Skip to main content

Part of the book series: Research Topics in Wind Energy ((RTWE,volume 5))

  • 2047 Accesses

Abstract

This chapter gives the background, motivation, and organization of this work. The state-of-the-art for wind power generation, development of power electronic technology, as well as some emerging challenges for the next generation wind power converters are presented. Then the objectives and structure of this book are outlined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Liserre M, Cardenas R, Molinas M, Rodriguez J (2011) Overview of Multi-MW wind turbines and wind parks. IEEE Trans Ind Electron 58(4):1081–1095

    Article  Google Scholar 

  2. REN21—Renewables 2012 Global Status Report. http://www.ren21.net. Accessed June 2012

  3. Report of danish commission on climate change policy, green energy—the road to a Danish energy system without fossil fuels. http://www.klimakommissionen.dk/en-US/. Accessed Sept 2010

  4. Website of vestas wind power, wind turbines overview. http://www.vestas.com/. Accessed April 2011

  5. Up wind project, design limits and solutions for very large wind turbines (2011)

    Google Scholar 

  6. Chen Z, Guerrero JM, Blaabjerg F (2009) A review of the state of the art of power electronics for wind turbines. IEEE Trans Power Electron 24(8):1859–1875

    Article  Google Scholar 

  7. Blaabjerg F, Chen Z, Kjaer SB (2004) Power electronics as efficient interface in dispersed power generation systems. IEEE Trans Power Electron 19(4):1184–1194

    Article  Google Scholar 

  8. Hansen AD, Iov F, Blaabjerg F, Hansen LH (2004) Review of contemporary wind turbine concepts and their market penetration. J Wind Eng 28(3):247–263

    Article  Google Scholar 

  9. Wallace K, Oliver JA (1998) Variable-speed generation controlled by passive elements. Proc ICEM’ 1998:1554–1559

    Google Scholar 

  10. Muller S, Deicke M, De Doncker RW (2002) Doubly fed induction generator systems for wind turbines. IEEE Ind Appl Mag 8(3):26–33

    Article  Google Scholar 

  11. Xiang D, Ran L, Tavner PJ., Yang S (2006) Control of a doubly fed induction generator in a wind turbine during grid fault ride-through, IEEE Trans Energy Convers 21(3):652–662

    Google Scholar 

  12. Teodorescu R, Liserre M, Rodriguez P (2011) Grid converters for photovoltaic and wind power systems. IEEE/Wiley

    Google Scholar 

  13. Blaabjerg F, Teodorescu R, Liserre M, Timbus AV (2006) Overview of control and grid synchronization for distributed power generation systems. IEEE Trans Ind Electron 53(5):1398–1409

    Article  Google Scholar 

  14. Altin M, Goksu O, Teodorescu R, Rodriguez P, Bak-Jensen B, Helle L. (2010) Overview of recent grid codes for wind power integration. In: Proceedings of OPTIM’2010, pp. 1152–1160

    Google Scholar 

  15. Tsili M (2009) A review of grid code technical requirements for wind farms. IET J Renew Power Gener 3(3):308–332

    Article  Google Scholar 

  16. Energinet—wind turbines connected to grids with voltages below 100 kV (2003)

    Google Scholar 

  17. Energinet—technical regulation 3.2.5 for wind power plants with a power output greater than 11 kW (2010)

    Google Scholar 

  18. E.ON-Netz—grid code. Requirements for offshore grid connections in the E. ON Netz network (2008)

    Google Scholar 

  19. Faulstich S, Lyding P, Hahn B, Tavner P (2009) Reliability of offshore turbines–identifying the risk by onshore experience. In: Proceedings of European offshore wind, Stockholm

    Google Scholar 

  20. Hahn B, Durstewitz M, Rohrig K (2007) Reliability of wind turbines—experience of 15 years with 1500 WTs. Wind Energy, Spinger, Berlin

    Google Scholar 

  21. Wolfgang E, Amigues L, Seliger N, Lugert G (2005) Building-in reliability into power electronics systems. The World of Electronic Packaging and System, Integration, pp 246–252

    Google Scholar 

  22. Hirschmann D, Tissen D, Schroder S, De Doncker RW (2005) Inverter design for hybrid electrical vehicles considering mission profiles. IEEE Conf Veh Power and Propul 7–9:1–6

    Google Scholar 

  23. Busca C, Teodorescu R, Blaabjerg F, Munk-Nielsen S, Helle L, Abeyasekera T, Rodriguez P (2011) An overview of the reliability prediction related aspects of high power IGBTs in wind power applications. Microelectron Reliab 51(9–11):1903–1907

    Article  Google Scholar 

  24. Kaminski N, Kopta A (2011) Failure rates of HiPak modules due to cosmic rays, ABB application note 5SYA 2042

    Google Scholar 

  25. Wolfgang E (2007) Examples for failures in power electronics systems, presented at ECPE tutorial on reliability of power electronic systems. Nuremberg, Germany

    Google Scholar 

  26. Yang S, Bryant AT, Mawby PA, Xiang D, Ran L, Tavner P (2011) An industry-based survey of reliability in power electronic converters. IEEE Trans Ind Appl 47(3):1441–1451

    Google Scholar 

  27. Yang S, Xiang D, Bryant A, Mawby P, Ran L, Tavner P (2010) Condition monitoring for device reliability in power electronic converters: a review. IEEE Trans Power Electron 25(11):2734–2752

    Article  Google Scholar 

  28. Due J, Munk-Nielsen S, Nielsen R (2011) Lifetime investigation of high power IGBT modules. In: Proceedings of EPE’2011—Birmingham

    Google Scholar 

  29. Ma K, Blaabjerg F (2012) Thermal optimized modulation method of three-level NPC inverter for 10 MW wind turbines under low voltage ride through. IET J Power Electron 5(6):920–927

    Article  Google Scholar 

  30. Ma K, Blaabjerg F, Liserre M (2012) Reactive power control methods for improved reliability of wind power inverters under wind speed variations. Proc ECCE’ 2012:3105–3122

    Google Scholar 

  31. Wikipedia cost of electricity by source. http://en.wikipedia.org/wiki/Cost_of_electricity_by_source. Accessed April 2013

  32. Report of the US Energy Information Administration (EIA) of the U.S. Department of Energy (DOE). Levelized cost of new generation resources in the annual energy outlook 2013, Released in spring (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ke Ma .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ma, K. (2015). Introduction. In: Power Electronics for the Next Generation Wind Turbine System. Research Topics in Wind Energy, vol 5. Springer, Cham. https://doi.org/10.1007/978-3-319-21248-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-21248-7_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-21247-0

  • Online ISBN: 978-3-319-21248-7

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics