Skip to main content

Paraconsistent Logic Study of Image Focus in Cylindrical Refraction Experiments

  • Chapter
  • First Online:
Paraconsistent Intelligent-Based Systems

Part of the book series: Intelligent Systems Reference Library ((ISRL,volume 94))

  • 487 Accesses

Abstract

Automation techniques have increased their applications in different areas of knowledge areas. Digital Image Processing is one of the most important application areas. Image processing algorithms have been developed to automate autofocus in digital cameras, to evaluate focus quality, and many other industrial automation tasks. In scientific use, image fidelity is determinative as blurred pictures may induce erroneous conclusions on imaged-object size, position, shape, and volume evaluation. For this reason, plenty of algorithms have been created to avoid these mistakes and to ensure a precise focus. However, these new algorithms’ uprising has produced some contradictory results. To solve these inconsistencies, the use of Paraconsistent Logic (PL) can be an important method to provide parameters to measure lack of information, indicating a paracomplete condition. Images with cylindrical refraction effects are important examples of how PL can be applied to solve focus inconsistencies. This work analyses experimental acquired images from objects inside glass cylindrical tube typically used in a natural circulation facility. This experiment is used as basis to exemplify the importance of using PL to evaluate different focus measurements in order to obtain good flow parameters estimation. Some intelligent algorithms are used to predict and to correct these possible inconsistencies on optical distortion evaluation, which is directly related to focus definition and estimation. As a result, object dimensions estimation can have its accuracy enhanced.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ali, S.F., Yeung, H.: Experimental investigation and numerical simulation of two-phase flow in a large-diameter horizontal flow line vertical riser. Petrol. Sci. Technol. 37–41 (2010)

    Google Scholar 

  2. Serizawa, A., Feng, Z., Kawara, Z.: Two-phase flow in microchannels. Exp. Therm. Fluid Sci. 26, 703–714 (2002)

    Article  Google Scholar 

  3. Arcanjo, A.A., Tibiriçá, C.B., Ribatski, G.: Evaluation of flow patterns and elongated bubble characteristics during the flow boiling of halocarbon refrigerants in a micro-scale channel. Exp. Therm. Fluid Sci. 34, 766–775 (2010)

    Article  Google Scholar 

  4. Liu, W.-C., Yang, C.-Y.: Two-phase flow visualization and heat transfer performance of convective boiling in micro heat exchangers. Exp. Therm. Fluid Sci. 57, 358–364 (2014)

    Article  Google Scholar 

  5. De Mesquita, R.N., Masotti, P.H.F., Penha, R.M.L., Andrade, D.A., Sabundjian, G., Torres, W.M., Macedo, L.A.: Classification of natural circulation two-phase flow patterns using fuzzy inference on image analysis. Nucl. Eng. Des. 250, 592–599 (2012)

    Google Scholar 

  6. Zboray, R., Adams, R., Cortesi, M., Prasser, H.-M.: Development of a fast neutron imaging system for investigating two-phase flows in nuclear thermal–hydraulic phenomena: a status report. Nucl. Eng. Des. 273, 10–23 (2014)

    Article  Google Scholar 

  7. Mantle, M.D., Sederman, A.J., Gladden, L.F.: Single- and two-phase flow in fixed-bed reactors : MRI flow visualisation and lattice-Boltzmann simulations. Chem. Eng. Sci. 56, 523–529 (2001)

    Article  Google Scholar 

  8. Thome, J.R., Hajal, J.El: Two-phase flow pattern map for evaporation in horizontal tubes: latest version. Heat Transf. Eng. 24, 3–10 (2003)

    Article  Google Scholar 

  9. Eskicioglu, A.M., Fisher, P.S.: Image quality measures and their performance. Commun. IEEE Trans. 43, 2959–2965 (1995)

    Article  Google Scholar 

  10. Kautsky, J., Flusser, J., Zitová, B., Šimberová, S.: A new wavelet-based measure of image focus. Pattern Recogn. Lett. 23, 1785–1794 (2002)

    Article  MATH  Google Scholar 

  11. Dash, R., Majhi, B.: Motion blur parameters estimation for image restoration. Opt. Int. J. Light Electron Opt. 125, 1634–1640 (2014)

    Article  Google Scholar 

  12. Kumar, V., Gupta, P.: Importance of statistical measures in digital image processing. IJATAE 2, 56–62 (2012)

    MATH  Google Scholar 

  13. Ferzli, R., Karam, L.J.: A no-reference objective image sharpness metric based on the notion of Just Noticeable Blur (JNB). IEEE Trans. Image Process. 18, 717–728 (2009)

    Article  MathSciNet  Google Scholar 

  14. Huang, W., Jing, Z.: Evaluation of focus measures in multi-focus image fusion. Pattern Recogn. Lett. 28, 493–500 (2007)

    Article  Google Scholar 

  15. Caviedes, J., Oberti, F.: A new sharpness metric based on local kurtosis, edge and energy information. Signal Process. Image Commun. 19, 147–161 (2004)

    Article  Google Scholar 

  16. Williams, D., Burns, P.: Measuring and managing digital image sharpening. In: Proceedings of IS&T 2008 Archiving Conference, pp. 89–93. Bern, Switzerland (2008)

    Google Scholar 

  17. Gruev, V., Perkins, R., York, T.: CCD polarization imaging sensor with aluminum nanowire optical filters. Opt. Express 18, 19087–19094 (2010)

    Article  Google Scholar 

  18. Fossum, E.R., Member, S.: CMOS image sensors : electronic camera-on-a-chip. IEEE Trans. Electron Devices 44, 1689–1698 (1997)

    Article  Google Scholar 

  19. Riutort-Mayol, G., Marqués-Mateu, A., Seguí, A.E., Lerma, J.L.: Grey level and noise evaluation of a Foveon X3 image sensor: a statistical and experimental approach. Sensors (Basel) 12, 10339–10368 (2012)

    Article  Google Scholar 

  20. Ray, S.F.: Scientific Photography and Applied Imaging. Focal Press, Oxford (1999)

    Google Scholar 

  21. Eskicioglu, A.M., Fisher, P.S.: A survey of quality measures for gray scale image compression. In: Proceedings of 1993 Space and Earth Science Data Compression Workshop, pp. 49–61. NASA (1993)

    Google Scholar 

  22. Tapiovaara, M.J.: Review of relationships between physical measurements and user evaluation of image quality. Radiat. Prot. Dosimetry. 129, 244–248 (2008)

    Article  Google Scholar 

  23. Moreno, P., Calderero, F.: Evaluation of sharpness measures and proposal of a stop criterion for reverse diffusion in the context of image deblurring. In: 8th International Conference on Computer Vision Theory and Applications (2013)

    Google Scholar 

  24. Krotkov, E.: Focusing. Int. J. Comput. Vis. 237, 223–237 (1987)

    Google Scholar 

  25. Goldsmith, N.T.: Deep focus; a digital image processing technique to produce improved focal depth in light microscopy. Image Anal. Stereol. 19, 163–167 (2000)

    Article  Google Scholar 

  26. Olsen, M.G., Adrian, R.J.: Out-of-focus effects on particle image visibility and correlation in microscopic particle image velocimetry. Exp. Fluids 29, s166–s174 (2000)

    Article  Google Scholar 

  27. Malik, A, Choi, T.: A novel algorithm for estimation of depth map using image focus for 3D shape recovery in the presence of noise. Pattern Recogn. 41, 2200–2225 (2008)

    Google Scholar 

  28. Krotkov, E., Martin, J.-P.: Range from focus. In: Proceedings of the 1986 IEEE International Conference on Robotics and Automation, vol. 3 (1986)

    Google Scholar 

  29. Eltoukhy, H.A., Kavusi, S.: A computationally efficient algorithm for multi-focus image reconstruction. Proc. SPIE Electron. Imag. 5017, 332–341 (2003)

    Google Scholar 

  30. Groen, F.C.A., Young, I.T., Ligthart, G.: A comparison of different focus functions for use in autofocus algorithms. Cytometry 6, 81–91 (1985)

    Article  Google Scholar 

  31. Huang, W., Jing, Z.: Multi-focus image fusion using pulse coupled neural network. Pattern Recogn. Lett. 28, 1123–1132 (2007)

    Article  Google Scholar 

  32. Li, S., Kwok, J.T., Wang, Y.: Multifocus image fusion using artificial neural networks. Pattern Recogn. Lett. 23, 985–997 (2002)

    Article  MATH  Google Scholar 

  33. Wang, Z., Ma, Y., Gu, J.: Multi-focus image fusion using PCNN. Pattern Recogn. 43, 2003–2016 (2010)

    Article  MATH  Google Scholar 

  34. Mast, T.D., Nachman, A.I., Waag, R.C.: Focusing and imaging using eigenfunctions of the scattering operator. J. Acoust. Soc. Am. 102, 715–725 (1997)

    Article  Google Scholar 

  35. Ray, S.F.: Applied Photographic Optics. Focal Press, Oxford (1994)

    Google Scholar 

  36. Li, S., Kwok, J.T., Zhu, H., Wang, Y.: Texture classification using the support vector machines. Pattern Recogn. 36, 2883–2893 (2003)

    Article  MATH  Google Scholar 

  37. Jähne, B., Haussecker, H., Geissler, P. ed: Handbook of Computer Vision and Applications. Academic Press, New York (1999)

    Google Scholar 

  38. Schlag, J., Sanderson, A., Neuman, C., Wimberly, F.: Implementation of automatic focusing algorithms for a computer vision system with camera control. Carnegie Mellon University (1983)

    Google Scholar 

  39. Gonzalez, R.C., Woods, R.E., Eddins, S.L.: Digital Image Processing Using Matlab—Gonzalez Woods & Eddins.pdf. Prentice Hall, Upper Saddle River (2004)

    Google Scholar 

  40. Baina, J., Dublet, J.: Automatic focus and iris control for video cameras. In: Fifth International Conference on Image Processing and Its Applications, pp. 232–235 (1995)

    Google Scholar 

  41. Shen, C., Chen, H.H.: Robust focus measure for low-contrast images. In: Proceedings of IEEE International Conference on Consumer Electronics, Digest Technical Papers, pp. 69–70 (2006)

    Google Scholar 

  42. Costa, N.C.A., Abe, J.M., Carlos Murolo, A., Filho, J.I.D.S., Fernando S. Leite, C.: Lógica Paraconsistente Aplicada. Editora Atlas S.A., São Paulo (1999)

    Google Scholar 

  43. Da Silva Filho, J.I., Abe, J.M.: Para-fuzzy logic controller II—a hybrid logical controller indicated for treatment of fuzziness and inconsistencies. In: Proceedings of the international ICSC, congress on computational intelligence methods and applications, CIMA 99, Rochester, NY, USA (1999)

    Google Scholar 

  44. Da Silva Filho, J.I., Abe, J.M.: Para-fuzzy Logic Controller I—A Hybrid Logical Controller Indicated for Treatment of Inconsistencies Designed with Junction of the Paraconsistent and Fuzzy Logic. Proceedings fo the International ICSC, Congress on Computational Intelligence Methods and Applications, CIMA 99., Rochester, NY, USA (1999)

    Google Scholar 

  45. Da Silva Filho, J.I., Abe, J.M.: Fundamentos das Redes Neurais Artificiais Paraconsistentes. Editora Arte & Ciência, São Paulo (2001)

    Google Scholar 

  46. Da Silva Filho, J.I.: Métodos de Aplicações da Lógica Paraconsistente Anotada de Anotação com Dois Valores-LPA2v com Construção de Algoritmo e Implementação de Circuitos Eletrônicos, http://paralogike.com.br/site/links/ver/32 (1999)

  47. Da Silva Filho, J.I.: Treatment of uncertainties with algorithms of the paraconsistent annotated logic. J. Intell. Learn. Syst. Appl. 04, 144–153 (2012)

    Google Scholar 

  48. Da Silva Filho, J.I.: Métodos de Aplicações da Lógica Paraconsistente Anotada de anotação com dois valores-LPA2v. Rev. Seleção Doc. 1, 18–25 (2006)

    Google Scholar 

  49. Da Silva Filho, J.I.: Paraconsistent differential calculus (Part I): first-order paraconsistent derivative. Appl. Math. 5, 904–916 (2014)

    Article  Google Scholar 

  50. Da Silva Filho, J.I.: Lógica Para Fuzzy – Um método de Aplicação da Lógica Paraconsistente e Fuzzy em Sistemas de Controle Híbridos. Rev. Seleção Doc. 2, 16–24 (2009)

    Google Scholar 

  51. Abe, J.M.: Introdução à Lógica Paraconsistente Anotada. Paralogike, Editora (2006)

    Google Scholar 

  52. Abe, J.M., Lopes, H.F.S., Nakamatsu, K.: Paraconsistent artificial neural networks and. 17, 99–111 (2013)

    Google Scholar 

  53. Abe, J.M.: Remarks on paraconsistent annotated evidential logic E τ. Unisanta Sci. Technol. 3, 25–29 (2014). http://periodicos.unisanta.br/index.php/sat

  54. Costa, N.C.A.: On the theory of inconsistent formal systems. Notre Dame J. Form. Log. XV, 497–510 (1974)

    Google Scholar 

  55. Masotti, P.H.F.: Metodologia de Monitoração e Diagnóstico Automatizado de Rolamentos utilizando Lógica Parconsistente, Transformada de Wavelet e Processamento de Sinais Digitais, http://www.teses.usp.br/teses/disponiveis/85/85133/tde-28052007-165556/pt-br.php (2006)

  56. Mathworks: Matlab version 8.3.0.532, (2014)

    Google Scholar 

  57. Nayak, A.K., Sinha, R.K.: Role of passive systems in advanced reactors. Prog. Nucl. Energy 49, 486–498 (2007)

    Article  Google Scholar 

  58. Hervieu, E., Seleghim, P.: An objective indicator for two-phase flow pattern transition, (1998)

    Google Scholar 

  59. Mesquita, R.N., Sabundjian, G., Andrade, D.A., Umbehaun, P.E., Torres, W.M., Conti, T.N., Macedo, L.A.: Two-phase flow patterns recognition and parameters estimation through natural circulation test loop image analysis. In: ECI International Conference on Boiling Heat Transfer, pp. 3–7 (2009)

    Google Scholar 

Download references

Acknowledgments

Authors would like to thank the support of Fundação de Inovação e Pesquisa (FINEP), project 01.10.0248.00, with the Comissão Nacional de Energia Nuclear (CNEN).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paulo Henrique Ferraz Masotti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Masotti, P.H.F., de Mesquita, R.N. (2015). Paraconsistent Logic Study of Image Focus in Cylindrical Refraction Experiments. In: Abe, J. (eds) Paraconsistent Intelligent-Based Systems. Intelligent Systems Reference Library, vol 94. Springer, Cham. https://doi.org/10.1007/978-3-319-19722-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-19722-7_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-19721-0

  • Online ISBN: 978-3-319-19722-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics