. (2013). Breast cancer-derived microparticles display tissue selectivity in the transfer of resistance proteins to cells. PLoS One, 8(4), e61515. doi:10.1371/journal.pone.0061515.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jing, Y., Han, Z., Liu, Y., Sun, K., Zhang, S., Jiang, G., … Wei, L. (2012). Mesenchymal stem cells in inflammation microenvironment accelerates hepatocellular carcinoma metastasis by inducing epithelial-mesenchymal transition. PLoS One, 7(8), e43272. doi:10.1371/journal.pone.0043272.

  • Junttila, M. R., & de Sauvage, F. J. (2013). Influence of tumour micro-environment heterogeneity on therapeutic response. Nature, 501(7467), 346–354. doi:10.1038/nature12626.

    Article  CAS  PubMed  Google Scholar 

  • Kalluri, R., & Zeisberg, M. (2006). Fibroblasts in cancer. Nature Reviews Cancer, 6(5), 392–401. doi:10.1038/nrc1877.

    Article  CAS  PubMed  Google Scholar 

  • Karimi-Busheri, F., Rasouli-Nia, A., Mackey, J. R., & Weinfeld, M. (2010). Senescence evasion by MCF-7 human breast tumor-initiating cells. Breast Cancer Research, 12(3), R31. doi:10.1186/bcr2583.

    Article  PubMed Central  PubMed  Google Scholar 

  • Kessenbrock, K., Dijkgraaf, G. J., Lawson, D. A., Littlepage, L. E., Shahi, P., Pieper, U., & Werb, Z. (2013). A role for matrix metalloproteinases in regulating mammary stem cell function via the Wnt signaling pathway. Cell Stem Cell, 13(3), 300–313. doi:10.1016/j.stem.2013.06.005.

  • Kitamura, T., Qian, B. Z., & Pollard, J. W. (2015). Immune cell promotion of metastasis. Nature Reviews Immunology, 15(2), 73–86. doi:10.1038/nri3789.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kondo, T., Setoguchi, T., & Taga, T. (2004). Persistence of a small subpopulation of cancer stem-like cells in the C6 glioma cell line. Proceedings of the National Academy of Sciences of the United States of America, 101(3), 781–786. doi:10.1073/pnas.0307618100.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lee, J. M., Dedhar, S., Kalluri, R., & Thompson, E. W. (2006). The epithelial-mesenchymal transition: new insights in signaling, development, and disease. Journal of Cell Biology, 172(7), 973–981. doi:10.1083/jcb.200601018.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Liu, S., Ginestier, C., Charafe-Jauffret, E., Foco, H., Kleer, C. G., Merajver, S. D., … Wicha, M. S. (2008). BRCA1 regulates human mammary stem/progenitor cell fate. Proceedings of the National Academy of Sciences of the United States of America, 105(5), 1680–1685. doi:10.1073/pnas.0711613105.

  • Liu, H., Patel, M. R., Prescher, J. A., Patsialou, A., Qian, D., Lin, J., … Clarke, M. F. (2010). Cancer stem cells from human breast tumors are involved in spontaneous metastases in orthotopic mouse models. Proceedings of the National Academy of Sciences of the United States of America, 107(42), 18115–18120. doi:10.1073/pnas.1006732107.

  • Liu, R., Wang, X., Chen, G. Y., Dalerba, P., Gurney, A., Hoey, T., … Clarke, M. F. (2007). The prognostic role of a gene signature from tumorigenic breast-cancer cells. New England Journal of Medicine, 356(3), 217–226. doi:10.1056/NEJMoa063994.

  • Liu, L., Wise, D. R., Diehl, J. A., & Simon, M. C. (2008). Hypoxic reactive oxygen species regulate the integrated stress response and cell survival. Journal of Biological Chemistry, 283(45), 31153–31162. doi:10.1074/jbc.M805056200.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lohela, M., Casbon, A. J., Olow, A., Bonham, L., Branstetter, D., Weng, N., … Werb, Z. (2014). Intravital imaging reveals distinct responses of depleting dynamic tumor-associated macrophage and dendritic cell subpopulations. Proceedings of the National Academy of Sciences of the United States of America, 111(47), E5086–E5095. doi:10.1073/pnas.1419899111.

  • Lu, H., Clauser, K. R., Tam, W. L., Frose, J., Ye, X., Eaton, E. N., … Weinberg, R. A. (2014). A breast cancer stem cell niche supported by juxtacrine signalling from monocytes and macrophages. Nature Cell Biology, 16(11), 1105–1117. doi:10.1038/ncb3041.

  • Ma, I., & Allan, A. L. (2011). The role of human aldehyde dehydrogenase in normal and cancer stem cells. Stem Cell Reviews, 7(2), 292–306. doi:10.1007/s12015-010-9208-4.

    Article  CAS  PubMed  Google Scholar 

  • Madjd, Z., Mehrjerdi, A. Z., Sharifi, A. M., Molanaei, S., Shahzadi, S. Z., & Asadi-Lari, M. (2009). CD44+ cancer cells express higher levels of the anti-apoptotic protein Bcl-2 in breast tumours. Cancer Immunity, 9, 4.

    PubMed Central  PubMed  Google Scholar 

  • Morrison, B. J., Schmidt, C. W., Lakhani, S. R., Reynolds, B. A., & Lopez, J. A. (2008). Breast cancer stem cells: Implications for therapy of breast cancer. Breast Cancer Research, 10(4), 210. doi:10.1186/bcr2111.

    Article  PubMed Central  PubMed  Google Scholar 

  • Naumov, G. N., Townson, J. L., MacDonald, I. C., Wilson, S. M., Bramwell, V. H., Groom, A. C., & Chambers, A. F. (2003). Ineffectiveness of doxorubicin treatment on solitary dormant mammary carcinoma cells or late-developing metastases. Breast Cancer Research and Treatment, 82(3), 199–206. doi:10.1023/B:BREA.0000004377.12288.3c.

  • Noel, A., Gutierrez-Fernandez, A., Sounni, N. E., Behrendt, N., Maquoi, E., Lund, I. K., … Lopez-Otin, C. (2012). New and paradoxical roles of matrix metalloproteinases in the tumor microenvironment. Frontiers in Pharmacology, 3, 140. doi:10.3389/fphar.2012.00140.

  • Pavlides, S., Tsirigos, A., Vera, I., Flomenberg, N., Frank, P. G., Casimiro, M. C., … Lisanti, M. P. (2010). Transcriptional evidence for the “Reverse Warburg Effect” in human breast cancer tumor stroma and metastasis: Similarities with oxidative stress, inflammation, Alzheimer’s disease, and “Neuron-Glia Metabolic Coupling”. Aging (Albany NY), 2(4), 185–199.

    Google Scholar 

  • Pece, S., Tosoni, D., Confalonieri, S., Mazzarol, G., Vecchi, M., Ronzoni, S., … Di Fiore, P. P. (2010). Biological and molecular heterogeneity of breast cancers correlates with their cancer stem cell content. Cell, 140(1), 62–73. doi:10.1016/j.cell.2009.12.007.

  • Pham, P. V., Phan, N. L., Nguyen, N. T., Truong, N. H., Duong, T. T., Le, D. V., … Phan, N. K. (2011). Differentiation of breast cancer stem cells by knockdown of CD44: Promising differentiation therapy. Journal of Translational Medicine, 9, 209. doi:10.1186/1479-5876-9-209.

  • Phillips, T. M., McBride, W. H., & Pajonk, F. (2006). The response of CD24(-/low)/CD44+ breast cancer-initiating cells to radiation. Journal of the National Cancer Institute, 98(24), 1777–1785. doi:10.1093/jnci/djj495.

    Article  PubMed  Google Scholar 

  • Potemski, P., Kusinska, R., Watala, C., Pluciennik, E., Bednarek, A. K., & Kordek, R. (2005). Prognostic relevance of basal cytokeratin expression in operable breast cancer. Oncology, 69(6), 478–485. doi:10.1159/000090986.

    Article  PubMed  Google Scholar 

  • Quail, D. F., Taylor, M. J., & Postovit, L. M. (2012). Microenvironmental regulation of cancer stem cell phenotypes. Current Stem Cell Research & Therapy, 7(3), 197–216.

    Article  CAS  Google Scholar 

  • Ratajczak, J., Wysoczynski, M., Hayek, F., Janowska-Wieczorek, A., & Ratajczak, M. Z. (2006). Membrane-derived microvesicles: Important and underappreciated mediators of cell-to-cell communication. Leukemia, 20(9), 1487–1495. doi:10.1038/sj.leu.2404296.

    Article  CAS  PubMed  Google Scholar 

  • Scheel, C., Eaton, E. N., Li, S. H., Chaffer, C. L., Reinhardt, F., Kah, K. J., … Weinberg, R. A. (2011). Paracrine and autocrine signals induce and maintain mesenchymal and stem cell states in the breast. Cell, 145(6), 926–940. doi:10.1016/j.cell.2011.04.029.

  • Siefert, S. A., & Sarkar, R. (2012). Matrix metalloproteinases in vascular physiology and disease. Vascular, 20(4), 210–216. doi:10.1258/vasc.2011.201202.

    Article  PubMed  Google Scholar 

  • Sladek, N. E., Kollander, R., Sreerama, L., & Kiang, D. T. (2002). Cellular levels of aldehyde dehydrogenases (ALDH1A1 and ALDH3A1) as predictors of therapeutic responses to cyclophosphamide-based chemotherapy of breast cancer: A retrospective study. Rational individualization of oxazaphosphorine-based cancer chemotherapeutic regimens. Cancer Chemotheraphy and Pharmacology, 49(4), 309–321. doi:10.1007/s00280-001-0412-4.

    Article  CAS  Google Scholar 

  • Smith, A. L., Robin, T. P., & Ford, H. L. (2012). Molecular pathways: Targeting the TGF-beta pathway for cancer therapy. Clinical Cancer Research, 18(17), 4514–4521. doi:10.1158/1078-0432.ccr-11-3224.

    Article  CAS  PubMed  Google Scholar 

  • Sneddon, J. B., & Werb, Z. (2007). Location, location, location: The cancer stem cell niche. Cell Stem Cell, 1(6), 607–611. doi:10.1016/j.stem.2007.11.009.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sreerama, L., & Sladek, N. E. (1997). Cellular levels of class 1 and class 3 aldehyde dehydrogenases and certain other drug-metabolizing enzymes in human breast malignancies. Clinical Cancer Research, 3(11), 1901–1914.

    CAS  PubMed  Google Scholar 

  • Sullivan, J. P., Spinola, M., Dodge, M., Raso, M. G., Behrens, C., Gao, B., … Minna, J. D. (2010). Aldehyde dehydrogenase activity selects for lung adenocarcinoma stem cells dependent on notch signaling. Cancer Research, 70(23), 9937–9948. doi:10.1158/0008-5472.can-10-0881.

  • Szotek, P. P., Pieretti-Vanmarcke, R., Masiakos, P. T., Dinulescu, D. M., Connolly, D., Foster, R., … Donahoe, P. K. (2006). Ovarian cancer side population defines cells with stem cell-like characteristics and Mullerian Inhibiting Substance responsiveness. Proceedings of the National Academy of Sciences of the United States of America, 103(30), 11154–11159. doi:10.1073/pnas.0603672103.

  • Tanei, T., Morimoto, K., Shimazu, K., Kim, S. J., Tanji, Y., Taguchi, T., … Noguchi, S. (2009). Association of breast cancer stem cells identified by aldehyde dehydrogenase 1 expression with resistance to sequential Paclitaxel and epirubicin-based chemotherapy for breast cancers. Clinical Cancer Research, 15(12), 4234–4241. doi:10.1158/1078-0432.ccr-08-1479.

  • Theodoropoulos, P. A., Polioudaki, H., Agelaki, S., Kallergi, G., Saridaki, Z., Mavroudis, D., & Georgoulias, V. (2010). Circulating tumor cells with a putative stem cell phenotype in peripheral blood of patients with breast cancer. Cancer Letters, 288(1), 99–106. doi:10.1016/j.canlet.2009.06.027.

  • Thiery, J. P. (2002). Epithelial-mesenchymal transitions in tumour progression. Nature Reviews Cancer, 2(6), 442–454. doi:10.1038/nrc822.

    Article  CAS  PubMed  Google Scholar 

  • Todaro, M., Alea, M. P., Di Stefano, A. B., Cammareri, P., Vermeulen, L., Iovino, F., … Stassi, G. (2007). Colon cancer stem cells dictate tumor growth and resist cell death by production of interleukin-4. Cell Stem Cell, 1(4), 389–402. doi:10.1016/j.stem.2007.08.001.

  • Uchoa Dde, M., Graudenz, M. S., Callegari-Jacques, S. M., Hartmann, C. R., Ferreira, B. P., Fitarelli-Kiehl, M., & Edelweiss, M. I. (2014). Expression of cancer stem cell markers in basal and penta-negative breast carcinomas—A study of a series of triple-negative tumors. Pathology Research and Practice, 210(7), 432–439. doi:10.1016/j.prp.2014.03.005.

  • Vaillant, F., Asselin-Labat, M. L., Shackleton, M., Lindeman, G. J., & Visvader, J. E. (2007). The emerging picture of the mouse mammary stem cell. Stem Cell Reviews, 3(2), 114–123.

    Article  PubMed  Google Scholar 

  • Verrier, F., Deniaud, A., Lebras, M., Metivier, D., Kroemer, G., Mignotte, B., … Brenner, C. (2004). Dynamic evolution of the adenine nucleotide translocase interactome during chemotherapy-induced apoptosis. Oncogene, 23(49), 8049–8064. doi:10.1038/sj.onc.1208001.

  • Voduc, K. D., Cheang, M. C., Tyldesley, S., Gelmon, K., Nielsen, T. O., & Kennecke, H. (2010). Breast cancer subtypes and the risk of local and regional relapse. Journal of Clinical Oncology, 28(10), 1684–1691. doi:10.1200/jco.2009.24.9284.

    Article  PubMed  Google Scholar 

  • Wei, J., Wu, A., Kong, L. Y., Wang, Y., Fuller, G., Fokt, I., … Heimberger, A. B. (2011). Hypoxia potentiates glioma-mediated immunosuppression. PLoS One, 6(1), e16195. doi:10.1371/journal.pone.0016195.

  • Weiner, D., Levy, Y., Khankin, E. V., & Reznick, A. Z. (2008). Inhibition of salivary amylase activity by cigarette smoke aldehydes. Journal of Physiology and Pharmacology, 59(Suppl. 6), 727–737.

    PubMed  Google Scholar 

  • Wickstrom, M., Danielsson, K., Rickardson, L., Gullbo, J., Nygren, P., Isaksson, A., … Lovborg, H. (2007). Pharmacological profiling of disulfiram using human tumor cell lines and human tumor cells from patients. Biochemical Pharmacology, 73(1), 25–33. doi:10.1016/j.bcp.2006.08.016.

  • Wilson, A., Laurenti, E., Oser, G., van der Wath, R. C., Blanco-Bose, W., Jaworski, M., … Trumpp, A. (2008). Hematopoietic stem cells reversibly switch from dormancy to self-renewal during homeostasis and repair. Cell, 135(6), 1118–1129. doi:10.1016/j.cell.2008.10.048.

  • Wong, G. S., & Rustgi, A. K. (2013). Matricellular proteins: Priming the tumour microenvironment for cancer development and metastasis. British Journal of Cancer, 108(4), 755–761. doi:10.1038/bjc.2012.592.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Woodward, W. A., Chen, M. S., Behbod, F., Alfaro, M. P., Buchholz, T. A., & Rosen, J. M. (2007). WNT/beta-catenin mediates radiation resistance of mouse mammary progenitor cells. Proceedings of the National Academy of Sciences of the United States of America, 104(2), 618–623. doi:10.1073/pnas.0606599104.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wu, Y., Sarkissyan, M., Elshimali, Y., & Vadgama, J. V. (2013). Triple negative breast tumors in African-American and Hispanic/Latina women are high in CD44+, low in CD24+, and have loss of PTEN. PLoS One, 8(10), e78259. doi:10.1371/journal.pone.0078259.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yu, F., Yao, H., Zhu, P., Zhang, X., Pan, Q., Gong, C., … Song, E. (2007). let-7 regulates self renewal and tumorigenicity of breast cancer cells. Cell, 131(6), 1109–1123. doi:10.1016/j.cell.2007.10.054.

  • Zeisberg, E. M., Tarnavski, O., Zeisberg, M., Dorfman, A. L., McMullen, J. R., Gustafsson, E., … Kalluri, R. (2007). Endothelial-to-mesenchymal transition contributes to cardiac fibrosis. Nature Medicine, 13(8), 952–961. doi:10.1038/nm1613.

  • Zhang, M., Behbod, F., Atkinson, R. L., Landis, M. D., Kittrell, F., Edwards, D., … Rosen, J. M. (2008). Identification of tumor-initiating cells in a p53-null mouse model of breast cancer. Cancer Research, 68(12), 4674–4682. doi:10.1158/0008-5472.can-07-6353.

  • Zhong, Y., Shen, S., Zhou, Y., Mao, F., Guan, J., Lin, Y., … Sun, Q. (2014). ALDH1 is a better clinical indicator for relapse of invasive ductal breast cancer than the CD44+/CD24- phenotype. Medical Oncology, 31(3), 864. doi:10.1007/s12032-014-0864-0.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 The author(s)

About this chapter

Cite this chapter

Van Pham, P. (2015). Properties of Stem Cells of Breast Cancer. In: Breast Cancer Stem Cells & Therapy Resistance. SpringerBriefs in Stem Cells. Springer, Cham. https://doi.org/10.1007/978-3-319-22020-8_5

Download citation

Publish with us

Policies and ethics