Skip to main content

DNA Repair and Chromosomal Translocations

  • Chapter
  • First Online:

Part of the book series: Recent Results in Cancer Research ((RECENTCANCER,volume 200))

Abstract

The balance between DNA damage, especially double strand breaks, and DNA damage repair is a critical determinant of chromosomal translocation frequency. The non-homologous end-joining repair (NHEJ) pathways seem to play the major role in the generation of chromosomal translocations. The “landscape” of chromosomal translocation identified in malignancies is largely due to selection processes which operate on the growth advantages conveyed to the cells by the functional consequences of chromosomal translocations (i.e., oncogenic fusion proteins and overexpression of oncogenes, both compromising tumor suppressor gene functions). Newer studies have shown that there is an abundance of local rearrangements in many tumors, like small deletions and inversions. A better understanding of the interplay between DNA repair mechanisms and the generation of tumorigenic translocations will, among many other things, depend on an improved understanding of DNA repair mechanisms and their interplay with chromatin and the 3D organization of the interphase nucleus.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Ahnesorg P, Smith P, Jackson SP (2006) XLF interacts with the XRCC4-DNA ligase IV complex to promote DNA nonhomologous end-joining. Cell 124:301–313

    Article  CAS  PubMed  Google Scholar 

  • Arlt MF, Durkin SG, Ragland RL, Glover TW (2006) Common fragile sites as targets for chromosome rearrangements. DNA Repair (Amst) 5:1126–1135

    Article  CAS  Google Scholar 

  • Artandi SE, DePinho RA (2010) Telomeres and telomerase in cancer. Carcinogenesis 31:9–18

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ayoub N, Jeyasekharan AD, Venkitaraman AR (2009) Mobilization and recruitment of HP1: a bimodal response to DNA breakage. Cell Cycle 8:2945–2950

    PubMed  Google Scholar 

  • Barlow JH, Faryabi RB, Callén E et al (2013) Identification of early replicating fragile sites that contribute to genome instability. Cell 152:620–632

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bastus NC, Boyd LK, Mao X et al (2010) Androgen-induced TMPRSS2:ERG fusion in nonmalignant prostate epithelial cells. Cancer Res 70:9544–9548

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Belmont AS (2006) Mitotic chromosome structure and condensation. Curr Opin Cell Biol 18:632–638

    Article  CAS  PubMed  Google Scholar 

  • Ben-Neriah Y, Daley GQ, Mes-Masson AM et al (1986) The chronic myelogenous leukemia-specific P210 protein is the product of the BCR/ABL hybrid gene. Science 233:212–214

    Article  CAS  PubMed  Google Scholar 

  • Bester AC, Roniger M, Oren YS et al (2011) Nucleotide deficiency promotes genomic instability in early stages of cancer development. Cell 145:435–446

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Boboila C, Yan C, Wesemann DR et al (2010) Alternative end-joining catalyzes class switch recombination in the absence of both Ku70 and DNA ligase 4. J Exp Med 207:417–427

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Bode J, Benham C, Ernst E et al (2000) Fatal connections: when DNA ends meet on the nuclear matrix. J Cell Biochem 35:3–22

    Article  Google Scholar 

  • Bohlander SK (2005) ETV6: a versatile player in leukemogenesis. Semin Cancer Biol 15:162–174

    Article  CAS  PubMed  Google Scholar 

  • Broeker PL, Super HG, Thirman MJ et al (1996) Distribution of 11q23 breakpoints within the MLL breakpoint cluster region in de novo acute leukemia and in treatment-related acute myeloid leukemia: correlation with scaffold attachment regions and topoisomerase II consensus binding sites. Blood 87:1912–1922

    CAS  PubMed  Google Scholar 

  • Buck D, Malivert L, de Chasseval R et al (2006) Cernunnos, a novel nonhomologous end-joining factor, is mutated in human immunodeficiency with microcephaly. Cell 124:287–299

    Article  CAS  PubMed  Google Scholar 

  • Bunting SF, Nussenzweig A (2013) End-joining, translocations and cancer. Nat Rev Cancer 13:443–454

    Article  CAS  PubMed  Google Scholar 

  • Bunting SF, Callén E, Wong N et al (2010) 53BP1 inhibits homologous recombination in Brca1-deficient cells by blocking resection of DNA breaks. Cell 141:243–254

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bursen A, Schwabe K, Rüster B et al (2010) The AF4.MLL fusion protein is capable of inducing all in mice without requirement of MLL.AF4. Blood 115:3570–3579

    Article  CAS  PubMed  Google Scholar 

  • Campbell PJ, Stephens PJ, Pleasance ED et al (2008) Identification of somatically acquired rearrangements in cancer using genome-wide massively parallel paired-end sequencing. Nat Genet 40:722–729

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Carney JP, Maser RS, Olivares H et al (1998) The hMre11/hRad50 protein complex and Nijmegen breakage syndrome: linkage of double-strand break repair to the cellular DNA damage response. Cell 93:477–486

    Article  CAS  PubMed  Google Scholar 

  • Carrasco C, Dillingham MS, Moreno-Herrero F (2014) Single molecule approaches to monitor the recognition and resection of double-stranded DNA breaks during homologous recombination. DNA Repair (Amst) 20:119–129

    Google Scholar 

  • Chaudhuri J, Alt FW (2004) Class-switch recombination: interplay of transcription, DNA deamination and DNA repair. Nat Rev Immunol 4:541–552

    Article  CAS  PubMed  Google Scholar 

  • Chiang C, Jacobsen JC, Ernst C et al (2012) Complex reorganization and predominant non-homologous repair following chromosomal breakage in karyotypically balanced germline rearrangements and transgenic integration. Nat Genet 44:390–397

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chiarle R, Zhang Y, Frock RL et al (2011) Genome-wide translocation sequencing reveals mechanisms of chromosome breaks and rearrangements in B cells. Cell 147:107–119

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chou DM, Adamson B, Dephoure NE et al (2010) A chromatin localization screen reveals poly (ADP ribose)-regulated recruitment of the repressive polycomb and NuRD complexes to sites of DNA damage. Proc Natl Acad Sci USA 107:18475–18480

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cowell IG, Sunter NJ, Singh PB et al (2007) gammaH2AX foci form preferentially in euchromatin after ionising-radiation. PLoS ONE 2:e1057

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Cramer-Morales K, Nieborowska-Skorska M, Scheibner K et al (2013) Personalized synthetic lethality induced by targeting RAD52 in leukemias identified by gene mutation and expression profile. Blood 122:1293–1304

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Crasta K, Ganem NJ, Dagher R et al (2012) DNA breaks and chromosome pulverization from errors in mitosis. Nature 482:53–58

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cremer T, Cremer C (2001) Chromosome territories, nuclear architecture and gene regulation in mammalian cells. Nat Rev Genet 2:292–301

    Article  CAS  PubMed  Google Scholar 

  • Cremer M, von Hase J, Volm T et al (2001) Non-random radial higher-order chromatin arrangements in nuclei of diploid human cells. Chromosome Res 9:541–567

    Article  CAS  PubMed  Google Scholar 

  • Daley JM, Wilson TE (2005) Rejoining of DNA double-strand breaks as a function of overhang length. Mol Cell Biol 25:896–906

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Daley JM, Kwon Y, Niu H, Sung P (2013) Investigations of homologous recombination pathways and their regulation. Yale J Biol Med 86:453–461

    PubMed Central  CAS  PubMed  Google Scholar 

  • Dalla-Favera R, Bregni M, Erikson J et al (1982) Human c-myc onc gene is located on the region of chromosome 8 that is translocated in Burkitt lymphoma cells. Proc Natl Acad Sci USA 79:7824–7827

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • De Bont R, van Larebeke N (2004) Endogenous DNA damage in humans: a review of quantitative data. Mutagenesis 19:169–185

    Article  PubMed  Google Scholar 

  • de Graaf CA, van Steensel B (2013) Chromatin organization: form to function. Curr Opin Genet Dev 23:185–190

    Article  PubMed  CAS  Google Scholar 

  • de Klein A, van Kessel AG, Grosveld G et al (1982) A cellular oncogene is translocated to the Philadelphia chromosome in chronic myelocytic leukaemia. Nature 300:765–767

    Article  PubMed  Google Scholar 

  • Di Noia JM, Neuberger MS (2007) Molecular mechanisms of antibody somatic hypermutation. Annu Rev Biochem 76:1–22

    Article  PubMed  CAS  Google Scholar 

  • Djebali S, Davis CA, Merkel A et al (2012) Landscape of transcription in human cells. Nature 489:101–108

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dudley DD, Chaudhuri J, Bassing CH, Alt FW (2005) Mechanism and control of V(D)J recombination versus class switch recombination: similarities and differences. Adv Immunol 86:43–112

    Article  CAS  PubMed  Google Scholar 

  • Ellis NA, Groden J, Ye TZ et al (1995) The Bloom’s syndrome gene product is homologous to RecQ helicases. Cell 83:655–666

    Article  CAS  PubMed  Google Scholar 

  • Erikson J, ar-Rushdi A, Drwinga HL et al (1983) Transcriptional activation of the translocated c-myc oncogene in burkitt lymphoma. Proc Natl Acad Sci USA 80: 820–824

    Google Scholar 

  • Forment JV, Kaidi A, Jackson SP (2012) Chromothripsis and cancer: causes and consequences of chromosome shattering. Nat Rev Cancer 12:663–670

    Article  CAS  PubMed  Google Scholar 

  • Gaymes TJ, Shall S, MacPherson LJ et al (2009) Inhibitors of poly ADP-ribose polymerase (PARP) induce apoptosis of myeloid leukemic cells: potential for therapy of myeloid leukemia and myelodysplastic syndromes. Haematologica 94:638–646

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Goldberg M, Stucki M, Falck J et al (2003) MDC1 is required for the intra-S-phase DNA damage checkpoint. Nature 421:952–956

    Article  CAS  PubMed  Google Scholar 

  • Goodarzi AA, Noon AT, Deckbar D et al (2008) ATM signaling facilitates repair of DNA double-strand breaks associated with heterochromatin. Mol Cell 31:167–177

    Article  CAS  PubMed  Google Scholar 

  • Gostissa M, Ranganath S, Bianco JM, Alt FW (2009) Chromosomal location targets different MYC family gene members for oncogenic translocations. Proc Natl Acad Sci USA 106:2265–2270

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Halazonetis TD, Gorgoulis VG, Bartek J (2008) An oncogene-induced DNA damage model for cancer development. Science 319:1352–1355

    Article  CAS  PubMed  Google Scholar 

  • Hastings PJ, Ira G, Lupski JR (2009) A microhomology-mediated break-induced replication model for the origin of human copy number variation. PLoS Genet 5:e1000327

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • He LZ, Bhaumik M, Tribioli C et al (2000) Two critical hits for promyelocytic leukemia. Mol Cell 6:1131–1141

    Article  CAS  PubMed  Google Scholar 

  • Helmrich A, Ballarino M, Tora L (2011) Collisions between replication and transcription complexes cause common fragile site instability at the longest human genes. Mol Cell 44:966–977

    Article  CAS  PubMed  Google Scholar 

  • Heselmeyer-Haddad K, Berroa Garcia LY, Bradley A et al (2012) Single-cell genetic analysis of ductal carcinoma in situ and invasive breast cancer reveals enormous tumor heterogeneity yet conserved genomic imbalances and gain of MYC during progression. Am J Pathol 181:1807–1822

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Holland AJ, Cleveland DW (2012) Chromoanagenesis and cancer: mechanisms and consequences of localized, complex chromosomal rearrangements. Nat Med 18:1630–1638

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Huen MSY, Chen J (2010) Assembly of checkpoint and repair machineries at DNA damage sites. Trends Biochem Sci 35:101–108

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ivanov EL, Sugawara N, Fishman-Lobell J, Haber JE (1996) Genetic requirements for the single-strand annealing pathway of double-strand break repair in Saccharomyces cerevisiae. Genetics 142:693–704

    PubMed Central  CAS  PubMed  Google Scholar 

  • Jackson AL, Loeb LA (2001) The contribution of endogenous sources of DNA damage to the multiple mutations in cancer. Mutat Res 477:7–21

    Article  CAS  PubMed  Google Scholar 

  • Jones S, Hruban RH, Kamiyama M et al (2009) Exomic sequencing identifies PALB2 as a pancreatic cancer susceptibility gene. Science 324:217

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kakadia PM, Tizazu B, Mellert G et al (2011) A novel ABL1 fusion to the SH2 containing inositol phosphatase-1 (SHIP1) in acute lymphoblastic leukemia (ALL). Leukemia 25:1645–1649

    Article  CAS  PubMed  Google Scholar 

  • Kaneko H, Fukao T, Kondo N (2004) The function of RecQ helicase gene family (especially BLM) in DNA recombination and joining. Adv Biophys 38:45–64

    Article  CAS  Google Scholar 

  • Kim J-A, Kruhlak M, Dotiwala F et al (2007) Heterochromatin is refractory to gamma-H2AX modification in yeast and mammals. J Cell Biol 178:209–218

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Klein IA, Resch W, Jankovic M et al (2011) Translocation-capture sequencing reveals the extent and nature of chromosomal rearrangements in B lymphocytes. Cell 147:95–106

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kneuttinger AC, Kashiwazaki G, Prill S et al (2014) Formation and direct repair of UV-induced dimeric DNA pyrimidine lesions. Photochem Photobiol 90:1–14

    Google Scholar 

  • Kottemann MC, Smogorzewska A (2013) Fanconi anaemia and the repair of Watson and Crick DNA crosslinks. Nature 493:356–363

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Krokan HE, Bjørås M (2013) Base excision repair. Cold Spring Harb Perspect Biol 5:a012583

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Lammens K, Bemeleit DJ, Möckel C et al (2011) The Mre11:Rad50 structure shows an ATP-dependent molecular clamp in DNA double-strand break repair. Cell 145:54–66

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lee JA, Carvalho CMB, Lupski JR (2007) A DNA replication mechanism for generating nonrecurrent rearrangements associated with genomic disorders. Cell 131:1235–1247

    Article  CAS  PubMed  Google Scholar 

  • Li G-M (2008) Mechanisms and functions of DNA mismatch repair. Cell Res 18:85–98

    Article  CAS  PubMed  Google Scholar 

  • Li X, Manley JL (2006) Cotranscriptional processes and their influence on genome stability. Genes Dev 20:1838–1847

    Article  CAS  PubMed  Google Scholar 

  • Li Z, Woo CJ, Iglesias-Ussel MD et al (2004) The generation of antibody diversity through somatic hypermutation and class switch recombination. Genes Dev 18:1–11

    Article  PubMed  CAS  Google Scholar 

  • Li Y, Schwab C, Ryan SL et al (2014) Constitutional and somatic rearrangement of chromosome 21 in acute lymphoblastic leukaemia. Nature 508:98–102

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lin Y-H, Kakadia PM, Chen Y et al (2009a) Global reduction of the epigenetic H3K79 methylation mark and increased chromosomal instability in CALM-AF10-positive leukemias. Blood 114:651–658

    Article  CAS  PubMed  Google Scholar 

  • Lin C, Yang L, Tanasa B et al (2009b) Nuclear receptor-induced chromosomal proximity and DNA breaks underlie specific translocations in cancer. Cell 139:1069–1083

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lin C, Yang L, Rosenfeld MG (2012) Molecular logic underlying chromosomal translocations, random or non-random? Adv Cancer Res 113:241–279

    Article  CAS  PubMed  Google Scholar 

  • Liu P, Erez A, Nagamani SCS et al (2011) Chromosome catastrophes involve replication mechanisms generating complex genomic rearrangements. Cell 146:889–903

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lodish H, Berk A, Matsudaira P, Kaiser CA, Krieger M et al (2004) Molecular biology of the cell. WH Freeman, New York, p 963

    Google Scholar 

  • Lucas-Lledó JI, Lynch M (2009) Evolution of mutation rates: phylogenomic analysis of the photolyase/cryptochrome family. Mol Biol Evol 26:1143–1153

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Luijsterburg MS, Dinant C, Lans H et al (2009) Heterochromatin protein 1 is recruited to various types of DNA damage. J Cell Biol 185:577–586

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lukas J, Lukas C, Bartek J (2011a) More than just a focus: the chromatin response to DNA damage and its role in genome integrity maintenance. Nat Cell Biol 13:1161–1169

    Article  CAS  PubMed  Google Scholar 

  • Lukas C, Savic V, Bekker-Jensen S et al (2011b) 53BP1 nuclear bodies form around DNA lesions generated by mitotic transmission of chromosomes under replication stress. Nat Cell Biol 13:243–253

    Article  CAS  PubMed  Google Scholar 

  • Madisen L, Groudine M (1994) Identification of a locus control region in the immunoglobulin heavy-chain locus that deregulates c-myc expression in plasmacytoma and Burkitt’s lymphoma cells. Genes Dev 8:2212–2226

    Article  CAS  PubMed  Google Scholar 

  • Mahowald GK, Baron JM, Mahowald MA et al (2009) Aberrantly resolved RAG-mediated DNA breaks in Atm-deficient lymphocytes target chromosomal breakpoints in cis. Proc Natl Acad Sci USA 106:18339–18344

