Skip to main content

Algebraic QFT in Curved Spacetime and Quasifree Hadamard States: An Introduction

  • Chapter
  • First Online:

Part of the book series: Mathematical Physics Studies ((MPST))

Abstract

Within this chapter we introduce the overall idea of the algebraic formalism of QFT on a fixed globally hyperbolic spacetime in the framework of unital \(*\)-algebras. We point out some general features of CCR algebras, such as simplicity and the construction of symmetry-induced homomorphisms. For simplicity, we deal only with a real scalar quantum field. We discuss some known general results in curved spacetime like the existence of quasifree states enjoying symmetries induced from the background, pointing out the relevant original references. We introduce, in particular, the notion of a Hadamard quasifree algebraic quantum state, both in the geometric and microlocal formulation, and the associated notion of Wick polynomials.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    \(\pi '_w\) can equivalently be defined as \(\{A \in {\mathscr {B}}(\mathcal{H}) \,\,|\,\, A\phi (a)= \pi (a^*)^\dagger A\,,\quad \forall a \in \mathcal{A}\}\).

  2. 2.

    There do not exist one-parameter group of unital \(*\)-algebra anti-linear automorphisms, this is because \(\beta _t = \beta _{t/2}\circ \beta _{t/2}\) is linear both for \(\beta _{t/2}\) linear or anti-linear.

  3. 3.

    It holds that \([a(\psi ), a^\dagger (\xi )] = \langle K\psi |K\xi \rangle \), \([a(\psi ),a(\xi )] = 0 = [a^\dagger (\psi ), a^\dagger (\xi )]\) if \(\xi ,\psi \in \mathsf {Sol}\), and \(a(\xi )\), \(a(\psi )\) are defined on \(\mathcal{D}_\omega \), with \(a^\dagger (\psi )= a(\psi )^\dagger |_{\mathcal{D}_\omega }\).

  4. 4.

    Recall that this isomorphism was established in Proposition 5.2.12, based on the well-posedness properties of the Klein-Gordon equation. From now one, we will be making use of this isomorphism implicitly.

  5. 5.

    It should be evident that the given definition does not depend on the particular GNS representation chosen for each state \(\omega _i\).

  6. 6.

    Note that this result is stated incorrectly in Theorem 4.4.1 of [65], where the condition on the operator Q is incorrectly given as trace class instead of Hilbert-Schmidt. The correct condition is actually given in Equation (4.4.21) of [65] as the Hilbert-Schmidt property of the operator \(\mathcal {E}\) and the mistake appears in identifying the corresponding property of Q. We thank Rainer Verch and especially Ko Sanders for bringing this to our attention.

  7. 7.

    By Riesz lemma, it exists if an only if the map \(\mathcal{D}_{\omega _{\mathbb M}} \ni \varPsi ' \mapsto \langle \varPsi '| :\phi ^2:(f) \varPsi \rangle \) is continuous for every \(\varPsi \in \mathcal{D}_{\omega _{\mathbb M}}\).

  8. 8.

    Observe in particular that \(:\hat{\phi }(f) \hat{\phi }(g): - :\hat{\phi }(g) \hat{\phi }(f):\,= iE(f,g)1\!\!1- \omega _{\mathbb M2}(iE(f,g)1\!\!1)1\!\!1=0\).

  9. 9.

    The function \(z \mapsto I_1(\sqrt{z})/\sqrt{z}\), initially defined for \(Re(z)>0\), admits a unique analytic extension on the whole space \(\mathbb C\) and the formula actually refers to this extension.

  10. 10.

    Our convention for the Fourier transform is so that \(f(x) = \frac{1}{(2\pi )^m}\int e^{-ikx} \hat{f}(k)\, d^m k\). This convention agrees with those of [29, 52, 53], but has the opposite sign in the exponential with respect to [62]. This means that our wavefont sets need to be negated to be compared to those of [62]. Fortunately, in all cases where this is done, the wavefront sets happen to be negation symmetric.

  11. 11.

    Results in [52, 53] are stated for \(\xi =0\) in KG operator, however they are generally valid for \(m^2\) replaced by a given smooth function, as specified at the beginning of p. 533 in [52].

  12. 12.

    The gap is the content of the three lines immediately before th proof (ii) \(\mathbf{3} \Rightarrow \mathbf{2}\) on p. 547 of [52]: The reasoning presented there cannot exclude elements of the form either \((x_1,x_2, 0,p_2)\) or \((x_1,x_2,p_1, 0)\) from \(WF(\omega _2)\) outside \(\mathcal{N}\). The idea of our proof was suggested by N. Pinamonti to the authors.

References

  1. Baez, J.C., Segal, I.E., Zhou, Z.: Introduction to Algebraic and Constructive Quantum Field Theory, Princeton Series in Physics. Princeton University Press, Princeton (1992)

    Google Scholar 

  2. Bär, C., Ginoux, N., Pfäffle, F.: Wave Equations on Lorentzian Manifolds and Quantization, ESI Lectures in Mathematics and Physics, vol. 2. European Mathematical Society (2007). doi:10.4171/037

  3. Beem, J.K., Ehrlich, P., Easley, K.: Global Lorentzian Geometry, Pure and Applied Mathematics, vol. 202. Marcel Dekker, New York (1996)

    Google Scholar 

  4. Benini, M., Dappiaggi, C., Hack, T.P.: Quantum field theory on curved backgrounds—a primer. Int. J. Mod. Phys. A 28, 1330023 (2013). doi:10.1142/s0217751x13300238

  5. Bernal, A.N., Sánchez, M.: Smoothness of time functions and the metric splitting of globally hyperbolic spacetimes. Commun. Math. Phys. 257, 43–50 (2005). doi:10.1007/s00220-005-1346-1

    Article  ADS  MATH  Google Scholar 

  6. Bernal, A., Sánchez, M.: Further results on the smoothability of cauchy hypersurfaces and cauchy time functions. Lett. Math. Phys. 77, 183–197 (2006). doi:10.1007/s11005-006-0091-5

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. Birrell, N.D., Davies, P.C.W.: Quantum Fields in Curved Space (Cambridge Monographs on Mathematical Physics). Cambridge University Press, Cambridge (1984)

    Google Scholar 

  8. Bratteli, O., Robinson, D.W.: Operator Algebras and Quantum Statistical Mechanics 1: C*- and W*-Algebras. Symmetry Groups. Decomposition of States, 2nd edn. Springer, New York (2002)

    Google Scholar 

  9. Brunetti, R., Fredenhagen, K.: Microlocal analysis and interacting quantum field theories: renormalization on physical backgrounds. Commun. Math. Phys. 208, 623–661 (2000). doi:10.1007/s002200050004

    Article  MathSciNet  ADS  MATH  Google Scholar 

  10. Brunetti, R., Fredenhagen, K., Köhler, M.: The microlocal spectrum condition and Wick polynomials of free fields on curved spacetimes. Commun. Math. Phys. 180, 633–652 (1996). doi:10.1007/bf02099626

    Article  ADS  MATH  Google Scholar 

  11. Brunetti, R., Fredenhagen, K., Verch, R.: The generally covariant locality principle—a new paradigm for local quantum field theory. Commun. Math. Phys. 237, 31–68 (2003)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  12. Dappiaggi, C., Moretti, V., Pinamonti, N.: Distinguished quantum states in a class of cosmological spacetimes and their Hadamard property. J. Math. Phys. 50, 062304 (2009). doi:10.1063/1.3122770

  13. Dappiaggi, C., Hack, T.P., Möller, J., Pinamonti, N.: Dark energy from quantum matter (2010). http://arxiv.org/abs/1007.5009

  14. Dappiaggi, C., Moretti, V., Pinamonti, N.: Rigorous construction and Hadamard property of the Unruh state in Schwarzschild spacetime. Adv. Theor. Math. Phys. 15, 355–447 (2011). doi:10.4310/ATMP.2011.v15.n2.a4

    Article  MathSciNet  MATH  Google Scholar 

  15. Dappiaggi, C., Siemssen, D.: Hadamard states for the vector potential on asymptotically flat spacetimes. Rev. Math. Phys. 25, 1350002 (2013). doi:10.1142/S0129055X13500025

  16. Fewster, C.J., Hunt, D.S.: Quantization of linearized gravity in cosmological vacuum spacetimes. Rev. Math. Phys. 25, 1330003 (2013). doi:10.1142/S0129055X13300033

  17. Fewster, C.J., Pfenning, M.J.: A quantum weak energy inequality for spin-one fields in curved space-time. J. Math. Phys. 44, 4480–4513 (2003). doi:10.1063/1.1602554

    Article  MathSciNet  ADS  MATH  Google Scholar 

  18. Fewster, C.J., Verch, R.: Dynamical locality of the free scalar field. Ann. Henri Poincaré 13, 1675–1709 (2012). doi:10.1007/s00023-012-0166-z

    Article  MathSciNet  ADS  MATH  Google Scholar 

  19. Friedlander, F.G.: The Wave Equation on a Curved Space-time, Cambridge Monographs on Mathematical physics, vol. 2. Cambridge University Press, Cambridge (1975)

    Google Scholar 

  20. Friedlander, F.G., Joshi, M.S.: Introduction to the Theory of Distributions, 2nd edn. Cambridge University Press, Cambridge (1998)

    Google Scholar 

  21. Fulling, S., Sweeny, M., Wald, R.: Singularity structure of the two-point function in quantum field theory in curved spacetime. Commun. Math. Phys. 63, 257–264 (1978). doi:10.1007/bf01196934

    Article  MathSciNet  ADS  MATH  Google Scholar 

  22. Fulling, S.A.: Aspects of Quantum Field Theory in Curved Spacetime, London Mathematical Society Student Texts, vol. 17. Cambridge University Press, Cambridge (1989)

    Book  Google Scholar 

  23. Fulling, S.A., Narcowich, F.J., Wald, R.M.: Singularity structure of the two-point function in quantum field theory in curved spacetime. II. Ann. Phys. 136, 243–272 (1981). doi:10.1016/0003-4916(81)90098-1

    Article  MathSciNet  ADS  Google Scholar 

  24. Garabedian, P.: Partial Differential Equations, Chelsea Publishing Series, vol. 325, 2nd edn. Chelsea Publishing Company, New York (1986)

    Google Scholar 

  25. Gérard, C., Wrochna, M.: Construction of Hadamard states by pseudo-differential calculus. Commun. Math. Phys. 325, 713–755 (2013). doi:10.1007/s00220-013-1824-9

    Article  Google Scholar 

  26. Gérard, C., Wrochna, M.: Construction of Hadamard states by characteristic Cauchy problem (2014). http://arxiv.org/abs/1409.6691

  27. Günther, P.: Huygens’ Principle and Hyperbolic Equations, Perspectives in Mathematics, vol. 5. Academic Press, New York (1988)

    Google Scholar 

  28. Haag, R.: Local Quantum Physics: Fields, Particles, Algebras, Texts and Monographs in Physics. Springer, New York (1996). doi:10.1007/978-3-642-61458-3

  29. Hack, T.P.: On the backreaction of scalar and spinor quantum fields in curved spacetimes—from the basic foundations to cosmological applications. Ph.D. thesis, Hamburg (2010). http://arxiv.org/abs/1008.1776

  30. Hack, T.P., Moretti, V.: On the stress-energy tensor of quantum fields in curved spacetimes—comparison of different regularization schemes and symmetry of the Hadamard/Seeley-DeWitt coefficients. J. Phys. A: Math. Theor. 45, 374019 (2012). doi:10.1088/1751-8113/45/37/374019

  31. Hack, T.P., Schenkel, A.: Linear bosonic and fermionic quantum gauge theories on curved spacetimes. Gen. Relativ. Gravit. 45, 877–910 (2013). doi:10.1007/s10714-013-1508-y

    Article  MathSciNet  ADS  MATH  Google Scholar 

  32. Hadamard, J.: Lectures on Cauchy’s Problem in Linear Partial Differential Equations, Mrs. Hepsa Ely SiLliman Memorial Lectures, vol. 15. Yale University Press, New Haven (1923)

    Google Scholar 

  33. Hofmann, G.: On GNS representations on inner product spaces. Commun. Math. Phys. 191, 299–323 (1998). doi:10.1007/s002200050270

    Article  ADS  MATH  Google Scholar 

  34. Hollands, S., Ruan, W.: The state space of perturbative quantum field theory in curved space-times. Ann. Henri Poincaré 3, 635–657 (2002). doi:10.1007/s00023-002-8629-2

