Abstract
In RGB-D based SLAM methods, robot motion is generally computed by detecting and matching feature points in image frames obtained from an RGB-D sensor. Thus, feature detectors and descriptors used in a SLAM method significantly affect the performance. In this work, impacts of feature detectors and descriptors on the performance of an RGB-D based SLAM method are studied. SIFT, SURF, BRISK, ORB, FAST, GFTT, STAR feature detectors and SIFT, SURF, BRISK, ORB, BRIEF, FREAK feature descriptors are evaluated in terms of accuracy and speed.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Thrun, S., Burgard, W., Fox, D.: A real-time algorithm for mobile robot mapping with applications to multi-robot and 3D mapping. IEEE Int. Conf. Robot. Autom. (ICRA) 1, 321–328 (2000)
Triebel, R., Burgard, W.: Improving simultaneous mapping and localization in 3D using global constraints. Natl. Conf. Artif. Intell. 3, 1330–1335 (2005)
Kang, J.G., An, S.Y., Kim, S., Oh, S.Y.: Sonar based simultaneous localization and mapping using a neuro evolutionary optimization. In: International Joint Conference on Neural Networks, pp. 1516–1523 (2009)
Konolige, K., Agrawal, M.: FrameSLAM: from bundle adjustment to real-time visual mapping. IEEE Trans. Robot. 24(5), 1066–1077 (2008)
Clemente, L., Davison, A., Reid, I., Neira, J., Tardos, J.: Mapping large loops with a single hand-held camera. Robotics: Science and Systems (RSS) (2007)
Davison, A.: Real-time simultaneous localisation and mapping with a single camera. IEEE Int. Conf. Comput. Vis. 2, 1403–1410 (2003)
Endres, F., Hess, J., Sturm, J., Cremers, D., Burgard, W.: 3-D mapping with an RGB-D camera. IEEE Trans. Robot. 30(1), 177–187 (2014)
Lowe, D.: Discriminative image features from scale-invariant keypoints. Int. J. Comput. Vision 60(2), 91–110 (2004)
Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-Up Robust Features (SURF). Comput. Vis. Image Underst. 110(3), 346–359 (2008)
Leutenegger, S., Chli, M., Siegwart, R.: BRISK: binary robust invariant scalable keypoints. In: IEEE International Conference on Computer Vision, pp. 2548–2555 (2011)
Rublee, E., Rabaud, V., Konolige, K., Bradski, G.: ORB: an efficient alternative to SIFT or SURF. In: IEEE International Conference on Computer Vision, pp. 2564–2571 (2011)
Rosten, E., Drummond, T.W.: Machine learning for high-speed corner detection. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006, Part I. LNCS, vol. 3951, pp. 430–443. Springer, Heidelberg (2006)
Shi, J., Tomasi, C.: Good features to track. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 593–600 (1994)
Agrawal, M., Konolige, K., Blas, M.R.: CenSurE: center surround extremas for realtime feature detection and matching. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part IV. LNCS, vol. 5305, pp. 102–115. Springer, Heidelberg (2008)
Calonder, M., Lepetit, V., Strecha, C., Fua, P.: BRIEF: binary robust independent elementary features. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part IV. LNCS, vol. 6314, pp. 778–792. Springer, Heidelberg (2010)
Alahi, A., Ortiz, R., Vandergheynst, P.: FREAK: fast retina keypoint. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 510–517 (2012)
Henry, P., Krainin, M., Herbst, E., Ren, X., Fox, D.: RGB-D mapping: using depth cameras for dense 3D modeling of indoor environments. In: 12th International Symposium on Experimental Robotics (ISER) (2010)
Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 24(6), 381–395 (1981)
Segal, A., Haehnel, D., Thrun, S.: Generalized-ICP. Robotics: Science and Systems (RSS) (2009)
Grisetti, G., Grzonka, S., Stachniss, C., Pfaff, P., Burgard, W.: Efficient estimation of accurate maximum likelihood maps in 3D. In: IEEE International Conference on Intelligent Robots and Systems, pp. 3472–3478 (2007)
Henry, P., Krainin, M., Herbst, E., Ren, X., Fox, D.: RGB-D mapping: using kinect-style depth cameras for dense 3D modeling of indoor environments. Int. J. Robot. Res. 31(5), 647–663 (2012)
Calonder, M., Lepetit, V., Fua, P.: Keypoint signatures for fast learning and recognition. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part I. LNCS, vol. 5302, pp. 58–71. Springer, Heidelberg (2008)
Konolige, K.: Sparse sparse bundle adjustment. In: British Machine Vision Conference (BMVC) (2010)
Endres, F., Hess, J., Engelhard, N., Sturm, J., Cremers, D., Burgard, W.: An evaluation of the RGB-D SLAM system. In: IEEE International Conference on Robotics and Automation, pp. 1691–1696 (2012)
Kummerle, R., Grisetti, G., Strasdat, H., Konolige, K., Burgard, W.: g2o: a general framework for graph optimization. In: IEEE International Conference on Robotics and Automation (2011)
Fioraio, N., Konolige, K.: Realtime visual and point cloud slam. In: RGB-D Workshop on Advanced Reasoning with Depth Cameras at Robotics: Science and Systems (RSS) (2011)
Grisetti, G., Kummerle, R., Stachniss, C., Burgard, W.: A tutorial on graph-based SLAM. IEEE Intell. Transp. Syst. Mag. 2(4), 31–43 (2010)
Harris, C., Stephens, M.: A combined corner and edge detector. In: Alvey Vision Conference (1988)
Sturm, J., Engelhard, N., Endres, F., Burgard, W., Cremers, D.: A benchmark for the evaluation of RGB-D slam systems. In: IEEE International Conference on Intelligent Robots and Systems, pp. 573–580 (2012)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Guclu, O., Can, A.B. (2015). A Comparison of Feature Detectors and Descriptors in RGB-D SLAM Methods. In: Kamel, M., Campilho, A. (eds) Image Analysis and Recognition. ICIAR 2015. Lecture Notes in Computer Science(), vol 9164. Springer, Cham. https://doi.org/10.1007/978-3-319-20801-5_32
Download citation
DOI: https://doi.org/10.1007/978-3-319-20801-5_32
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-20800-8
Online ISBN: 978-3-319-20801-5
eBook Packages: Computer ScienceComputer Science (R0)