Skip to main content

Regenerative Medicine Approaches for Treatment of Osteoarthritis

  • Chapter
Osteoarthritis

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gerlier L, et al. The cost utility of autologous chondrocytes implantation using ChondroCelect® in symptomatic knee cartilage lesions in Belgium. Pharmacoeconomics. 2010;28(12):1129–46.

    PubMed  Google Scholar 

  2. Carticel. About CARTICEL. http://www.carticel.com/patients/about.aspx. Accessed Sept 2014.

  3. MEDIPOST. The future of biotechnology, MEDIPOST. http://www.medi-post.com/sp_5_1.asp. Accessed Sept 2014.

  4. Dhinsa BS, Adesida AB. Current clinical therapies for cartilage repair, their limitation and the role of stem cells. Curr Stem Cell Res Ther. 2012;7(2):143–8.

    CAS  PubMed  Google Scholar 

  5. Kapoor M, et al. Role of proinflammatory cytokines in the pathophysiology of osteoarthritis. Nat Rev Rheumatol. 2011;7(1):33–42.

    CAS  PubMed  Google Scholar 

  6. Goldring MB, Otero M. Inflammation in osteoarthritis. Curr Opin Rheumatol. 2011;23(5):471–8.

    PubMed Central  CAS  PubMed  Google Scholar 

  7. Zamli Z, Sharif M. Chondrocyte apoptosis: a cause or consequence of osteoarthritis? Int J Rheum Dis. 2011;14(2):159–66.

    PubMed  Google Scholar 

  8. Loeser RF, et al. Osteoarthritis: a disease of the joint as an organ. Arthritis Rheum. 2012;64(6):1697–707.

    PubMed Central  PubMed  Google Scholar 

  9. Beyer C, Schett G. Pharmacotherapy: concepts of pathogenesis and emerging treatments. Novel targets in bone and cartilage. Best Pract Res Clin Rheumatol. 2010;24(4):489–96.

    CAS  PubMed  Google Scholar 

  10. Chevalier X, et al. Safety study of intraarticular injection of interleukin 1 receptor antagonist in patients with painful knee osteoarthritis: a multicenter study. J Rheumatol. 2005;32(7):1317–23.

    CAS  PubMed  Google Scholar 

  11. Baltzer AW, et al. Autologous conditioned serum (Orthokine) is an effective treatment for knee osteoarthritis. Osteoarthritis Cartilage. 2009;17(2):152–60.

    CAS  PubMed  Google Scholar 

  12. Kon E, et al. Platelet-rich plasma intra-articular injection versus hyaluronic acid viscosupplementation as treatments for cartilage pathology: from early degeneration to osteoarthritis. Arthroscopy. 2011;27(11):1490–501.

    PubMed  Google Scholar 

  13. Cao L, et al. The promotion of cartilage defect repair using adenovirus mediated Sox9 gene transfer of rabbit bone marrow mesenchymal stem cells. Biomaterials. 2011;32(16):3910–20.

    CAS  PubMed  Google Scholar 

  14. Zhang X, Mao Z, Yu C. Suppression of early experimental osteoarthritis by gene transfer of interleukin-1 receptor antagonist and interleukin-10. J Orthop Res. 2004;22(4):742–50.

    CAS  PubMed  Google Scholar 

  15. Steadman JR, et al. Outcomes of microfracture for traumatic chondral defects of the knee: average 11-year follow-up. Arthroscopy. 2003;19(5):477–84.

    PubMed  Google Scholar 

  16. Johnstone B, et al. Tissue engineering for articular cartilage repair–the state of the art. Eur Cell Mater. 2013;25:248–67.

    CAS  PubMed  Google Scholar 

  17. Andia I, Abate M. Knee osteoarthritis: hyaluronic acid, platelet-rich plasma or both in association? Expert Opin Biol Ther. 2014;14(5):635–49.

    CAS  PubMed  Google Scholar 

  18. Bollyky PL, et al. Intact extracellular matrix and the maintenance of immune tolerance: high molecular weight hyaluronan promotes persistence of induced CD4 + CD25+ regulatory T cells. J Leukoc Biol. 2009;86(3):567–72.

    PubMed Central  CAS  PubMed  Google Scholar 

  19. Muto J, et al. Engagement of CD44 by hyaluronan suppresses TLR4 signaling and the septic response to LPS. Mol Immunol. 2009;47(2–3):449–56.

    PubMed Central  CAS  PubMed  Google Scholar 

  20. Takahashi T, et al. A decrease in the molecular weight of hyaluronic acid in synovial fluid from patients with temporomandibular disorders. J Oral Pathol Medicine (Official Publication of the International Association of Oral Pathologists and the American Academy of Oral Pathology). 2004;33(4):224–9.

    CAS  Google Scholar 

  21. Dahl LB, et al. Concentration and molecular weight of sodium hyaluronate in synovial fluid from patients with rheumatoid arthritis and other arthropathies. Ann Rheum Dis. 1985;44(12):817–22.

    PubMed Central  CAS  PubMed  Google Scholar 

  22. Scheibner KA, et al. Hyaluronan fragments act as an endogenous danger signal by engaging TLR2. J Immunol. 2006;177(2):1272–81.

    CAS  PubMed  Google Scholar 

  23. Zavan B, et al. Hyaluronic acid induces activation of the kappa-opioid receptor. PLoS One. 2013;8(1), e55510.

    PubMed Central  CAS  PubMed  Google Scholar 

  24. Miller LE, Block JE. US-approved intra-articular hyaluronic acid injections are safe and effective in patients with knee osteoarthritis: systematic review and meta-analysis of randomized, saline-controlled trials. Clin Med Insights Arthritis Musculoskelet Disord. 2013;6:57–63.

    PubMed Central  CAS  PubMed  Google Scholar 

  25. Rutjes AW, et al. Viscosupplementation for osteoarthritis of the knee: a systematic review and meta-analysis. Ann Intern Med. 2012;157(3):180–91.

    PubMed  Google Scholar 

  26. Chahal J, et al. The role of platelet-rich plasma in arthroscopic rotator cuff repair: a systematic review with quantitative synthesis. Arthroscopy. 2012;28(11):1718–27.

    PubMed  Google Scholar 

  27. Khoshbin A, et al. The efficacy of platelet-rich plasma in the treatment of symptomatic knee osteoarthritis: a systematic review with quantitative synthesis. Arthroscopy. 2013;29(12):2037–48.

    PubMed  Google Scholar 

  28. Pourcho AM, et al. Intraarticular platelet-rich plasma injection in the treatment of knee osteoarthritis: review and recommendations. Am J Phys Med Rehabil. 2014;93(11 Suppl 3):S108–21.

    PubMed  Google Scholar 

  29. Sundman EA, Cole BJ, Fortier LA. Growth factor and catabolic cytokine concentrations are influenced by the cellular composition of platelet-rich plasma. Am J Sports Med. 2011;39(10):2135–40.

    PubMed  Google Scholar 

  30. Sundman EA, et al. The anti-inflammatory and matrix restorative mechanisms of platelet-rich plasma in osteoarthritis. Am J Sports Med. 2014;42(1):35–41.

    PubMed  Google Scholar 

  31. Chevalier X, Conrozier T. Biological markers for osteoarthritis: an update. Joint Bone Spine. 2005;72(2):106–9.

    PubMed  Google Scholar 

  32. Meijer H, et al. The production of anti-inflammatory cytokines in whole blood by physico-chemical induction. Inflamm Res. 2003;52(10):404–7.

    CAS  PubMed  Google Scholar 

  33. Fox BA, Stephens MM. Treatment of knee osteoarthritis with Orthokine-derived autologous conditioned serum. Expert Rev Clin Immunol. 2010;6(3):335–45.

    CAS  PubMed  Google Scholar 

  34. Lawrence JT, Birmingham J, Toth AP. Emerging ideas: prevention of posttraumatic arthritis through interleukin-1 and tumor necrosis factor-alpha inhibition. Clin Orthop Relat Res. 2011;469(12):3522–6.

    PubMed Central  PubMed  Google Scholar 

  35. Caron JP, et al. Chondroprotective effect of intraarticular injections of interleukin-1 receptor antagonist in experimental osteoarthritis. Suppression of collagenase-1 expression. Arthritis Rheum. 1996;39(9):1535–44.

    CAS  PubMed  Google Scholar 

  36. Elsaid KA, et al. The impact of anterior cruciate ligament injury on lubricin metabolism and the effect of inhibiting tumor necrosis factor alpha on chondroprotection in an animal model. Arthritis Rheum. 2009;60(10):2997–3006.

    PubMed Central  CAS  PubMed  Google Scholar 

  37. Pintan GF, et al. Update on biological therapies for knee injuries: osteoarthritis. Curr Rev Musculoskelet Med. 2014;7(3):263–9.

    PubMed  Google Scholar 

  38. Lane NE, et al. Tanezumab for the treatment of pain from osteoarthritis of the knee. N Engl J Med. 2010;363(16):1521–31.

    CAS  PubMed  Google Scholar 

  39. Brown MT, et al. Tanezumab reduces osteoarthritic knee pain: results of a randomized, double-blind, placebo-controlled phase III trial. J Pain. 2012;13(8):790–8.

    CAS  PubMed  Google Scholar 

  40. Spierings EL, et al. A phase III placebo- and oxycodone-controlled study of tanezumab in adults with osteoarthritis pain of the hip or knee. Pain. 2013;154(9):1603–12.

    CAS  PubMed  Google Scholar 

  41. Akagi R, et al. Effective knock down of matrix metalloproteinase-13 by an intra-articular injection of small interfering RNA (siRNA) in a murine surgically-induced osteoarthritis model. J Orthop Res. 2014;32(9):1175–80.

    CAS  PubMed  Google Scholar 

  42. Madry H, Cucchiarini M. Advances and challenges in gene-based approaches for osteoarthritis. J Gene Med. 2013;15(10):343–55.

    CAS  PubMed  Google Scholar 

  43. Evans CH, Ghivizzani SC, Robbins PD. Arthritis gene therapy and its tortuous path into the clinic. Transl Res (The Journal of Laboratory and Clinical Medicine). 2013;161(4):205–16.

    CAS  Google Scholar 

  44. Demoor M, et al. Cartilage tissue engineering: Molecular control of chondrocyte differentiation for proper cartilage matrix reconstruction. Biochimica Et Biophysica Acta. 2014;1840(8):2414–40.

    CAS  PubMed  Google Scholar 

  45. Peterson L, et al. Autologous chondrocyte implantation: a long-term follow-up. Am J Sports Med. 2010;38(6):1117–24.

    PubMed  Google Scholar 

  46. Nawaz SZ, et al. Autologous chondrocyte implantation in the knee: mid-term to long-term results. J Bone Joint Surg Am. 2014;96(10):824–30.

    PubMed  Google Scholar 

  47. Harris JD, et al. Autologous chondrocyte implantation: a systematic review. J Bone Joint Surg Am. 2010;92(12):2220–33.

    PubMed  Google Scholar 

  48. Brittberg M. Autologous chondrocyte implantation–technique and long-term follow-up. Injury. 2008;39 Suppl 1:S40–9.

    PubMed  Google Scholar 

  49. Minas T, et al. Autologous chondrocyte implantation for joint preservation in patients with early osteoarthritis. Clin Orthop Relat Res. 2010;468(1):147–57.

    PubMed Central  PubMed  Google Scholar 

  50. Viswanathan S, Gomez-Aristizabal A. Review of patents and commercial opportunities involving Mesenchymal Stromal Cells (MSCs) therapies in osteoarthritis. Recent Pat Regen Med. 2014;4(1):1–15.

    CAS  Google Scholar 

  51. Peterson L, et al. Autologous chondrocyte transplantation. Biomechanics and long-term durability. Am J Sports Med. 2002;30(1):2–12.

    PubMed  Google Scholar 

  52. Farr J, et al. Particulated articular cartilage: CAIS and DeNovo NT. J Knee Surg. 2012;25(1):23–9.

    PubMed  Google Scholar 

  53. Cuende N, Rico L, Herrera C. Concise review: bone marrow mononuclear cells for the treatment of ischemic syndromes: medicinal product or cell transplantation? Stem Cells Transl Med. 2012;1(5):403–8.

    PubMed Central  CAS  PubMed  Google Scholar 

  54. Song F, et al. Comparison of the efficacy of bone marrow mononuclear cells and bone mesenchymal stem cells in the treatment of osteoarthritis in a sheep model. Int J Clin Exp Pathol. 2014;7(4):1415–26.

    PubMed Central  PubMed  Google Scholar 

  55. Deng M-W, et al. Cell therapy with G-CSF-mobilized stem cells in a rat osteoarthritis model. Cell Transplant. 2014. [Epub ahead of print]

    Google Scholar 

  56. Dong Z, et al. The survival condition and immunoregulatory function of adipose Stromal Vascular Fraction (SVF) in the early stage of nonvascularized adipose transplantation. PLoS One. 2013;8(11), e80364.

    PubMed Central  PubMed  Google Scholar 

  57. Jurgens WJFM, et al. One-step surgical procedure for the treatment of osteochondral defects with adipose-derived stem cells in a caprine knee defect: a pilot study. BioRes Open Access. 2013;2(4):315–25.

    PubMed Central  CAS  PubMed  Google Scholar 

  58. HiQcell. Australian world first placebo-controlled clinical study of HiQCell. Available from: http://www.imaginelessjointpain.com.au/about-hiqcell-treatment/clinical-studies/. Accessed 27 July 2014.

  59. Erices A, Conget P, Minguell JJ. Mesenchymal progenitor cells in human umbilical cord blood. Br J Haematol. 2000;109(1):235–42.

    CAS  PubMed  Google Scholar 

  60. Zuk PA, et al. Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng. 2001;7(2):211–28.

    CAS  PubMed  Google Scholar 

  61. Hass R, et al. Different populations and sources of human mesenchymal stem cells (MSC): a comparison of adult and neonatal tissue-derived MSC. Cell Commun Signal. 2011;9:12.

    PubMed Central  CAS  PubMed  Google Scholar 

  62. Lee DH, et al. Synovial fluid CD34–CD44+ CD90+ mesenchymal stem cell levels are associated with the severity of primary knee osteoarthritis. Osteoarthritis Cartilage (OARS, Osteoarthritis Research Society). 2012;20(2):106–9.

    CAS  Google Scholar 

  63. Dominici M, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 2006;8(4):315–7.

    CAS  PubMed  Google Scholar 

  64. Singer NG, Caplan AI. Mesenchymal stem cells: mechanisms of inflammation. Annu Rev Pathol. 2011;6:457–78.

    CAS  PubMed  Google Scholar 

  65. Vangsness Jr CT, et al. Adult human mesenchymal stem cells delivered via intra-articular injection to the knee following partial medial meniscectomy: a randomized, double-blind, controlled study. J Bone Joint Surg Am. 2014;96(2):90–8.

    PubMed  Google Scholar 

  66. Orozco L, et al. Treatment of knee osteoarthritis with autologous mesenchymal stem cells: a pilot study. Transplantation. 2013;95(12):1535–41.

    CAS  PubMed  Google Scholar 

  67. Wakitani S, et al. Human autologous culture expanded bone marrow mesenchymal cell transplantation for repair of cartilage defects in osteoarthritic knees. Osteoarthritis Cartilage. 2002;10(3):199–206.

    CAS  PubMed  Google Scholar 

  68. Centeno CJ, et al. Increased knee cartilage volume in degenerative joint disease using percutaneously implanted, autologous mesenchymal stem cells. Pain Physician. 2008;11(3):343–53.

    PubMed  Google Scholar 

  69. Davatchi F, et al. Mesenchymal stem cell therapy for knee osteoarthritis. Preliminary report of four patients. Int J Rheum Dis. 2011;14(2):211–5.

    PubMed  Google Scholar 

  70. Emadedin M, et al. Intra-articular injection of autologous mesenchymal stem cells in six patients with knee osteoarthritis. Arch Iran Med. 2012;15(7):422–8.

    PubMed  Google Scholar 

  71. Koh Y-G, et al. Mesenchymal stem cell injections improve symptoms of knee osteoarthritis. Arthroscopy (The Journal of Arthroscopic & Related Surgery: Official Publication of the Arthroscopy Association of North America and the International Arthroscopy Association). 2013;29(4):748–55.

    Google Scholar 

  72. Viswanathan S, et al. Soliciting strategies for developing cell-based reference materials to advance mesenchymal stromal cell research and clinical translation. Stem Cells Dev. 2014;23(11):1157–67.

    PubMed Central  PubMed  Google Scholar 

  73. Oldershaw RA. Cell sources for the regeneration of articular cartilage: the past, the horizon and the future. Int J Exp Pathol. 2012;93(6):389–400.

    PubMed Central  CAS  PubMed  Google Scholar 

  74. Craft AM, et al. Specification of chondrocytes and cartilage tissues from embryonic stem cells. Development. 2013;140(12):2597–610.

    CAS  PubMed  Google Scholar 

  75. Diekman BO, et al. Cartilage tissue engineering using differentiated and purified induced pluripotent stem cells. Proc Natl Acad Sci U S A. 2012;109(47):19172–7.

    PubMed Central  CAS  PubMed  Google Scholar 

  76. Sato T, et al. The engineered thymidylate kinase (TMPK)/AZT enzyme-prodrug axis offers efficient bystander cell killing for suicide gene therapy of cancer. PLoS One. 2013;8(10), e78711.

    PubMed Central  CAS  PubMed  Google Scholar 

  77. Taylor CJ, et al. Banking on human embryonic stem cells: estimating the number of donor cell lines needed for HLA matching. Lancet. 2005;366(9502):2019–25.

    PubMed  Google Scholar 

  78. Ishii R, et al. Placenta to cartilage: direct conversion of human placenta to chondrocytes with transformation by defined factors. Mol Biol Cell. 2012;23(18):3511–21.

    PubMed Central  CAS  PubMed  Google Scholar 

  79. Anz AW, et al. Application of biologics in the treatment of the rotator cuff, meniscus, cartilage, and osteoarthritis. J Am Acad Orthop Surg. 2014;22(2):68–79.

    PubMed  Google Scholar 

  80. Filardo G, et al. Scaffold-based repair for cartilage healing: a systematic review and technical note. Arthroscopy. 2013;29(1):174–86.

    PubMed  Google Scholar 

  81. Kock L, van Donkelaar CC, Ito K. Tissue engineering of functional articular cartilage: the current status. Cell Tissue Res. 2012;347(3):613–27.

    PubMed Central  CAS  PubMed  Google Scholar 

  82. Myers KR, Sgaglione NA, Grande DA. Trends in biological joint resurfacing. Bone Joint Res. 2013;2(9):193–9.

    PubMed Central  CAS  PubMed  Google Scholar 

  83. Chan BP, Leong KW. Scaffolding in tissue engineering: general approaches and tissue-specific considerations. Eur Spine J. 2008;17 Suppl 4:467–79.

    PubMed Central  CAS  PubMed  Google Scholar 

  84. Childs A, et al. Novel biologically-inspired rosette nanotube PLLA scaffolds for improving human mesenchymal stem cell chondrogenic differentiation. Biomed Mater. 2013;8(6):065003.

    PubMed  Google Scholar 

  85. Izadifar Z, Chen X, Kulyk W. Strategic design and fabrication of engineered scaffolds for articular cartilage repair. J Funct Biomater. 2012;3(4):799–838.

    PubMed Central  CAS  PubMed  Google Scholar 

  86. Musumeci G, et al. New perspectives for articular cartilage repair treatment through tissue engineering: a contemporary review. World J Orthop. 2014;5(2):80–8.

    PubMed Central  PubMed  Google Scholar 

  87. Hollister SJ. Porous scaffold design for tissue engineering. Nat Mater. 2005;4(7):518–24.

    CAS  PubMed  Google Scholar 

  88. Evans CH. Advances in regenerative orthopedics. Mayo Clin Proc. 2013;88(11):1323–39.

    PubMed Central  PubMed  Google Scholar 

  89. Willerth SM, Sakiyama-Elbert SE. Combining stem cells and biomaterial scaffolds for constructing tissues and cell delivery. In StemBook. Massachusetts General Hospital. Cambridge, MA; 2008.

    Google Scholar 

  90. Bacakova L, Novotna K, Parizek M. Polysaccharides as cell carriers for tissue engineering: the use of cellulose in vascular wall reconstruction. Physiol Res. 2014;63 Suppl 1:S29–47.

    CAS  PubMed  Google Scholar 

  91. Kwon H, et al. The influence of scaffold material on chondrocytes under inflammatory conditions. Acta Biomater. 2013;9(5):6563–75.

    PubMed Central  CAS  PubMed  Google Scholar 

  92. Wakitani S, et al. Mesenchymal cell-based repair of large, full-thickness defects of articular cartilage. J Bone Joint Surg Am. 1994;76(4):579–92.

    CAS  PubMed  Google Scholar 

  93. Sumanasinghe RD, Bernacki SH, Loboa EG. Osteogenic differentiation of human mesenchymal stem cells in collagen matrices: effect of uniaxial cyclic tensile strain on bone morphogenetic protein (BMP-2) mRNA expression. Tissue Eng. 2006;12(12):3459–65.

    CAS  PubMed  Google Scholar 

  94. Pulkkinen HJ, et al. Engineering of cartilage in recombinant human type II collagen gel in nude mouse model in vivo. Osteoarthritis Cartilage. 2010;18(8):1077–87.

    CAS  PubMed  Google Scholar 

  95. Pulkkinen HJ, et al. Repair of osteochondral defects with recombinant human type II collagen gel and autologous chondrocytes in rabbit. Osteoarthritis Cartilage. 2013;21(3):481–90.

    CAS  PubMed  Google Scholar 

  96. Yang C, et al. The application of recombinant human collagen in tissue engineering. BioDrugs. 2004;18(2):103–19.

    CAS  PubMed  Google Scholar 

  97. Meinel L, et al. Engineering cartilage-like tissue using human mesenchymal stem cells and silk protein scaffolds. Biotechnol Bioeng. 2004;88(3):379–91.

    CAS  PubMed  Google Scholar 

  98. Sofia S, et al. Functionalized silk-based biomaterials for bone formation. J Biomed Mater Res. 2001;54(1):139–48.

    CAS  PubMed  Google Scholar 

  99. Worster AA, et al. Chondrocytic differentiation of mesenchymal stem cells sequentially exposed to transforming growth factor-beta1 in monolayer and insulin-like growth factor-I in a three-dimensional matrix. J Orthop Res. 2001;19(4):738–49.

    CAS  PubMed  Google Scholar 

  100. Bulman SE, et al. Enhancing the mesenchymal stem cell therapeutic response: cell localization and support for cartilage repair. Tissue Eng Part B Rev. 2013;19(1):58–68.

    CAS  PubMed  Google Scholar 

  101. Erickson IE, et al. High mesenchymal stem cell seeding densities in hyaluronic acid hydrogels produce engineered cartilage with native tissue properties. Acta Biomater. 2012;8(8):3027–34.

    PubMed Central  CAS  PubMed  Google Scholar 

  102. Mortisen D, et al. Tailoring thermoreversible hyaluronan hydrogels by “click” chemistry and RAFT polymerization for cell and drug therapy. Biomacromolecules. 2010;11(5):1261–72.

    CAS  PubMed  Google Scholar 

  103. Stanish WD, et al. Novel scaffold-based BST-CarGel treatment results in superior cartilage repair compared with microfracture in a randomized controlled trial. J Bone Joint Surg Am. 2013;95(18):1640–50.

    PubMed  Google Scholar 

  104. Yang Z, et al. Improved mesenchymal stem cells attachment and in vitro cartilage tissue formation on chitosan-modified poly(L-lactide-co-epsilon-caprolactone) scaffold. Tissue Eng Part A. 2012;18(3–4):242–51.

    PubMed Central  CAS  PubMed  Google Scholar 

  105. Haaparanta AM, et al. Preparation and characterization of collagen/PLA, chitosan/PLA, and collagen/chitosan/PLA hybrid scaffolds for cartilage tissue engineering. J Mater Sci Mater Med. 2014;25(4):1129–36.

    CAS  PubMed  Google Scholar 

  106. Nguyen LH, et al. Engineering articular cartilage with spatially-varying matrix composition and mechanical properties from a single stem cell population using a multi-layered hydrogel. Biomaterials. 2011;32(29):6946–52.

    CAS  PubMed  Google Scholar 

  107. Chung C, Burdick JA. Engineering cartilage tissue. Adv Drug Deliv Rev. 2008;60(2):243–62.

    PubMed Central  CAS  PubMed  Google Scholar 

  108. Varghese S, et al. Chondroitin sulfate based niches for chondrogenic differentiation of mesenchymal stem cells. Matrix Biol. 2008;27(1):12–21.

    CAS  PubMed  Google Scholar 

  109. Uematsu K, et al. Cartilage regeneration using mesenchymal stem cells and a three-dimensional poly-lactic-glycolic acid (PLGA) scaffold. Biomaterials. 2005;26(20):4273–9.

    CAS  PubMed  Google Scholar 

  110. Hori J, et al. Articular cartilage repair using an intra-articular magnet and synovium-derived cells. J Orthop Res. 2011;29(4):531–8.

    PubMed  Google Scholar 

  111. Freed LE, et al. Advanced material strategies for tissue engineering scaffolds. Adv Mater. 2009;21(32–33):3410–8.

    PubMed Central  CAS  PubMed  Google Scholar 

  112. O’Connell GD, et al. Toward engineering a biological joint replacement. J Knee Surg. 2012;25(3):187–96.

    PubMed Central  PubMed  Google Scholar 

  113. Huey DJ, Hu JC, Athanasiou KA. Unlike bone, cartilage regeneration remains elusive. Science. 2012;338(6109):917–21.

    PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sowmya Viswanathan PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Viswanathan, S., Wolfstadt, J., Chahal, J., Gómez-Aristizábal, A. (2015). Regenerative Medicine Approaches for Treatment of Osteoarthritis. In: Kapoor, M., Mahomed, N. (eds) Osteoarthritis. Adis, Cham. https://doi.org/10.1007/978-3-319-19560-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-19560-5_12

  • Publisher Name: Adis, Cham

  • Print ISBN: 978-3-319-19559-9

  • Online ISBN: 978-3-319-19560-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics