Skip to main content

Part of the book series: Advances in Industrial Control ((AIC))

  • 4142 Accesses

Abstract

The first chapter introduces GP models and provides a simple, illustrative example of modelling of a static mapping function. Next, a brief historical overview of developments in the field of GP models for dynamic systems identification is presented. The chapter continues with a discussion about the rationale and the relevance of using GP modelling for system identification and control design.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Krige, D.G.: A statistical approach to some basic mine valuation problems on the Witwatersrand. J. Chem., Metal. Min. Soc. S. Afr. 52(6), 119–139 (1951)

    Google Scholar 

  2. O’Hagan, A.: On curve fitting and optimal design for regression (with discussion). J. R. Stat. Soc. Ser. B (Methodol.) 40(1), 1–42 (1978)

    MATH  MathSciNet  Google Scholar 

  3. Neal, R.M.: Bayesian Learning for Neural Networks. Lecture Notes in Statistics. Springer, New York, NY (1996)

    Google Scholar 

  4. Rasmussen, C.E.: Evaluation of Gaussian processes and other methods for nonlinear regression. Ph.D. thesis, University of Toronto, Toronto (1996)

    Google Scholar 

  5. Gibbs, M.N.: Bayesian Gaussian processes for regression and classification. Ph.D. thesis, Cambridge University, Cambridge (1997)

    Google Scholar 

  6. Williams, C.K.I.: Prediction with Gaussian processes: from linear regression and beyond. In: Jordan, M. (ed.) Learning in graphical models, Nato Science Series D, vol. 89, pp. 599–621. Springer, Berlin (1998)

    Chapter  Google Scholar 

  7. Rasmussen, C.E., Williams, C.K.I.: Gaussian Processes for Machine Learning. MIT Press, Cambridge, MA (2006)

    Google Scholar 

  8. Shi, J.Q., Choi, T.: Gaussian process regression analysis for functional data. Chapman and Hall/CRC, Taylor & Francis group, Boca Raton, FL (2011)

    Google Scholar 

  9. MAC Multi-Agent Control: Probabilistic reasoning, optimal coordination, stability analysis and controller design for intelligent hybrid systems (2000–2004). Research Training Network, 5th EU framework

    Google Scholar 

  10. Johnson, R.A., Miller, I., Freund, J.E.: Probability and Statistics for Engineers, 8th edn. Pearson, Boston, MA (2011)

    Google Scholar 

  11. Rohatgi, V.K.: An Introduction to Probability Theory and Mathematical Statistics. Wiley, New York, NY (1976)

    Google Scholar 

  12. Bishop, C.M.: Pattern recognition and machine learning. Springer Science \(+\) Business Media (2006)

    Google Scholar 

  13. Suykens, J.A.K., Gestel, T.V., Brabanteer, J.D., Moor, B.D., Vandewalle, J.: Least Squares Support Vector Machines. World Scientific, Singapore (2002)

    Book  MATH  Google Scholar 

  14. Peterka, V.: Bayesian approach to system identification (chapter). Trends and Progress in System Identification, pp. 239–304. Pergamon Press, Oxford (1981)

    Google Scholar 

  15. Ljung, L.: System identification—Theory for the User, 2nd edn. Prentice Hall, Upper Saddle River, NJ (1999)

    Google Scholar 

  16. Deisenroth, M.P.: Efficient reinforcement learning using Gaussian processes. Ph.D. thesis, Karlsruhe Institute of Technology, Karlsruhe (2010)

    Google Scholar 

  17. Thompson, K.: Implementation of Gaussian process models for non-linear system identification. Ph.D. thesis, University of Glasgow, Glasgow (2009)

    Google Scholar 

  18. Gevers, M.: A personal view of the development of system identification, a 30-year journey through an exciting field. IEEE Control Syst. Mag. 26(6), 93–105 (2006)

    Article  Google Scholar 

  19. Girard, A., Rasmussen, C., Murray-Smith, R.: Gaussian process priors with uncertain inputs: Multiple-step ahead prediction. Tech. Rep. DCS TR-2002-119, University of Glasgow, Glasgow (2002)

    Google Scholar 

  20. Gregorčič, G., Lightbody, G.: Gaussian processes for modelling of dynamic non-linear systems. In: Proceedings of the Irish Signals and Systems Conference, pp. 141–147. Cork (2002)

    Google Scholar 

  21. Kocijan, J., Girard, A., Banko, B., Murray-Smith, R.: Dynamic systems identification with Gaussian processes. In: Troch, I., Breitenecker, F. (eds.) Proceedings of 4th IMACS Symposium on Mathematical Modelling (MathMod), pp. 776–784. Vienna (2003)

    Google Scholar 

  22. Wang, J., Fleet, D., Hertzmann, A.: Gaussian process dynamical models. Adv. Neural Inf. Process. Syst. 18, 1441–1448 (2005)

    Google Scholar 

  23. Babovic, V., Keijzer, M.: A Gaussian process model applied to prediction of the water levels in Venice lagoon. In: Proceedings Of The XXIX Congress Of International Association For Hydraulic Research, pp. 509–513 (2001)

    Google Scholar 

  24. Grašič, B., Mlakar, P., Božnar, M.: Ozone prediction based on neural networks and Gaussian processes. Nuovo cimento Soc. ital. fis., C Geophys. space phys. 29(6), 651–661 (2006)

    Google Scholar 

  25. Ko, J., Fox, D.: GP-Bayesfilters: Bayesian filtering using Gaussian process prediction and observation models. Auton. Robot. 27(1), 75–90 (2009)

    Article  Google Scholar 

  26. Deisenroth, M.P., Huber, M.F., Hannebeck, U.D.: Analytic moment-based Gaussian process filtering. In: Proceedings of the 26th Annual International Conference on Machine Learning, pp. 225–232. Montreal (2009)

    Google Scholar 

  27. Gregorčič, G., Lightbody, G.: Gaussian processes for internal model control. In: Rakar, A. (ed.) Proceedings of 3rd International PhD Workshop on Advances in Supervision and Control Systems, A Young Generation Viewpoint, pp. 39–46. Strunjan (2002)

    Google Scholar 

  28. Kocijan, J.: Gaussian process model based predictive control. Tech. Rep. DP-8710, Jozef Stefan Institute, Ljubljana (2002)

    Google Scholar 

  29. Murray-Smith, R., Sbarbaro, D.: Nonlinear adaptive control using nonparametric Gaussian process prior models. In: Proceedings of IFAC 15th World Congress. Barcelona (2002)

    Google Scholar 

  30. Kocijan, J., Murray-Smith, R.: Nonlinear predictive control with a Gaussian process model. In: Murray-Smith, R., Shorten, R. (eds.) Switching and Learning in Feedback Systems, pp. 185–200. Springer, Berlin (2005). Lecture Notes in Computer Science

    Chapter  Google Scholar 

  31. Ko, J., Klein, D.J., Fox, D., Haehnel, D.: Gaussian processes and reinforcement learning for identification and control of an autonomous blimp. In: Proceedings of the International Conference on Robotics and Automation, pp. 742–747. Rome (2007)

    Google Scholar 

  32. Deisenroth, M.P., Rasmussen, C.E.: PILCO: A model-based and data-efficient approach to policy search. In: Proceedings of the 28th International Conference on Machine Learning (ICML 2011). Bellevue, WA (2011)

    Google Scholar 

  33. Deisenroth, M.P., Rasmussen, C.E., Fox, D.: Learning to control a low-cost manipulator using data-efficient reinforcement learning. In: Proceedings of the International Conference on Robotics: Science & Systems (R:SS 2011). Los Angeles, CA (2011)

    Google Scholar 

  34. Juričić, D., Kocijan, J.: Fault detection based on Gaussian process model. In: Troch, I., Breitenecker, F. (eds.) Proceedings of the 5th Vienna Symposium on Mathematical Modeling (MathMod). Vienna (2006)

    Google Scholar 

  35. Serradilla, J., Shi, J.Q., Morris, J.A.: Fault detection based on Gaussian process latent variable models. Chem. Intel. Lab. Syst. 109(1), 9–21 (2011)

    Article  Google Scholar 

  36. Osborne, M.A., Garnett, R., Swersky, K., de Freitas, N.: Prediction and fault detection of environmental signals with uncharacterised faults. In: 26th AAAI Conference on Artificial Intelligence (AAAI-12). Toronto (2012)

    Google Scholar 

  37. Deisenroth, M.P., Turner, R.D., Huber, M.F., Hanebeck, U.D., Rasmussen, C.E.: Robust filtering and smoothing with Gaussian processes. IEEE Trans. Autom. Control 57(7), 1865–1871 (2012). doi:10.1109/TAC.2011.2179426

    Article  MathSciNet  Google Scholar 

  38. Deisenroth, M.P., Mohamed, S.: Expectation propagation in Gaussian process dynamical systems. Adv. Neural Info. Process. Sys. 25, 2618–2626 (2012)

    Google Scholar 

  39. Kocijan, J., Likar, B.: Gas-liquid separator modelling and simulation with Gaussian-process models. Simul. Model. Pract. Theory 16(8), 910–922 (2008)

    Article  Google Scholar 

  40. Likar, B., Kocijan, J.: Predictive control of a gas-liquid separation plant based on a Gaussian process model. Comput. Chem. Eng. 31(3), 142–152 (2007)

    Article  Google Scholar 

  41. Faul, S., Gregorčič, G., Boylan, G., Marnane, W., Lightbody, G., Connolly, S.: Gaussian process modeling of EEG for the detection of neonatal seizures. IEEE Trans. Biomed. Eng. 54(12), 2151–2162 (2007)

    Article  Google Scholar 

  42. Ažman, K., Kocijan, J.: Application of Gaussian processes for black-box modelling of biosystems. ISA Trans. 46, 443–457 (2007)

    Article  Google Scholar 

  43. Leith, D., Heidl, M., Ringwood, J.: Gaussian process prior models for electrical load forecasting. In: International Conference on Probabilistic Methods Applied to Power Systems, pp. 112–117 (2004)

    Google Scholar 

  44. Leithead, W., Zhang, Y., Neo, K.: Wind turbine rotor acceleration: identification using Gaussian regression. In: Proceedings of International conference on informatics in control automation and robotics (ICINCO). Barcelona (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juš Kocijan .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kocijan, J. (2016). Introduction. In: Modelling and Control of Dynamic Systems Using Gaussian Process Models. Advances in Industrial Control. Springer, Cham. https://doi.org/10.1007/978-3-319-21021-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-21021-6_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-21020-9

  • Online ISBN: 978-3-319-21021-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics