Skip to main content

Detection of S-Phase of Cell Division Cycle in Plant Cells and Tissues by Using 5-Ethynyl-2′-Deoxyuridine (EdU)

  • Chapter
  • First Online:
Plant Microtechniques and Protocols

Abstract

A detailed analysis of the plant cell division cycle is required to understand the changes in metabolic, developmental, and physiological processes. Determination of DNA synthesis phase (S-phase) of the cell division cycle is particularly important to assess the proliferative status of a given cell, tissue, or organ. Several methods exist to detect and quantify the S-phase of the cell division cycle. In comparison to frequently used detection by bromodeoxyuridine (BrdU) and tritiated thymidine incorporation, recently introduced ethynyl deoxyuridine method (EdU) described here, affords several advantages. EdU assay offers a simple, rapid, and nonradioactive method for proliferation analysis in plant cells while preserving morphological integrity. Here, we describe the 5-ethynyl-2′-deoxyuridine (EdU)-based S-phase assay for use in plant cells and tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Taylor JH, Woods PS, Hughes WL (1957) The organization and duplication of chromosomes as revealed by autoradiographic studies using tritium labeled thymidine. Proc Natl Acad Sci U S A 43:122–128

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Mendelsohn ML (1962) Autoradiographic analysis of cell proliferation in spontaneous breast cancer of C3H mouse. The growth fraction. J Natl Cancer Inst 28:1015–1029

    CAS  PubMed  Google Scholar 

  3. Gratzner HG (1982) Monoclonal antibody to 5-bromo- and 5-iododeoxyuridine: a new reagent for detection of DNA replication. Science 218:474–475

    Article  CAS  PubMed  Google Scholar 

  4. Leif RC, Stein JH, Zucker RM (2004) A short history of the initial application of anti-5-BrdU to the detection and measurement of S phase. Cytometry A 58:45–52

    Article  PubMed  Google Scholar 

  5. Dolbeare F, Gratzner H, Pallavicini MG, Gray JW (1983) Flow cytometric measurement of total DNA content and incorporated bromodeoxyuridine. Proc Natl Acad SciU SA 80:5573–5577

    Article  CAS  Google Scholar 

  6. Moran R, Darzynkiewicz Z, Staiano-Coico L, Melamed MR (1985) Detection of BrdUrd incorporation by monoclonal antibodies: role of the DNA denaturation step. J Histochem Cytochem 33:821–827

    Article  CAS  PubMed  Google Scholar 

  7. Holm M, Thomsen M, Hoyer M, Hokland P (1998) Optimization of a flow cytometric method for the simultaneous measurement of cell surface antigen, DNA content and in vivo BrdUrd incorporation into normal and malignant hematopoietic cells. Cytometry A 32:28–36

    Article  CAS  Google Scholar 

  8. Stroobants C, Sossountzov L, Miginiac E (1990) DNA Synthesis in excised tobacco leaves after Bromodeoxyuridine incorporation: immunohistochemical detection in semi-thin spurr sections. J Histochem Cytochem 38:641–647

    Article  CAS  PubMed  Google Scholar 

  9. Fowke LC, Cutler AJ (1994) Plant protoplast techniques. In: Harris N, Oparka KJ (eds) Plant cell biology: a practical approach. IRL, Oxford, pp 177–196

    Google Scholar 

  10. Goodbody KC, Lloyd CW (1994) Immunofluorescence techniques for the analysis of the cytoskeleton. In: Harris N, Oparka KJ (eds) Plant cell biology: a practical approach. IRL, Oxford, pp 221–243

    Google Scholar 

  11. Salic A, Mitchison TJ (2008) A chemical method for fast and sensitive detection of DNA synthesis in vivo. Proc Natl Acad Sci U S A 105:2415–2420

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Kolb HC, Sharpless KB (2003) The growing impact of click chemistry on drug discovery. Drug Discov Today 8:1128–1137

    Article  CAS  PubMed  Google Scholar 

  13. Darzynkiewicz Z, Traganos F, Zhao H, Halicka HD, Li J (2011) Cytometry of DNA replication and RNA synthesis: historical perspective and recent advances based on “click chemistry”. Cytometry A 79:328–337

    Article  PubMed Central  PubMed  Google Scholar 

  14. Best MD (2009) Click chemistry and bioorthogonal reactions: unprecedented selectivity in the labeling of biological molecules. BioChemistry 48:6571–6584

    Article  CAS  PubMed  Google Scholar 

  15. Agard NJ, Baskin JM, Prescher JA, Lo A, Bertozzi CR (2006) A comparative study of bioorthogonal reactions with azides. ACS Chem Biol 1:644–648

    Article  CAS  PubMed  Google Scholar 

  16. Kotogány E, Dudits D, Horváth GV, Ayaydin F (2010) A rapid and robust assay for detection of S-phase cell cycle progression in plant cells and tissues by using ethynyl deoxyuridine. Plant Meth 6:5

    Article  Google Scholar 

  17. Ferullo DJ, Cooper DL, Moore HR, Lovett S (2010) Cell cycle synchronization of E. coli using the stringent response, with fluorescence labeling assays for DNA content and replication. Methods 48:8–13

    Article  Google Scholar 

  18. Hua H, Kearsey SE (2011) Monitoring DNA replication in fission yeast by incorporation of 5-ethynyl-2′-deoxyuridine. Nucl Acids Res 39:e60

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Lopez-Serra L, Lengronne A, Borges V, Kelly G, Uhlmann F (2013) Budding yeast Wapl controls sister chromatid cohesion maintenance and chromosome condensation. Curr Biol 23:64–69

    Article  CAS  PubMed  Google Scholar 

  20. Kaiser CL, Kamien AJ, Shah PA, Chapman BJ, Cotanche DA (2009) 5-ethynyl-2′-deoxyuridine labeling detects proliferating cells in the regenerating avian cochlea. Laryngoscope 119:1770–1775

    Article  PubMed Central  PubMed  Google Scholar 

  21. Warren M, Puskarczyk K, Chapman SC (2009) Chick embryo proliferation studies using EdU labeling. Dev Dyn 238:944–949

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Diermeier-Daucher S, Clarke ST, Hill D, Vollmann-Zwerenz A, Bradford JA, Brockhoff G (2009) Cell type specific applicability of 5-ethynyl-2′-deoxyuridine (EdU) for dynamic proliferation assessment in flow cytometry. Cytometry A 75:535–546

    Article  PubMed  Google Scholar 

  23. Limsirichaikul S, Niimi A, Fawcett H, Lehmann A, Yamashita S, Ogi T (2009) A rapid non-radioactive technique for measurement of repair synthesis in primary human fibroblasts by incorporation of ethynyl deoxyuridine (EdU). Nucl Acids Res 37:e31

    Article  PubMed Central  PubMed  Google Scholar 

  24. Notaguchi M, Wolf S, Lucas WJ (2012) Phloem-mobile Aux/IAA transcripts target to the root tip and modify root architecture. J Integr Plant Biol 54:760–772

    Article  CAS  PubMed  Google Scholar 

  25. Kakar K, Zhang H, Scheres B, Dhonukshe P (2013) CLASP-mediated cortical microtubule organization guides PIN polarization axis. Nature 495:529–533

    Article  CAS  PubMed  Google Scholar 

  26. Perilli S, Perez-Perez JM, Di Mambro R, Peris CL, Diaz-Trivino S, Del Bianco M, Pierdonati E, Moubayidin L, Cruz-Ramirez A, Constantino P, Scheres B, Sabatini S (2013) RETINOBLASTOMA-RELATED protein stimulates cell differentiation in the Arabidopsis root meristem by interacting with cytokinin signaling. Plant Cell 25:4469–4478

    Google Scholar 

  27. Zhu Y, Weng M, Yang Y, Zhang C, Li Z, Shen WH, Dong A (2011) Arabidopsis homologues of the histone chaperone ASF1 are crucial for chromatin replication and cell proliferation in plant development. Plant J 66:443–455

    Article  CAS  PubMed  Google Scholar 

  28. Xu D, Huang W, Li Y, Wang H, Hunag H, Cui X (2012) Elongator complex is critical for cell cycle progression and leaf patterning in Arabidopsis. Plant J 69:792–808

    Article  CAS  PubMed  Google Scholar 

  29. Xiong Y, McCormack M, Li L, Hall Q, Xiang C, Sheen J (2013) Glucose–TOR signalling reprograms the transcriptome and activates meristems. Nature 496:181–186

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Ichihashi Y, Kawade K, Usami T, Horiguchi G, Takahashi T, Tsukaya H (2011) Key proliferative activity in the junction between the leaf blade and leaf petiole of Arabidopsis. Plant Physiol 157:1151–1162

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. She W, Grimanelli D, Rutowicz K, Whitehead MW, Puzio M, Kotlinski M, Jerzmanowski A, Baroux C (2013) Chromatin reprogramming during the somatic-to-reproductive cell fate transition in plants. Development 140:4008–4019

    Article  CAS  PubMed  Google Scholar 

  32. Hayashi K, Hasegawa J, Matasunaga S (2013) The boundary of the meristematic and elongation zones in roots: endoreduplication precedes rapid cell expansion. Sci Rep 3:2723

    PubMed Central  PubMed  Google Scholar 

  33. Bazin J, Khan GA, Combier JP, Bustos-Sanmamed P, Debernardi JM, Rodriguez R, Sorin C, Palatnik J, Hartmann C, Crespi M, Lelandais-Briere C (2013) miR396 affects mycorrhization and root meristem activity in the legume Medicago truncatula. Plant J 74:920–934

    Article  CAS  PubMed  Google Scholar 

  34. Ayaydin F, Kotogány E, Abraham E, Horváth GV (2011) Synchronization of Medicago sativa cell suspension culture. Meth Mol Biol 761:227–238

    Article  CAS  Google Scholar 

  35. Ron M, Dorrity MW, de Lucas M, Toal T, Hernandez RJ, Little SA, Maloof JN, Kliebenstein DJ, Brady SM (2013) Identification of novel loci regulating interspecific variation in root morphology and cellular development in tomato. Plant Physiol 162:755–768

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Kuznetsova MA, Sheval EV (2013) Detection of replication sites in plant cell nuclei by using semithin sections. Cell Tissue Biol 7:375–378

    Article  Google Scholar 

  37. Schubert I, Schubert V, Fuchs J (2011) No evidence for “break-induced replication” in a higher plant—but break-induced conversion may occur. Front Plant Sci 2:8

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Nakayama H, Yamaguchi T, Tsukaya H (2012) Acquisition and diversification of cladodes: leaf-like organs in the genus Asparagus. Plant Cell 24:929–940

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Tresch S, Schmotz J, Grossmann K (2011) Probing mode of action in plant cell cycle by the herbicide endothall, a protein phosphatase inhibitor. Pestic Biochem Physiol 99:86–95

    Article  CAS  Google Scholar 

  40. Dudits D, Abraham E, Miskolczi P, Ayaydin F, Bilgin M, Horváth GV (2011) Cell-cycle control as a target for calcium, hormonal and developmental signals: the role of phosphorylation in the retinoblastoma-centred pathway. Ann Bot 107:1193–1202

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Bass HW, Wear EE, Lee TJ, Hoffman GG, Gumber HK, Allen GC, Thompson WF, Hanley-Bowdoin L (2014) A maize root tip system to study DNA replication programmes in somatic and endocycling nuclei during plant development. J Exp Bot 65:2747–2756

    Article  CAS  PubMed  Google Scholar 

  42. Kelliher T, Walbot V (2011) Emergence and patterning of the five cell types of the Zea mays anther locule. Dev Biol 350:32–49

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Neef AB, Luedtkel NW (2011) Dynamic metabolic labeling of DNA in vivo with arabinosyl nucleosides. Proc Natl Acad Sci U S A 108:20404–20409

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Cruz-Ramirez A, Diaz-Trivino S, Wachsman G, Du Y, Arteaga-Vazquez M, Zhang H, Benjamins R, Blilou I, Neef AB, Chandler V, Scheres B (2013) A SCARECROW-RETINOBLASTOMA protein network controls protective quiescence in the Arabidopsis root stem cell organizer. PLOS Biol 11:e1001724

    Article  PubMed Central  PubMed  Google Scholar 

  45. Qu D, Wang G, Wang Z, Zhou L, Chi W, Cong S, Ren X, Liang P, Zhang B (2011) 5-ethynyl-2′-deoxycytidine as a new agent for DNA labeling: detection of proliferating cells. Anal Biochem 417:112–121

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ferhan Ayaydin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kuntam, S., Ayaydin, F. (2015). Detection of S-Phase of Cell Division Cycle in Plant Cells and Tissues by Using 5-Ethynyl-2′-Deoxyuridine (EdU). In: Yeung, E., Stasolla, C., Sumner, M., Huang, B. (eds) Plant Microtechniques and Protocols. Springer, Cham. https://doi.org/10.1007/978-3-319-19944-3_18

Download citation

Publish with us

Policies and ethics