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Meek DW (2009) Tumour suppression by p53: a role for the DNA damage response? Nat Rev Cancer 9:714–723

    CAS  PubMed  Google Scholar 

  • Meetei AR, de Winter JP, Medhurst AL et al (2003) A novel ubiquitin ligase is deficient in Fanconi anemia. Nat Genet 35:165–170

    Article  CAS  PubMed  Google Scholar 

  • Misteli T (2010) Higher-order genome organization in human disease. Cold Spring Harb Perspect Biol 2:a000794

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Mitelman F, Johansson B, Mertens F (2007) The impact of translocations and gene fusions on cancer causation. Nat Rev Cancer 7:233–245

    Article  CAS  PubMed  Google Scholar 

  • Molenaar JJ, Koster J, Zwijnenburg DA et al (2012) Sequencing of neuroblastoma identifies chromothripsis and defects in neuritogenesis genes. Nature 483:589–593

    Article  CAS  PubMed  Google Scholar 

  • Moshous D, Callebaut I, de Chasseval R et al (2001) Artemis, a novel DNA double-strand break repair/V(D)J recombination protein, is mutated in human severe combined immune deficiency. Cell 105:177–186

    Article  CAS  PubMed  Google Scholar 

  • Mulaw MA, Krause A, Krause AJ et al (2012) CALM/AF10-positive leukemias show upregulation of genes involved in chromatin assembly and DNA repair processes and of genes adjacent to the breakpoint at 10p12. Leukemia 26:1012–1019

    Article  CAS  PubMed  Google Scholar 

  • Müller A, Fishel R (2002) Mismatch repair and the hereditary non-polyposis colorectal cancer syndrome (HNPCC). Cancer Invest 20:102–109

    Article  PubMed  Google Scholar 

  • Muramatsu M, Kinoshita K, Fagarasan S et al (2000) Class switch recombination and hypermutation require activation-induced cytidine deaminase (AID), a potential RNA editing enzyme. Cell 102:553–563

    Article  CAS  PubMed  Google Scholar 

  • Muramatsu M, Nagaoka H, Shinkura R et al (2007) Discovery of activation-induced cytidine deaminase, the engraver of antibody memory. Adv Immunol 94:1–36

    Article  CAS  PubMed  Google Scholar 

  • Nowicki MO, Falinski R, Koptyra M et al (2004) BCR/ABL oncogenic kinase promotes unfaithful repair of the reactive oxygen species-dependent DNA double-strand breaks. Blood 104:3746–3753

    Article  CAS  PubMed  Google Scholar 

  • Okuda T, Cai Z, Yang S et al (1998) Expression of a knocked-in AML1-ETO leukemia gene inhibits the establishment of normal definitive hematopoiesis and directly generates dysplastic hematopoietic progenitors. Blood 91:3134–3143

    CAS  PubMed  Google Scholar 

  • Ozeri-Galai E, Bester AC, Kerem B (2012) The complex basis underlying common fragile site instability in cancer. Trends Genet 28:295–302

    Article  CAS  PubMed  Google Scholar 

  • Pellegrini L, Yu DS, Lo T et al (2002) Insights into DNA recombination from the structure of a RAD51-BRCA2 complex. Nature 420:287–293

    Article  CAS  PubMed  Google Scholar 

  • Plank J, Hsieh T-S (2009) Helicase-appended topoisomerases: new insight into the mechanism of directional strand transfer. J Biol Chem 284:30737–30741

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pleasance ED, Cheetham RK, Stephens PJ et al (2010a) A comprehensive catalogue of somatic mutations from a human cancer genome. Nature 463:191–196

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pleasance ED, Stephens PJ, O’Meara S et al (2010b) A small-cell lung cancer genome with complex signatures of tobacco exposure. Nature 463:184–190

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Popp HD, Bohlander SK (2010) Genetic instability in inherited and sporadic leukemias. Genes Chromosomes Cancer 49:1071–1081

    Article  CAS  PubMed  Google Scholar 

  • Raghavan SC, Kirsch IR, Lieber MR (2001) Analysis of the V(D)J recombination efficiency at lymphoid chromosomal translocation breakpoints. J Biol Chem 276:29126–29133

    Article  CAS  PubMed  Google Scholar 

  • Rassool FV (2003) DNA double strand breaks (DSB) and non-homologous end joining (NHEJ) pathways in human leukemia. Cancer Lett 193:1–9

    Article  CAS  PubMed  Google Scholar 

  • Robbiani DF, Bunting S, Feldhahn N et al (2009) AID produces DNA double-strand breaks in non-Ig genes and mature B cell lymphomas with reciprocal chromosome translocations. Mol Cell 36:631–641

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Roth DB, Wilson JH (1986) Nonhomologous recombination in mammalian cells: role for short sequence homologies in the joining reaction. Mol Cell Biol 6:4295–4304

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rowley JD (1973) Letter: A new consistent chromosomal abnormality in chronic myelogenous leukaemia identified by quinacrine fluorescence and Giemsa staining. Nature 243:290–293

    Article  CAS  PubMed  Google Scholar 

  • Rowley JD (2001) Chromosome translocations: dangerous liaisons revisited. Nat Rev Cancer 1:245–250

    Article  CAS  PubMed  Google Scholar 

  • Rowley JD, Reshmi S, Sobulo O et al (1997) All patients with the T(11;16)(q23;p13.3) that involves MLL and CBP have treatment-related hematologic disorders. Blood 90:535–541

    CAS  PubMed  Google Scholar 

  • Sallmyr A, Fan J, Rassool FV (2008a) Genomic instability in myeloid malignancies: increased reactive oxygen species (ROS), DNA double strand breaks (DSBs) and error-prone repair. Cancer Lett 270:1–9

    Article  CAS  PubMed  Google Scholar 

  • Sallmyr A, Tomkinson AE, Rassool FV (2008b) Up-regulation of WRN and DNA ligase IIIalpha in chronic myeloid leukemia: consequences for the repair of DNA double-strand breaks. Blood 112:1413–1423

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Schessl C, Rawat VPS, Cusan M et al (2005) The AML1-ETO fusion gene and the FLT3 length mutation collaborate in inducing acute leukemia in mice. J Clin Invest 115:2159–2168

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Schotta G, Sengupta R, Kubicek S et al (2008) A chromatin-wide transition to H4K20 monomethylation impairs genome integrity and programmed DNA rearrangements in the mouse. Genes Dev 22:2048–2061

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Shuck SC, Short EA, Turchi JJ (2008) Eukaryotic nucleotide excision repair: from understanding mechanisms to influencing biology. Cell Res 18:64–72

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Simsek D, Jasin M (2010) Alternative end-joining is suppressed by the canonical NHEJ component Xrcc4-ligase IV during chromosomal translocation formation. Nat Struct Mol Biol 17:410–416

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Skorski T (2008) BCR/ABL, DNA damage and DNA repair: implications for new treatment concepts. Leuk Lymphoma 49:610–614

    Article  CAS  PubMed  Google Scholar 

  • Slijepcevic P, Al-Wahiby S (2005) Telomere biology: integrating chromosomal end protection with DNA damage response. Chromosoma 114:275–285

    Article  CAS  PubMed  Google Scholar 

  • Soutoglou E, Dorn JF, Sengupta K et al (2007) Positional stability of single double-strand breaks in mammalian cells. Nat Cell Biol 9:675–682

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sperka T, Wang J, Rudolph KL (2012) DNA damage checkpoints in stem cells, ageing and cancer. Nat Rev Mol Cell Biol 13:579–590

    Article  CAS  PubMed  Google Scholar 

  • Stephens PJ, McBride DJ, Lin M-L et al (2009) Complex landscapes of somatic rearrangement in human breast cancer genomes. Nature 462:1005–1010

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Stephens PJ, Greenman CD, Fu B et al (2011) Massive genomic rearrangement acquired in a single catastrophic event during cancer development. Cell 144:27–40

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Strathdee CA, Gavish H, Shannon WR, Buchwald M (1992) Cloning of cDNAs for Fanconi’s anaemia by functional complementation. Nature 358:434

    CAS  PubMed  Google Scholar 

  • Strick R, Strissel PL, Borgers S et al (2000) Dietary bioflavonoids induce cleavage in the MLL gene and may contribute to infant leukemia. Proc Natl Acad Sci USA 97:4790–4795

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Strissel PL, Strick R, Rowley JD, Zeleznik-Le NJ (1998) An in vivo topoisomerase II cleavage site and a DNase I hypersensitive site colocalize near exon 9 in the MLL breakpoint cluster region. Blood 92:3793–3803

    CAS  PubMed  Google Scholar 

  • Tano K, Shiota S, Collier J et al (1990) Isolation and structural characterization of a cDNA clone encoding the human DNA repair protein for O6-alkylguanine. Proc Natl Acad Sci USA 87:686–690

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Taub R, Kirsch I, Morton C et al (1982) Translocation of the c-myc gene into the immunoglobulin heavy chain locus in human Burkitt lymphoma and murine plasmacytoma cells. Proc Natl Acad Sci USA 79:7837–7841

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tomlins SA, Rhodes DR, Perner S et al (2005) Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer. Science 310:644–648

    Article  CAS  PubMed  Google Scholar 

  • Tonegawa S (1983) Somatic generation of antibody diversity. Nature 302:575–581

    Article  CAS  PubMed  Google Scholar 

  • van Etten RA (1993) Disease progression in a murine model of BCR/ABL leukemogenesis. Leuk Lymphoma 11(Suppl 1):239–242

    Article  PubMed  Google Scholar 

  • Varon R, Vissinga C, Platzer M et al (1998) Nibrin, a novel DNA double-strand break repair protein, is mutated in Nijmegen breakage syndrome. Cell 93:467–476

    Article  CAS  PubMed  Google Scholar 

  • Vilenchik MM, Knudson AG (2003) Endogenous DNA double-strand breaks: production, fidelity of repair, and induction of cancer. Proc Natl Acad Sci USA 100:12871–12876

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Vos SM, Tretter EM, Schmidt BH, Berger JM (2011) All tangled up: how cells direct, manage and exploit topoisomerase function. Nat Rev Mol Cell Biol 12:827–841

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wang H, Perrault AR, Takeda Y et al (2003) Biochemical evidence for Ku-independent backup pathways of NHEJ. Nucleic Acids Res 31:5377–5388

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wang J, Gong Z, Chen J (2011) MDC1 collaborates with TopBP1 in DNA replication checkpoint control. J Cell Biol 193:267–273

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Weinstock DM, Elliott B, Jasin M (2006) A model of oncogenic rearrangements: differences between chromosomal translocation mechanisms and simple double-strand break repair. Blood 107:777–780

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wijchers PJ, de Laat W (2011) Genome organization influences partner selection for chromosomal rearrangements. Trends Genet 27:63–71

    Article  CAS  PubMed  Google Scholar 

  • Williams GJ, Lees-Miller SP, Tainer JA (2010) Mre11–Rad50–Nbs1 conformations and the control of sensing, signaling, and effector responses at DNA double-strand breaks. DNA Repair (Amst) 9:1299–1306

    Article  CAS  Google Scholar 

  • Wooster R, Bignell G, Lancaster J et al (1995) Identification of the breast cancer susceptibility gene BRCA2. Nature 378:789–792

    Article  CAS  PubMed  Google Scholar 

  • Xu GL, Bestor TH, Bourc’his D et al (1999) Chromosome instability and immunodeficiency syndrome caused by mutations in a DNA methyltransferase gene. Nature 402:187–191

    Article  CAS  PubMed  Google Scholar 

  • Yang H, Jeffrey PD, Miller J et al (2002) BRCA2 function in DNA binding and recombination from a BRCA2-DSS1-ssDNA structure. Science 297:1837–1848

    Article  CAS  PubMed  Google Scholar 

  • Yates LR, Campbell PJ (2012) Evolution of the cancer genome. Nat Rev Genet 13:795–806

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yu CE, Oshima J, Fu YH et al (1996) Positional cloning of the Werner’s syndrome gene. Science 272:258–262

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Gostissa M, Hildebrand DG et al (2010) The role of mechanistic factors in promoting chromosomal translocations found in lymphoid and other cancers. Adv Immunol 106:93–133

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhang Y, McCord RP, Ho Y-J et al (2012) Spatial organization of the mouse genome and its role in recurrent chromosomal translocations. Cell 148:908–921

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan K. Bohlander .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bohlander, S.K., Kakadia, P.M. (2015). DNA Repair and Chromosomal Translocations. In: Ghadimi, B., Ried, T. (eds) Chromosomal Instability in Cancer Cells. Recent Results in Cancer Research, vol 200. Springer, Cham. https://doi.org/10.1007/978-3-319-20291-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-20291-4_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-20290-7

  • Online ISBN: 978-3-319-20291-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics