Skip to main content

Abstract

This chapter is a review of commonly utilized monitoring techniques to assess the function of the general cardiovascular system. Specifically, means to assess arterial blood pressure, central venous pressure, pulmonary artery pressure, mixed venous oxygen saturation, cardiac output, pressure-volume loops, and Frank-Starling curves are described. Basic physiological principles underlying cardiac function are also briefly discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sengupta PP, Khandheria BK, Korinek J et al (2006) Apex-to-base dispersion in regional timing of left ventricular shortening and lengthening. J Am Coll Cardiol 47:163–172

    Article  PubMed  Google Scholar 

  2. Ratcliffe MB, Gupta KB, Streicher JT et al (1995) Use of sonomicrometry and multidimensional scaling to determine the three-dimensional coordinates of multiple cardiac locations: feasibility and initial implementation. IEEE Trans Biomed Eng 42:587–597

    Article  CAS  PubMed  Google Scholar 

  3. Gorman JH III, Gupta KB, Streicher JT et al (1996) Dynamic three-dimensional imaging of the mitral valve and left ventricle by rapid sonomicrometry array localization. J Thorac Cardiovasc Surg 112:712–725

    Article  PubMed  Google Scholar 

  4. Meyer SA, Wolf PD (1997) Application of sonomicrometry and multidimensional scaling to cardiac catheter tracking. IEEE Trans Biomed Eng 44:1061–1067

    Article  CAS  PubMed  Google Scholar 

  5. Geddes LA, Baker LE (1967) The specific resistance of biological material–a compendium of data for the biomedical engineer and physiologist. Med Biol Eng 5:271–293

    Article  CAS  PubMed  Google Scholar 

  6. Baan J, van der Velde ET, de Bruin HG et al (1984) Continuous measurement of left ventricular volume in animals and humans by conductance catheter. Circulation 70:812–823

    Article  CAS  PubMed  Google Scholar 

  7. van der Velde ET, van Dijk AD, Steendijk P et al (1992) Left ventricular segmental volume by conductance catheter and cine-CT. Eur Heart J 13 Suppl E:15–21

    Google Scholar 

  8. White PA, Redington AN (2000) Right ventricular volume measurement: can conductance do it better? Physiol Meas 21:R23–R41

    Article  Google Scholar 

  9. Hettrick DA, Battocletti J, Ackmann J, Linehan J, Warltier DC (1998) In vivo measurement of real-time aortic segmental volume using the conductance catheter. Ann Biomed Eng 26:431–440

    Article  CAS  PubMed  Google Scholar 

  10. Gardner RM (1996) Accuracy and reliability of disposable pressure transducers coupled with modern monitors. Crit Care Med 24:879–882

    Article  CAS  PubMed  Google Scholar 

  11. Skeehan TM, Thys DM (1995) Monitoring of the cardiac surgical patient. In: Hensley FA, Martin DE (eds) A practical approach to cardiac anesthesia, 2nd edn. Little, Brown and Company, Boston, p 102

    Google Scholar 

  12. Gorback MS (1988) Considerations in the interpretation of systemic pressure monitoring. In: Lumb PD, Bryan-Brown CW (eds) Complications in critical care medicine. Year Book, Chicago, p 296

    Google Scholar 

  13. Shasby DM, Dauber IM, Pfister S et al (1980) Swan-Ganz catheter location and left atrial pressure determine the accuracy of wedge pressure when positive end expiratory pressure is used. Chest 80:666–670

    Article  Google Scholar 

  14. Snyder JV, Carroll GC (1982) Tissue oxygenation: a physiologic approach to a clinical problem. Curr Probl Surg 19:650

    Article  CAS  PubMed  Google Scholar 

  15. Stanley TE, Reves JG (1994) Cardiovascular monitoring. In: Miller RD (ed) Anesthesia, 4th edn. Churchill Livingstone, Boston, p 1167

    Google Scholar 

  16. Swan HJC, Ganz W, Forrester J, Marcus H, Diamon G, Chonette D (1970) Catheterization of the heart in man with use of a flow-directed balloon-tipped catheter. N Engl J Med 283:447–451

    Article  CAS  PubMed  Google Scholar 

  17. Practice Guidelines for Pulmonary Artery Catheterization: An Updated Report by the American Society of Anesthesiologists Task Force on Pulmonary Artery Catheterization. Anesthesiology 2003;99:988–1014

    Google Scholar 

  18. West JB, Dollery CT, Naimark A (1964) Distribution of blood flow in isolated lung; relation to vascular and alveolar pressures. J Appl Physiol 19:713–724

    CAS  PubMed  Google Scholar 

  19. Wesseling KH (1996) Finger arterial pressure measurement with Finapres. Z Kardiol 3:38–44

    Google Scholar 

  20. Brandstetter RD, Grant GR, Estilo M, Rahim R, Sing K, Gitler B (1998) Swan-Ganz catheter: misconceptions, pitfalls, and incomplete user knowledge-an identified trilogy in need of correction. Heart Lung 27:218–222

    Article  CAS  PubMed  Google Scholar 

  21. Wittnich C, Trudel J, Zidulka A, Chiu RC (1986) Misleading “pulmonary wedge pressure” after pneumonectomy: its importance in postoperative fluid therapy. Ann Thorac Surg 42:192–196

    Article  CAS  PubMed  Google Scholar 

  22. Van Aken H, Vandermeersch E (1988) Reliability of PCWP as an index for left ventricular preload. Br J Anaesth 60:85S–89S

    Article  PubMed  Google Scholar 

  23. Stanley TE, Reves JG (1994) Cardiovascular monitoring. In: Miller RD (ed) Anesthesia, 4th edn. Churchill Livingstone, Boston, pp 1184–1185

    Google Scholar 

  24. Fegler G (1954) Measurement of cardiac output in anesthetized animals by thermodilution method. Q J Exp Physiol 39:153

    Article  CAS  PubMed  Google Scholar 

  25. Pearl RGB, Rosenthal MH, Mielson L et al (1986) Effect of injectate volume and temperature on thermodilution cardiac output determination. Anesthesiology 64:798

    Article  CAS  PubMed  Google Scholar 

  26. Reich DL, Moskowitz DM, Kaplan JA (1999) Hemodynamic monitoring. In: Kaplan JA, Reich DL, Konstaelt SN (eds) Cardiac anesthesia, 4th edn. WB Saunders Co, Philadelphia

    Google Scholar 

  27. Burchell SA, Yu M, Takiguchi SA, Ohta RM, Myers SA (1997) Evaluation of a continuous cardiac output and mixed venous oxygen saturation catheter in critically ill surgical patients. Crit Care Med 25:388–391

    Article  CAS  PubMed  Google Scholar 

  28. de Figueiredo LFP, Malbouisson LMS, Varicoda EY et al (1999) Thermal filament continuous thermodilution cardiac output delayed response limits its value during acute hemodynamic instability. J Trauma 47:288–293

    Article  Google Scholar 

  29. Mihaljevi T, vonSegesser LK, Tonz M et al (1995) Continuous versus bolus thermodilution cardiac output measurements: a comparative study. Crit Care Med 23:944–949

    Article  Google Scholar 

  30. Mihm FG, Gettinger A, Hanson CW et al (1998) A multicenter evaluation of a new continuous cardiac output pulmonary artery catheter system. Crit Care Med 26:1346–1350

    Article  CAS  PubMed  Google Scholar 

  31. Della RG, Costa MG, Pompei L et al (2002) Continuous and intermittent cardiac output measurement: pulmonary artery catheter versus aortic transpulmonary technique. Br J Anaesth 88:350–356

    Article  Google Scholar 

  32. Pamley CL, Pousman RM (2002) Noninvasive cardiac output monitoring. Curr Opin Anaesthesiol 15:675–680

    Article  Google Scholar 

  33. Christensen P, Clemensen P, Andersen PK et al (2000) Thermodilution versus inert gas rebreathing for estimation of effective pulmonary blood flow. Crit Care Med 28:51–56

    Article  CAS  PubMed  Google Scholar 

  34. Imhoff M, Lehner JH, Lohlein D (2000) Noninvasive whole-body electrical bioimpedance cardiac output and invasive thermodilution cardiac output in high-risk surgical patients. Crit Care Med 28:2812–2818

    Article  CAS  PubMed  Google Scholar 

  35. Shoemaker WC, Wo CC, Bishop MH et al (1994) Multicenter trial of a new thoracic electrical bioimpedance device for cardiac output estimation. Crit Care Med 22:1907–1912

    Article  CAS  PubMed  Google Scholar 

  36. Linton RA, Band DM, Haire KM (1994) A new method of measuring cardiac output in main using lithium dilution. Br J Anaesth 71:262–266

    Article  Google Scholar 

  37. Linton R, Band D, O’Brian T et al (1997) Lithium dilution cardiac output measurement: a comparison with thermodilution. Crit Care Med 25:1767–1768

    Article  Google Scholar 

  38. Kurita T, Morita K, Kato S et al (1997) Comparison of the accuracy of the lithium dilution technique with the thermodilution technique for measurement of cardiac output. Br J Anaesth 79:770–775

    Article  CAS  PubMed  Google Scholar 

  39. Rivers E, Nguyen B, Havstad S et al (2001) Early goal-directed therapy in the treatment of severe sepsis and septic shock. N Engl J Med 345:1368–1377

    Article  CAS  PubMed  Google Scholar 

  40. Band DM, Linton RA, Jonas MM et al (1997) The shape of indicator dilution curves used for cardiac output measurement in man. J Physiol 498:225–229

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Shoemaker WC (2002) New approaches to trauma management using severity of illness and outcome prediction based on noninvasive hemodynamic monitoring. Surg Clin North Am 82:245–255

    Article  PubMed  Google Scholar 

  42. Shoemaker WC, Wo CC, Chan L et al (2001) Outcome prediction of emergency patients by noninvasive hemodynamic monitoring. Chest 120:528–537

    Article  CAS  PubMed  Google Scholar 

  43. Drazner MH, Thompson B, Rosenberg PB et al (2002) Comparisons of impedance cardiography with invasive hemodynamic measurements in patients with heart failure secondary to ischemic or nonischemic cardiomyopathy. Am J Cardiol 89:993–995

    Article  PubMed  Google Scholar 

  44. Binder JC, Parkin WG (2001) Non-invasive cardiac output determination: comparison of a new partial-rebreathing technique with thermodilution. Anaesth Intensive Care 28:427–430

    Google Scholar 

  45. Maxwell RA, Gibson JB, Slade JB et al (2001) Noninvasive cardiac output by partial CO2 rebreathing after severe chest trauma. J Trauma 51:849–853

    Article  CAS  PubMed  Google Scholar 

  46. Tachibana K, Imanaka H, Miyano H et al (2002) Effect of ventilatory settings on accuracy of cardiac output measurement using partial CO2 rebreathing. Anesthesiology 96:96–102

    Article  PubMed  Google Scholar 

  47. Botero M, Lobato EB (2001) Advances in noninvasive cardiac output monitoring: an update. J Cardiothorac Vasc Anesth 15:631–640

    Article  CAS  PubMed  Google Scholar 

  48. Kotake Y, Moriyama K, Innami Y et al (2003) Performance of noninvasive partial CO2 rebreathing cardiac output and continuous thermodilution cardiac output in patients undergoing aortic reconstruction surgery. Anesthesiology 99:283–288

    Article  PubMed  Google Scholar 

  49. Keech J, Reed RL II (2003) Reliability of mixed venous oxygen saturation as an indicator of the oxygen extraction ratio demonstrated by a large patient data set. J Trauma 54:236–241

    Article  PubMed  Google Scholar 

  50. Snyder JV, Carroll GC (1982) Tissue oxygenation: a physiologic approach to a clinical problem. Curr Probl Surg 19:650

    Article  CAS  PubMed  Google Scholar 

  51. Jain A, Shroff SG, Jnicki JS et al (1991) Relation between venous oxygen saturation and cardiac index. Nonlinearity and normalization for oxygen uptake and hemoglobin. Chest 99:1403–1409

    Article  CAS  PubMed  Google Scholar 

  52. Inomata S, Nishikawa T, Taguchi M (1994) Continuous monitoring of mixed venous oxygen saturation for detecting alterations in cardiac output after discontinuation of cardiopulmonary bypass. Br J Anaesth 72:11–16

    Article  CAS  PubMed  Google Scholar 

  53. Rivers E, Nguyen B, Vastad S et al (2001) Early goal-directed therapy in the treatment of severe sepsis and septic shock. N Engl J Med 345:1368–1377

    Article  CAS  PubMed  Google Scholar 

  54. Kraft P, Steltzer H, Hiesmayr M et al (1993) Mixed venous oxygen saturation in critically ill septic shock patients: the role of defined events. Chest 103:900–906

    Article  Google Scholar 

  55. Waller JL, Kaplan JA, Bauman LI et al (1982) Clinical evaluation of a new fiberoptic catheter oximeter during cardiac surgery. Anesth Analg 61:676–679

    Article  CAS  PubMed  Google Scholar 

  56. Vedrinne C, Bastien O, De Varax R et al (1997) Predictive factors for usefulness of fiberoptic pulmonary artery catheter for continuous oxygen saturation in mixed venous blood monitoring in cardiac surgery. Anesth Analg 85:2–10

    CAS  PubMed  Google Scholar 

  57. Goldman RH, Klughaupt M, Metcalf T et al (1968) Measured central venous oxygen saturation in patients with myocardial infarction. Circulation 38:941–946

    Article  CAS  PubMed  Google Scholar 

  58. Berridye JC (1992) Influence of cardiac output on correlation between mixed venous and central venous oxygen saturation. Br J Anaesth 89:409–410

    Article  Google Scholar 

  59. Davies GG, Mendehall J, Symrey T (1988) Measurement of right atrial oxygen saturation by fiberoptic oximetry accurately reflects mixed venous oxygen saturation in swine. J Clin Monit 4:99–102

    Article  CAS  PubMed  Google Scholar 

  60. Rivers EP, Ander DS, Powell D (2001) Central venous oxygen saturation monitoring in the critically ill patient. Curr Opin Crit Care 7:204–211

    Article  CAS  PubMed  Google Scholar 

  61. Lee J, Wright F, Barber R et al (1972) Central venous oxygen saturation in shock: a study in man. Anesthesiology 36:472–478

    Article  CAS  PubMed  Google Scholar 

  62. Scheinman MM, Brown MA, Rapaport E (1969) Critical assessment of use of central venous oxygen saturation as a mirror of mixed venous oxygen in severely ill cardiac patients. Circulation 40:165–172

    Article  CAS  PubMed  Google Scholar 

  63. Edwards JD, Mayall RM (1998) Importance of the sampling site for measurement of mixed venous oxygen saturation in shock. Crit Care Med 26:1356–1360

    Article  CAS  PubMed  Google Scholar 

  64. Bonow RO, Carabello B, de Leon AC et al (1998) ACC/AHA guidelines for the management of patients with valvular heart disease. J Heart Valve Dis 7:672–707

    CAS  PubMed  Google Scholar 

  65. Yoganathan AP, Chandran KB, Sotiropoulos F (2005) Flow in prosthetic heart valves: state-of-the-art and future directions. Ann Biomed Eng 33:1689–1694

    Article  PubMed  Google Scholar 

  66. Brignole M, Sutton R, Menozzi C et al (2006) Lack of correlation between the responses to tilt testing and adenosine triphosphate test and the mechanism of spontaneous neurally mediated syncope. Eur Heart J 27:2232–2239

    Article  PubMed  Google Scholar 

  67. Deharo JC, Jego C, Lanteaume A, Djiane P (2006) An implantable loop recorder study of highly symptomatic vasovagal patients: the heart rhythm observed during a spontaneous syncope is identical to the recurrent syncope but not correlated with the head-up tilt test or adenosine triphosphate test. J Am Coll Cardiol 47:587–593

    Article  PubMed  Google Scholar 

  68. Moya A, Brignole M, Menozzi C et al (2001) Mechanism of syncope in patients with isolated syncope and in patients with tilt-positive syncope. Circulation 104:1261–1267

    Article  CAS  PubMed  Google Scholar 

  69. Strickberger SA, Benson DW, Biaggioni I et al (2006) AHA/ACCF scientific statement on the evaluation of syncope. Circulation 113:316–327

    Article  PubMed  Google Scholar 

  70. Brignole M, Alboni P, Benditt DG et al (2004) Guidelines on management (diagnosis and treatment) of syncope-update 2004. Eur Heart J 25:2054–2072

    Article  PubMed  Google Scholar 

  71. Adamson PB, Magalski A, Braunschweig F et al (2003) Ongoing right ventricular hemodynamics in heart failure: clinical value of measurements derived from an implantable monitoring system. J Am Coll Cardiol 41:565–571

    Article  PubMed  Google Scholar 

  72. Reynolds DW, Bartelt N, Taepke R, Bennett TD (1995) Measurement of pulmonary artery diastolic pressure from the right ventricle. J Am Coll Cardiol 25:1176–1182

    Article  CAS  PubMed  Google Scholar 

  73. Stevenson LW, Perloff JK (1989) The limited reliability of physical signs for estimating hemodynamics in chronic heart failure. JAMA 261:884–888

    Article  CAS  PubMed  Google Scholar 

  74. Wilson JR, Hanamanthu S, Chomsky DB, Davis SF (1999) Relationship between exertional symptoms and functional capacity in patients with heart failure. J Am Coll Cardiol 33:1943–1947

    Article  CAS  PubMed  Google Scholar 

  75. Bennett T, Kjellstrom B, Taepke R, Ryden L (2005) Development of implantable devices for continuous ambulatory monitoring of central hemodynamic values in heart failure patients. Pacing Clin Electrophysiol 28:573–584

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael K. Loushin MD .

Editor information

Editors and Affiliations

1 Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Video 20.1. Pressure-volume loops.wmv (swine) (WMV 47,421 KB)

Video 20.2. Pressure catheter placement.wmv (swine) (WMV 59,695 KB)

JPG 20.1. Typical monitor display of electrocardiogram, blood pressures and SvO2 (TIFF 939 KB)

JPG 20.2. Cannulation of a peripheral artery (TIFF 1,065 KB)

JPG 20.3. A patient’s wrist is sterilely prepped and draped prior to cannulation of the radial artery (TIFF 739 KB)

JPG 20.4. Typical pressure transducer for monitoring blood pressures (TIFF 611 KB)

JPG 20.5. Millar catheter (TIFF 707 KB)

JPG 20.6. Sensors on a Millar catheter (TIFF 291 KB)

JPG 20.7. Typical central venous access kit (TIFF 717 KB)

JPG 20.8. Cannulation of right internal jugular vein (TIFF 775 KB)

145597_3_En_20_MOESM9_ESM.tif

JPG 20.9. Typical pulmonary artery catheter. This catheter also has the ability to continuously monitor cardiac output (TIFF 572 KB)

JPG 20.10. Inflated balloon at the distal tip of pulmonary artery catheter (TIFF 714 KB)

145597_3_En_20_MOESM11_ESM.tif

JPG 20.11. Pulmonary artery catheter with ability to continuously monitor cardiac output and mixed venous saturation (SvO2) (TIFF 1,032 KB)

JPG 20.12. Angiogram showing an arterial dissection (JPEG 196 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Loushin, M.K., Quill, J.L., Iaizzo, P.A. (2015). Mechanical Aspects of Cardiac Performance. In: Iaizzo, P. (eds) Handbook of Cardiac Anatomy, Physiology, and Devices. Springer, Cham. https://doi.org/10.1007/978-3-319-19464-6_20

Download citation

Publish with us

Policies and ethics