Skip to main content

Gravitational Waves from Core-Collapse Supernovae

  • Reference work entry
  • First Online:
Handbook of Supernovae

Abstract

We summarize the theoretical predictions of gravitational waves (GWs) in stellar core-collapse and core-collapse supernova evolution. Following a brief introduction to overview how scientifically significant the successful detection of GWs could be, we give a concise summary of the essential GW features mostly based on a back-of-the-envelope estimation. If the gravitational collapse of stellar cores and the subsequent explosion hydrodynamics occur in a perfectly spherically symmetric manner, no GWs can be emitted. Therefore, what makes the dynamics of the central engine deviate from spherical symmetry is essential for determining the physics of the GW emission processes. Among the candidates, we mainly focus on the best-studied GW signal that is emitted near core bounce in rapidly rotating core-collapse. After bounce, multiple emission processes have been proposed thus far. These postbounce GWs, if observed, are also expected to provide smoking-gun information for unraveling the yet uncertain explosion mechanisms. We finally conclude with the most urgent tasks to prepare for the GW astronomy of core-collapse supernovae.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Abbott BP, Abbott R, Abbott TD, Abernathy MR, Acernese F, Ackley K, Adams C, Adams T, Addesso P, Adhikari RX et al (2016a) All-sky search for long-duration gravitational wave transients with initial LIGO. Phys Rev D 93:042005

    Article  ADS  Google Scholar 

  • Abbott BP, Abbott R, Abbott TD, Abernathy MR, Acernese F, Ackley K, Adams C, Adams T, Addesso P, Adhikari RX et al (2016b) Observation of gravitational waves from a binary black hole merger. Phys Rev Lett 116:061102

    Article  ADS  MathSciNet  Google Scholar 

  • Akiyama S, Wheeler JC, Meier DL, Lichtenstadt I (2003) The magnetorotational instability in core-collapse supernova explosions. Astrophys J 584:954–970

    Article  ADS  Google Scholar 

  • Andersson N (2003) TOPICAL REVIEW: gravitational waves from instabilities in relativistic stars. Class Quantum Gravity 20:105

    Article  ADS  Google Scholar 

  • Aso Y, Michimura Y, Somiya K, Ando M, Miyakawa O, Sekiguchi T, Tatsumi D, Yamamoto H (2013) Interferometer design of the KAGRA gravitational wave detector. Phys Rev D 88:043007

    Article  ADS  Google Scholar 

  • Balbus SA, Hawley JF (1998) Instability, turbulence, and enhanced transport in accretion disks. Rev Modern Phys 70:1–53

    Article  ADS  Google Scholar 

  • Baumgarte TW, Shapiro SL (1999) Numerical integration of Einstein’s field equations. Phys Rev D 59:024007

    Article  ADS  MathSciNet  Google Scholar 

  • Bethe HA (1990) Supernova mechanisms. Rev Mod Phys 62:801–866

    Article  ADS  Google Scholar 

  • Burrows A (2013) Colloquium: perspectives on core-collapse supernova theory. Rev Mod Phys 85:245

    Article  ADS  Google Scholar 

  • Burrows A, Dessart L, Livne E, Ott CD, Murphy J (2007) Simulations of magnetically driven supernova and hypernova explosions in the context of rapid rotation. Astrophys J 664:416–434

    Article  ADS  Google Scholar 

  • Burrows A, Hayes J (1996) Pulsar recoil and gravitational radiation due to asymmetrical stellar collapse and explosion. Phys Rev Lett 76:352–355

    Article  ADS  Google Scholar 

  • Chandrasekhar S (1969) Ellipsoidal figures of equilibrium. In: Chandrasekhar S (ed) The Silliman foundation lectures. Yale University Press, New Haven

    Google Scholar 

  • Demorest PB, Pennucci T, Ransom SM, Roberts MSE, Hessels JWT (2010) A two-solar-mass neutron star measured using Shapiro delay. 467:1081

    Google Scholar 

  • Dimmelmeier H, Ott CD, Janka H-T, Marek A, Müller E (2007) Generic gravitational-wave signals from the collapse of rotating stellar cores. Phys Rev Lett 98:251101

    Article  ADS  Google Scholar 

  • Epstein R (1978) The generation of gravitational radiation by escaping supernova neutrinos. ApJ 223:1037–1045

    Article  ADS  Google Scholar 

  • Flanagan ÉÉ, Hughes SA (1998) Measuring gravitational waves from binary black hole coalescences. I. Signal to noise for inspiral, merger, and ringdown. Phys Rev D 57:4535

    Google Scholar 

  • Foglizzo T, Kazeroni R, Guilet J, Masset F, González M, Krueger BK, Novak J, Oertel M, Margueron J, Faure J, Martin N, Blottiau P, Peres B, Durand G (2015) The explosion mechanism of core-collapse supernovae: progress in supernova theory and experiments. PASA 32:e009

    Article  ADS  Google Scholar 

  • Fryer CL, New KCB (2011) Gravitational waves from gravitational collapse. Living Rev Relativ 14:1

    Article  ADS  Google Scholar 

  • Fuller J, Cantiello M, Lecoanet D Quataert E (2015) The spin rate of pre-collapse stellar cores: wave-driven angular momentum transport in massive stars. ApJ 810:101

    Article  ADS  Google Scholar 

  • Gehrels N, Leventhal M, MacCallum CJ (1987) Prospects for gamma-ray line observations of individual supernovae. ApJ 322:215–233

    Article  ADS  Google Scholar 

  • Grefenstette BW, Harrison FA, Boggs SE, Reynolds SP, Fryer CL, Madsen KK, Wik DR, Zoglauer A, Ellinger CI, Alexander DM, An H, Barret D, Christensen FE, Craig WW, Forster K, Giommi P, Hailey CJ, Hornstrup A, Kaspi VM, Kitaguchi T, Koglin JE, Mao PH, Miyasaka H, Mori K, Perri M, Pivovaroff MJ, Puccetti S, Rana V, Stern D, Westergaard NJ, Zhang WW (2014) Asymmetries in core-collapse supernovae from maps of radioactive44Ti in Cassiopeia A. Nature 506:339–342

    Article  ADS  Google Scholar 

  • Hanke F, Müller B, Wongwathanarat A, Marek A, Janka H-T (2013) SASI activity in three-dimensional neutrino-hydrodynamics simulations of supernova cores. ApJ 770:66

    Article  ADS  Google Scholar 

  • Hayama K, Kuroda T, Kotake K, Takiwaki T (2015) Coherent network analysis of gravitational waves from three-dimensional core-collapse supernova models. Phys Rev D 92:122001

    Article  ADS  Google Scholar 

  • Hayama K, Kuroda T, Nakamura K, Yamada S (2016) Circular polarizations of gravitational waves from core-collapse supernovae: a clear indication of rapid rotation. Phys Rev Lett 116:151102

    Article  ADS  Google Scholar 

  • Heger A, Langer N (2000) Presupernova evolution of rotating massive stars. II. Evolution of the surface properties. ApJ 544:1016–1035

    Google Scholar 

  • Heger A, Woosley SE, Spruit HC (2005) Presupernova evolution of differentially rotating massive stars including magnetic fields. ApJ 626:350–363

    Article  ADS  Google Scholar 

  • Hempel M, Schaffner-Bielich J (2010) A statistical model for a complete supernova equation of state. Nucl Phys A 837:210

    Article  ADS  Google Scholar 

  • Hild S, Freise A, Mantovani M, Chelkowski S, Degallaix J, Schilling R (2009) Using the etalon effect for in situ balancing of the Advanced Virgo arm cavities. Class Quantum Gravity 26:025005

    Article  ADS  Google Scholar 

  • Horiuchi S, Beacom JF, Bothwell MS, Thompson TA (2013) Effects of stellar rotation on star formation rates and comparison to core-collapse supernova rates. ApJ 769:113

    Article  ADS  Google Scholar 

  • Iben I Jr (2013) Stellar evolution physics. Volume 2: Advanced evolution of single stars. Cambridge University Press, Cambridge

    Google Scholar 

  • Janka H-T, Melson T, Summa A (2016) Physics of core-collapse supernovae in three dimensions: a sneak preview. Annu Rev Nucl Part Sci 66(1):341–375

    Article  ADS  Google Scholar 

  • Kawamura S et al (2006) The Japanese space gravitational wave antenna DECIGO. Class Quantum Gravity 23:125

    Article  Google Scholar 

  • Kokkotas K, Schmidt B (1999) Quasi-normal modes of stars and black holes. Living Rev Relativ 2(1):1–72

    Article  ADS  MathSciNet  Google Scholar 

  • Kotake K (2013) Multiple physical elements to determine the gravitational-wave signatures of core-collapse supernovae. Compte Rendus Phys 14:318–351

    Article  ADS  Google Scholar 

  • Kotake K, Iwakami W, Ohnishi N, Yamada S (2009) Stochastic nature of gravitational waves from supernova explosions with standing accretion shock instability. ApJL 697:L133–L136

    Article  ADS  Google Scholar 

  • Kotake K, Ohnishi N, Yamada S (2007) Gravitational radiation from standing accretion shock instability in core-collapse supernovae. ApJ 655:406–415

    Article  ADS  Google Scholar 

  • Kotake K, Sato K, Takahashi K (2006) Explosion mechanism, neutrino burst and gravitational wave in core-collapse supernovae. Rep Prog Phys 69:971–1143

    Article  ADS  Google Scholar 

  • Kotake K, Sumiyoshi K, Yamada S, Takiwaki T, Kuroda T, Suwa Y, Nagakura H (2012a) Core-collapse supernovae as supercomputing science: A status report toward six-dimensional simulations with exact Boltzmann neutrino transport in full general relativity. Prog Theor Exp Phys 2012:01A301

    Google Scholar 

  • Kotake K, Takiwaki T, Suwa Y, Iwakami Nakano W, Kawagoe S, Masada Y, Fujimoto S-i (2012b) Multimessengers from core-collapse supernovae: multidimensionality as a key to bridge theory and observation. Adv Astron 2012:1–46

    Article  Google Scholar 

  • Kotake K, Yamada S, Sato K (2003) Inferring core-collapse supernova physics with gravitational waves. Phys Rev D 68:044023

    Article  ADS  MathSciNet  Google Scholar 

  • Kuroda T, Kotake K, Takiwaki T (2012) Fully general relativistic simulations of core-collapse supernovae with an approximate neutrino transport. ApJ 755:11

    Article  ADS  Google Scholar 

  • Kuroda T, Takiwaki T, Kotake K (2014) Gravitational wave signatures from low-mode spiral instabilities in rapidly rotating supernova cores. Phys Rev D 89:044011

    Article  ADS  Google Scholar 

  • Kuroda T, Takiwaki T, Kotake K (2016) A new multi-energy neutrino radiation-hydrodynamics code in full general relativity and its application to the gravitational collapse of massive stars. ApJS 222:20

    Article  ADS  Google Scholar 

  • Langanke K, Martínez-Pinedo G (2003) Nuclear weak-interaction processes in stars. Rev Mod Phys 75:819–862

    Article  ADS  Google Scholar 

  • Lattimer JM, Prakash M (2016) The equation of state of hot, dense matter and neutron stars. Phys Rep 621:127–164

    Article  ADS  MathSciNet  Google Scholar 

  • LeBlanc JM, Wilson JR (1970) A numerical example of the collapse of a rotating magnetized star. ApJ 161:541

    Article  ADS  Google Scholar 

  • Lentz EJ, Bruenn SW, Hix WR, Mezzacappa A, Messer OEB, Endeve E, Blondin JM, Harris JA, Marronetti P, Yakunin KN (2015) Three-dimensional core-collapse supernova simulated Using a 15 M⊙progenitor. ApJL 807:L31

    Article  ADS  Google Scholar 

  • Leonor I, Cadonati L, Coccia E, D’Antonio S, Di Credico A, Fafone V, Frey R, Fulgione W, Katsavounidis E, Ott CD, Pagliaroli G, Scholberg K, Thrane E, Vissani F (2010) Class Quantum Gravity. Searching for prompt signatures of nearby core-collapse supernovae by a joint analysis of neutrino and gravitational wave data. 27:084019

    Google Scholar 

  • Maeda K, Kawabata K, Mazzali PA, Tanaka M, Valenti S, Nomoto K, Hattori T, Deng J, Pian E, Taubenberger S, Iye M, Matheson T, Filippenko AV, Aoki K, Kosugi G, Ohyama Y, Sasaki T, Takata T (2008) Asphericity in supernova explosions from late-time spectroscopy. Science 319:1220

    Article  ADS  Google Scholar 

  • Marek A, Janka H-T, Müller E (2009) Equation-of-state dependent features in shock-oscillation modulated neutrino and gravitational-wave signals from supernovae. A&A 496:475–494

    Article  ADS  Google Scholar 

  • Masada Y, Takiwaki T, Kotake K, Sano T (2012) Local simulations of the magnetorotational instability in core-collapse supernovae. ApJ 759:110

    Article  ADS  Google Scholar 

  • Mészáros P (2006) Gamma-ray bursts. Rep Prog Phys 69:2259–2322

    Article  ADS  Google Scholar 

  • Metzger BD, Giannios D, Thompson TA, Bucciantini N, Quataert E (2011) The protomagnetar model for gamma-ray bursts. MNRAS 413:2031–2056

    Article  ADS  Google Scholar 

  • Misner C, Thorne K, Wheeler J (1973) Gravitation. W.H. Freeman and Company, San Francisco

    Google Scholar 

  • Mönchmeyer R, Schaefer G, Mueller E, Kates RE (1991) Gravitational waves from the collapse of rotating stellar cores. Astron Astrophys 246:417–440

    ADS  Google Scholar 

  • Mösta P, Richers S, Ott CD, Haas R, Piro AL, Boydstun K, Abdikamalov E, Reisswig C, Schnetter E (2014) Magnetorotational core-collapse supernovae in three dimensions. ApJL 785:L29

    Article  ADS  Google Scholar 

  • Müller B, Janka H-T, Marek A (2013) A new multi-dimensional general relativistic neutrino hydrodynamics code of core-collapse supernovae. III. Gravitational wave signals from supernova explosion models. ApJ 766:43

    Google Scholar 

  • Müller E, Janka H-T (1997) Gravitational radiation from convective instabilities in Type II supernova explosions. Astron Astrophys 317:140–163

    ADS  Google Scholar 

  • Müller E, Janka H-T, Wongwathanarat A (2012) Parametrized 3D models of neutrino-driven supernova explosions. Neutrino emission asymmetries and gravitational-wave signals. A&A 537:A63

    Google Scholar 

  • Müller E, Rampp M, Buras R, Janka H-T, Shoemaker DH (2004) Toward gravitational wave signals from realistic core-collapse supernova models. ApJ 603:221–230

    Article  ADS  Google Scholar 

  • Murphy JW, Ott CD, Burrows A (2009) A model for gravitational wave emission from neutrino-driven core-collapse supernovae. ApJ 707:1173–1190

    Article  ADS  Google Scholar 

  • Nakamura K, Horiuchi S, Tanaka M, Hayama K, Takiwaki T, Kotake K (2016) Multi-messenger signals of long-term core-collapse supernova simulations: synergetic observation strategies. 461:3296

    Google Scholar 

  • Nishimura N, Takiwaki T, Thielemann F-K (2015) ApJ 810:109

    Article  ADS  Google Scholar 

  • Obergaulinger M, Cerdá-Durán P, Müller E, Aloy MA (2009) Semi-global simulations of the magneto-rotational instability in core collapse supernovae. A&A 498:241–271

    Article  ADS  Google Scholar 

  • Oohara K-i, Nakamura T, Shibata M (1997) A Way to 3D numerical relativity. Prog Theor Phys Suppl 128:183

    Article  ADS  MathSciNet  Google Scholar 

  • Ott CD (2009) TOPICAL REVIEW: the gravitational-wave signature of core-collapse supernovae. Class Quantum Gravity 26:063001

    Article  ADS  Google Scholar 

  • Ott CD, Burrows A, Livne E, Walder R (2004) Gravitational waves from axisymmetric, rotating stellar core collapse. Astrophys J 600:834–864

    Article  ADS  Google Scholar 

  • Ott CD, Burrows A, Thompson TA, Livne E, Walder R (2006) The spin periods and rotational profiles of neutron stars at birth. Astrophys J Suppl Ser 164:130–155

    Article  ADS  Google Scholar 

  • Ott CD, Dimmelmeier H, Marek A, Janka H-T, Hawke I, Zink B, Schnetter E (2007) 3D collapse of rotating stellar iron cores in general relativity including deleptonization and a nuclear equation of state. Phys Rev Lett 98:261101

    Article  ADS  Google Scholar 

  • Ott CD, Ou S, Tohline JE, Burrows A (2005) One-armed spiral instability in a low-T/—W— postbounce supernova core. ApJL 625:L119–L122

    Article  ADS  Google Scholar 

  • Punturo M, Lück H, Beker M (2014) Third generation gravitational wave observatory: The Einstein Telescope. In: Bassan M (ed) Advanced interferometers and the search for gravitational waves. Astrophysics and space science library, vol 404. Springer, p 333

    Google Scholar 

  • Rampp M, Mueller E, Ruffert M (1998) Simulations of non-axisymmetric rotational core collapse. Astron Astrophys 332:969–983

    ADS  Google Scholar 

  • Rasio FA, Shapiro SL (1999) TOPICAL REVIEW: coalescing binary neutron stars. Class Quantum Gravity 16:1

    Article  ADS  Google Scholar 

  • Reisswig C, Ott CD, Sperhake U, Schnetter E (2011) Gravitational wave extraction in simulations of rotating stellar core collapse. Phys Rev D 83:064008

    Article  ADS  Google Scholar 

  • Sathyaprakash BS, Schutz BF (2009) Physics, astrophysics and cosmology with gravitational waves. Living Rev Relativ 12:2

    Article  ADS  Google Scholar 

  • Scheidegger S, Käppeli R, Whitehouse SC, Fischer T, Liebendörfer M (2010) The influence of model parameters on the prediction of gravitational wave signals from stellar core collapse. A&A 514:A51+

    Google Scholar 

  • Seitenzahl IR, Herzog M, Ruiter AJ, Marquardt K, Ohlmann ST, Röpke FK (2015) Neutrino and gravitational wave signal of a delayed-detonation model of type Ia supernovae. Phys Rev D 92:124013

    Article  ADS  Google Scholar 

  • Shapiro SL, Teukolsky SA (1983) Black holes, white dwarfs, and neutron stars: the physics of compact objects (Research supported by the National Science Foundation. Wiley-Interscience, New York, 1983, 663p.)

    Google Scholar 

  • Shibata M, Liu YT, Shapiro SL, Stephens BC (2006) Magnetorotational collapse of massive stellar cores to neutron stars: simulations in full general relativity. Phys Rev D 74:104026

    Article  ADS  MathSciNet  Google Scholar 

  • Shibata M, Nakamura T (1995) Evolution of three-dimensional gravitational waves: Harmonic slicing case. Phys Rev D 52:5428–5444

    Article  ADS  MathSciNet  Google Scholar 

  • Smartt SJ (2015) Observational constraints on the progenitors of core-collapse supernovae: the case for missing high-mass stars. PASA 32:e016

    Article  ADS  Google Scholar 

  • Takiwaki T, Kotake K (2011) Gravitational wave signatures of magnetohydrodynamically driven core-collapse supernova explosions. ApJ 743:30

    Article  ADS  Google Scholar 

  • Tanaka M, Tominaga N, Nomoto K, Valenti S, Sahu DK, Minezaki T, Yoshii Y, Yoshida M, Anupama GC, Benetti S, Chincarini G, Della Valle M, Mazzali PA, Pian E (2009) Type Ib supernova 2008D associated with the luminous x-ray transient 080109: an energetic explosion of a massive helium star. ApJ 692:1131–1142

    Article  ADS  Google Scholar 

  • Thielemann F, Käppeli R, Winteler C, Perego A, Liebendörfer M, Nishimura N, Vasset N, Arcones A (2012) Nuclei Cosmos (NIC XII) 61:1–9

    Google Scholar 

  • Thielemann F-K, Hirschi R, Liebendörfer M, Diehl R (2011) Massive stars and their supernovae. In: Diehl R, Hartmann DH, Prantzos N (eds) Lecture notes in physics, vol 812. Springer, Berlin, pp 153–232

    Google Scholar 

  • Thorne K (1987) Gravitational radiation. In: Hawking S, Israel W (eds) Three hundred years of gravitation. Cambridge University Press, Cambridge, pp 330–458

    Google Scholar 

  • Thorne KS (1980) Multipole expansions of gravitational radiation. Rev Mod Phys 52:299–340

    Article  ADS  MathSciNet  Google Scholar 

  • Turner MS, Wagoner RV (1979) Gravitational radiation from slowly-rotating ‘supernovae’ – preliminary results. In: Smarr LL (ed) Sources of gravitational radiation. Cambridge University Press, Cambridge, pp 383–407

    Google Scholar 

  • Wang L, Wheeler JC, Höflich P, Khokhlov A, Baade D, Branch D, Challis P, Filippenko AV, Fransson C, Garnavich P, Kirshner RP, Lundqvist P, McCray R, Panagia N, Pun CSJ, Phillips MM, Sonneborn G, Suntzeff NB (2002) The axisymmetric ejecta of Supernova 1987A. Astrophys J 579:671–677

    Article  ADS  Google Scholar 

  • Watts AL, Andersson N, Jones DI (2005) The nature of low T/—W— dynamical instabilities in differentially rotating stars. ApJL 618:L37–L40

    Article  ADS  Google Scholar 

  • Winteler C, Käppeli R, Perego A, Arcones A, Vasset N, Nishimura N, Liebendörfer M, Thielemann F-K (2012) ApJL 750:L22

    Article  ADS  Google Scholar 

  • Woosley SE (1993) Gamma-ray bursts from stellar mass accretion disks around black holes. ApJ 405:273–277

    Article  ADS  Google Scholar 

  • Woosley SE, Bloom JS (2006) The supernova gamma-ray burst connection. ARA&A 44:507–556

    Article  ADS  Google Scholar 

  • Yakunin KN, Mezzacappa A, Marronetti P, Yoshida S, Bruenn SW, Hix WR, Lentz EJ, Bronson Messer OE, Harris JA, Endeve E, Blondin JM, Lingerfelt EJ (2015) Gravitational wave signatures of ab initio two-dimensional core collapse supernova explosion models for 12 -25 M⊙stars. Phys Rev D 92:084040

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We are thankful to stimulating discussions with K. Hayama, T. Takiwaki, K. Nakamura, S. Horiuchi, Y. Suwa, and M. Tanaka. KK acknowledges discussions with E. Müller and H.T. Janka and their kind hospitality during his stay at the Max-Planck-Institut für Astrophysik in March 2016. TK thanks F.-K. Thielemann for enlightening discussions and continuous support. This study was supported in part by the Grants-in-Aid for the Scientific Research from the Ministry of Education, Science and Culture of Japan (Nos. 24103006, 24244036, 26707013, and 26870823), HPCI Strategic Program of Japanese MEXT, and by the European Research Council (ERC;FP7) under ERC Advanced Grant Agreement N∘ 321263 - FISH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kei Kotake .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Kotake, K., Kuroda, T. (2017). Gravitational Waves from Core-Collapse Supernovae. In: Alsabti, A., Murdin, P. (eds) Handbook of Supernovae. Springer, Cham. https://doi.org/10.1007/978-3-319-21846-5_9

Download citation

Publish with us

Policies and ethics