    Article  MathSciNet  ADS  MATH  Google Scholar 

  35. Hollands, S., Wald, R.M.: Local Wick polynomials and time ordered products of quantum fields in curved spacetime. Commun. Math. Phys. 223, 289–326 (2001). doi:10.1007/s002200100540

    Article  MathSciNet  ADS  MATH  Google Scholar 

  36. Hollands, S., Wald, R.M.: Existence of local covariant time ordered products of quantum fields in curved spacetime. Commun. Math. Phys. 231, 309–345 (2002). doi:10.1007/s00220-002-0719-y

    Article  MathSciNet  ADS  MATH  Google Scholar 

  37. Hollands, S., Wald, R.M.: Conservation of the stress tensor in perturbative interacting quantum field theory in curved spacetimes. Rev. Math. Phys. 17, 227–311 (2005). doi:10.1142/s0129055x05002340

    Article  MathSciNet  MATH  Google Scholar 

  38. Hörmander, L.: Fourier integral operators. I. Acta Math. 127, 79–183 (1971). doi:10.1007/bf02392052

    Article  MathSciNet  MATH  Google Scholar 

  39. Hörmander, L.: The Analysis of Linear Partial Differential Operators I: Distribution Theory and Fourier Analysis, Grundlehren Der Mathematischen Wissenschaften, vol. 256. Springer, New York (1998). doi:10.1007/978-3-642-96750-4

  40. Kay, B.S.: A uniqueness result in the Segal-Weinless approach to linear bose fields. J. Math. Phys. 20, 1712–1713 (1979). doi:10.1063/1.524253

    Article  MathSciNet  ADS  Google Scholar 

  41. Kay, B.S., Wald, R.M.: Theorems on the uniqueness and thermal properties of stationary, nonsingular, quasifree states on spacetimes with a bifurcate killing horizon. Phys. Rep. 207, 49–136 (1991). doi:10.1016/0370-1573(91)90015-e

    Article  MathSciNet  ADS  MATH  Google Scholar 

  42. Khavkine, I.: Characteristics, conal geometry and causality in locally covariant field theory (2012). http://arxiv.org/abs/1211.1914

  43. Khavkine, I.: Covariant phase space, constraints, gauge and the Peierls formula. Int. J. Mod. Phys. A 29, 1430009 (2014) doi:10.1142/s0217751x14300099

  44. Khavkine, I., Moretti, V.: Analytic dependence is an unnecessary requirement in renormalization of locally covariant QFT (2014). http://arxiv.org/abs/1411.1302v2

  45. Lang, S.: Algebra, Graduate Texts in Mathematics, vol. 211, 3rd, revised edn. Springer, New York (2002). doi:10.1007/978-1-4613-0041-0

  46. Moretti, V.: Proof of the symmetry of the off-diagonal heat-kernel and Hadamard’s expansion coefficients in general \(C^{\infty }\) Riemannian manifolds. Commun. Math. Phys. 208, 283–308 (1999). doi:10.1007/s002200050759

    Article  MathSciNet  ADS  MATH  Google Scholar 

  47. Moretti, V.: Comments on the stress-energy tensor operator in curved spacetime. Commun. Math. Phys. 232, 189–221 (2003). doi:10.1007/s00220-002-0702-7

    Article  MathSciNet  ADS  MATH  Google Scholar 

  48. Moretti, V.: Quantum out-states holographically induced by asymptotic flatness: invariance under spacetime symmetries, energy positivity and Hadamard property. Commun. Math. Phys. 279, 31–75 (2008). doi:10.1007/s00220-008-0415-7

    Article  MathSciNet  ADS  MATH  Google Scholar 

  49. Moretti, V.: Spectral Theory and Quantum Mechanics: With an Introduction to the Algebraic Formulation, UNITEXT, vol. 64. Springer, Berlin (2013)

    Book  Google Scholar 

  50. O’Neill, B.: Semi-Riemannian Geometry With Applications to Relativity, Pure and Applied Mathematics, vol. 103. Academic Press, San Diego (1983)

    Google Scholar 

  51. Pinamonti, N.: On the initial conditions and solutions of the semiclassical Einstein equations in a cosmological scenario. Commun. Math. Phys. 305, 563–604 (2011). doi:10.1007/s00220-011-1268-z

    Article  MathSciNet  ADS  MATH  Google Scholar 

  52. Radzikowski, M.J.: Micro-local approach to the Hadamard condition in quantum field theory on curved space-time. Commun. Math. Phys. 179, 529–553 (1996). doi:10.1007/bf02100096

    Article  MathSciNet  ADS  MATH  Google Scholar 

  53. Radzikowski, M.J., Verch, R.: A local-to-global singularity theorem for quantum field theory on curved space-time. Commun. Math. Phys. 180, 1–22 (1996). doi:10.1007/bf02101180

    Article  MathSciNet  ADS  MATH  Google Scholar 

  54. Reed, M., Simon, B.: Methods of Modern Mathematical Physics. II. Fourier Analysis, Self-Adjointness. Academic Press, New York (1975)

    Google Scholar 

  55. Riesz, M.: L’intégrale de Riemann-Liouville et le problème de Cauchy. Acta Math. 81, 1–222 (1949). doi:10.1007/bf02395016

    Article  MathSciNet  MATH  Google Scholar 

  56. Sahlmann, H., Verch, R.: Microlocal spectrum condition and Hadamard form for vector-valued quantum fields in curved spacetime. Rev. Math. Phys. 13, 1203–1246 (2001). doi:10.1142/s0129055x01001010

    Article  MathSciNet  MATH  Google Scholar 

  57. Sanders, K.: Aspects of locally covariant quantum field theory. Ph.D. thesis, University of York (2008). http://arxiv.org/abs/0809.4828

  58. Sanders, K.: On the construction of Hartle-Hawking-Israel states across a static bifurcate killing horizon. Letters in Mathematical Physics (2014). Math. Phys. 105, 575–640 (2015). http://arxiv.org/abs/1310.5537

  59. Sanders, K., Dappiaggi, C., Hack, T.P.: Electromagnetism, local covariance, the Aharonov-Bohm effect and Gauss’ law. Commun. Math. Phys. 328, 625–667 (2014). doi:10.1007/s00220-014-1989-x

    Article  MathSciNet  ADS  MATH  Google Scholar 

  60. Schmüdgen, K.: Unbounded Operator Algebras and Representation Theory, Operator Theory, Advances and Applications, vol. 37. Birkhäuser, Basel (1990)

    Book  Google Scholar 

  61. Strocchi, F.: An Introduction to the Mathematical Structure of Quantum Mechanics: A Short Course for Mathematicians, Advanced Series in Mathematical Physics, vol. 28. World Scientific, Singapore (2008)

    Google Scholar 

  62. Strohmaier, A.: Microlocal analysis. In: Bär, C., Fredenhagen, K. (eds.) Quantum Field Theory on Curved Spacetimes: Concepts and Methods, Lecture Notes in Physics, vol. 786. Springer, Berlin (2009). doi:10.1007/978-3-642-02780-2_4

  63. Strohmaier, A., Verch, R., Wollenberg, M.: Microlocal analysis of quantum fields on curved space-times: analytic wave front sets and reeh-schlieder theorems. J. Math. Phys. 43, 5514–5530 (2002). doi:10.1063/1.1506381

    Article  MathSciNet  ADS  MATH  Google Scholar 

  64. Verch, R.: Local definiteness, primarity and quasiequivalence of quasifree Hadamard quantum states in curved spacetime. Commun. Math. Phys. 160, 507–536 (1994). doi:10.1007/bf02173427

    Article  MathSciNet  ADS  MATH  Google Scholar 

  65. Wald, R.M.: Quantum Field Theory in Curved Spacetime and Black Hole Thermodynamics, Chicago Lectures in Physics. University of Chicago Press, Chicago (1994)

    Google Scholar 

Download references

Acknowledgments

The authors are grateful to R. Brunetti, C. Dappiaggi, C. Fewster, T. Hack, N.Pinamonti, K. Sanders, A. Strohmaier, Y. Tanimoto and R. Verch for useful discussions and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valter Moretti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Khavkine, I., Moretti, V. (2015). Algebraic QFT in Curved Spacetime and Quasifree Hadamard States: An Introduction. In: Brunetti, R., Dappiaggi, C., Fredenhagen, K., Yngvason, J. (eds) Advances in Algebraic Quantum Field Theory. Mathematical Physics Studies. Springer, Cham. https://doi.org/10.1007/978-3-319-21353-8_5

Download citation

Publish with us

Policies and ethics