Skip to main content

Hybrid Sol/Gels for DNA Arrays and Other Lab-on-a-Chip Applications

  • Living reference work entry
  • First Online:
Handbook of Sol-Gel Science and Technology

Abstract

This work describes various ways to improve the attachment, retention, and functionality of DNA strands on and within sol/gel coatings deposited on transparent glass slides for lab-on-a-chip applications. The DNA strands were tagged with fluorescent molecules to quantify their retention using confocal scanning fluorescence microscopy. In addition to conventional silicate gels, hybrid gels containing aminosilane were also studied. Here, 50–60 nm thick, large-pore gel coatings were used to immobilize DNA within the bulk pore-space of the gel, in addition to spotting the surface with DNA strands. Some advantages of using aminosilane include improved adsorption of the DNA, control of bulk pore-size and especially the ability to increase the spot density due to improved confinement of the spots. This lead naturally to micropatterning of DNA arrays using sol/gels for soft lithography. Although new methods for assaying DNA strands, as well as improvements in soft lithography with sol/gels, have been developed since this work was first published, the design concepts and processing methods are still relevant.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Auroux PA, Iossifidis D, Reyes DR, Manz A. Micro total analysis systems. 2. Analytical standard operations and applications. Anal Chem. 2002;74(12):2637–52.

    Article  Google Scholar 

  • Avnir D, Braun S, Lev O, Ottolenghi M. Enzymes and other proteins entrapped in sol–gel materials. Chem Mater. 1994;6(10):1605–14.

    Article  Google Scholar 

  • Beier M, Hoheisel JD. Versatile derivatisation of solid support media for covalent bonding on DNA-microchips. Nucleic Acids Res. 1999;27(9):1970–7.

    Article  Google Scholar 

  • Benters R, Niemeyer CM, Wohrle D. Dendrimer-activated-solid supports for nucleic acid and protein microarrays. ChemBioChem. 2001;2(9):686–94.

    Article  Google Scholar 

  • Bhatia RB, Brinker CJ, Gupta AK, Singh AK. Aqueous sol–gel process for protein encapsulation. Chem Mater. 2000;12(8):2434–41.

    Article  Google Scholar 

  • Böttcher H, Slowik P, Suss W. Sol–gel carrier systems for controlled drug delivery. J Sol-Gel Sci Technol. 1998;13(1–3):277–81.

    Article  Google Scholar 

  • Böttcher H, Jagota C, Trepte J, Kallies KH, Haufe H. Sol–gel composite films with controlled release of biocides. J Control Release. 1999;60(1):57–65.

    Article  Google Scholar 

  • Braun S, Rappoport S, Zusman R, Avnir D, Ottolenghi M. Biochemically active sol–gel glasses-the trapping of enzymes. Mater Lett. 1990;10(1–2):1–5.

    Article  Google Scholar 

  • Brennan JD. Using intrinsic fluorescence to investigate proteins entrapped in sol–gel derived materials. Appl Spectrosc. 1999;53(3):106A–21.

    Article  Google Scholar 

  • Brinker CJ, Scherer GW. Sol–gel-glass: I. Gelation and gel structure. J Non-Cryst Solids. 1985;1985(70):301–22.

    Article  Google Scholar 

  • Bumgarner R. DNA microarrays: types, applications and their future. Curr Protoc Mol Biol, Unit. 2013;22(1).

    Google Scholar 

  • Carturan G, Campostrini R, Dire S, Scardi V, Dealteriis E. Inorganic gels for immobilization of biocatalysts-inclusion of invertase-active whole cell of yeast (saccharomyces-cerevisiae) into thin-layers of SiO2 gel deposited on glass sheets. J Mol Catal. 1989;57(1):L13–6.

    Article  Google Scholar 

  • Cass T, Ligler SF. Immobilized biomolecules in analysis: a practical approach. New York: Oxford University Press; 1998.

    Google Scholar 

  • Chrisey LA, Lee GU, O’Ferrall CE. Covalent attachment of synthetic DNA to self-assembled monolayer films. Nucleic Acids Res. 1996;24(15):3031–9.

    Article  Google Scholar 

  • Conzone SD, Pantano CG. Glass slides to DNA microarrays. Mater Today. 2004;7(3):20.

    Article  Google Scholar 

  • Dave BC, Dunn B, Valentine JS, Zink JI. Sol–gel encapsulation methods for biosensors. Anal Chem. 1994;66(22):A1120–7.

    Article  Google Scholar 

  • Dave BC, Miller JM, Dunn B, Valentine JS, Zink JI. Encapsulation of proteins in bulk and thin film sol–gel matrices. J Sol-Gel Sci Technol. 1997;8(1–3):629–34.

    Google Scholar 

  • Dubiley S, Kirillov E, Lysov Y, Mirzabekov A. Fractionation, phosphorylation and ligation on oligonucleotide microchips to enhance sequencing by hybridization. Nucleic Acids Res. 1997;25(12):2259–65.

    Article  Google Scholar 

  • Ebara Y, Mizutani K, Okahata Y. DNA hybridization at the air-water interface. Langmuir. 2000;16(6):2416–8.

    Article  Google Scholar 

  • Ellerby LM, Nishida CR, Nishida F, Yamanaka SA, Dunn B, Valentine JS, Zink JI. Encapsulation of proteins in transparent porous silicate-glasses prepared by the sol–gel method. Science. 1992;255(5048):1113–5.

    Article  Google Scholar 

  • Estroff LA, Hamilton AD. At the interface of organic and inorganic chemistry: bioinspired synthesis of composite materials. Chem Mater. 2001;13(10):3227–35.

    Article  Google Scholar 

  • Ferrer ML, del Monte F, Levy D. A novel and simple alcohol-free sol–gel route for encapsulation of labile proteins. Chem Mater. 2002;14(9):3619–21.

    Article  Google Scholar 

  • Fidanza J, Glazer M, Mutnick D, McGall G, Frank C. High capacity substrates as a platform for a DNA probe array genotyping assay. Nucleosides Nucleotides Nucleic Acids. 2001;20(4–7):533–8.

    Article  Google Scholar 

  • Fodor SPA, Read JL, Pirrung MC, Stryer L, Lu AT, Solas D. Light directed spatially addressable parallel chemical synthesis. Science. 1991;251(4995):767–73.

    Article  Google Scholar 

  • Gill I. Bio-doped nanocomposite polymers: sol–gel bioencapsulates. Chem Mater. 2001;13(10):3404–21.

    Article  Google Scholar 

  • Gill I, Ballesteros A. Encapsulation of biologicals within silicate, siloxane, and hybrid sol–gel polymers: an efficient and generic approach. J Am Chem Soc. 1998;120(34):8587–98.

    Article  Google Scholar 

  • Gill I, Ballesteros A. Bioencapsulation within synthetic polymers (Part 1): sol–gel encapsulated biologicals. Trends Biotechnol. 2000;18(7):282–96.

    Article  Google Scholar 

  • Glazer M, Frank C, Vinci RP, McGall G, Fidanza J, Beecher J. High surface area substrates for DNA arrays. In: Klein LC, Francais LF, DeGuire MR, Mark JE, editors. Organic/inorganic hybrid materials II, Materials Research Society proceedings; Materials Research Society (MRS), Pittsburgh, PA; 1999.

    Google Scholar 

  • Glazer M, Fidanza J, McGall G, Frank C. Colloidal silica films for high-capacity DNA probe arrays. Chem Mater. 2001;13(12):4773–82.

    Article  Google Scholar 

  • Guo Z, Guilfoyle RA, Thiel AJ, Wang RF, Smith LM. Direct fluorenesce analysis of genetic polymorphism by hybridization with oligonucleotide arrays on glass support. Nucleic Acids Res. 1994;22(24):5456–65.

    Article  Google Scholar 

  • Harrison DJ, Manz A, Fan ZH, Ludi H, Widmer HM. Capillary electrophoresis and sample injection systems integrated on a planar glass chip. Anal Chem. 1992;64(17):1926–32.

    Article  Google Scholar 

  • Ijiro K, Shimomura M, Tanaka M, Nakamura H, Hasebe K. DNA monolayers complexed with amphiphilic intercalator at the air-water interface. Thin Solid Films. 1996;285:780–3.

    Article  Google Scholar 

  • Joos B, Kuster H, Cone R. Covalent attachment of hybridizable oligonucleotides to glass support. Anal Biochem. 1997;247(1):96–101.

    Article  Google Scholar 

  • Jordan CE, Frutos AG, Thiel AJ, Corn RM. Surface plasmon resonance imaging measurements of DNA hybridization adsorption and streptavidin/DNA multilayer formation at chemically modified gold surfaces. Anal Chem. 1997;69(24):4939–47.

    Article  Google Scholar 

  • Kim YD, Park CB, Clark DS. Stable sol–gel microstructured and microfluidic networks for protein patterning. Biotechnol Bioeng. 2001;73(5):331–7.

    Article  Google Scholar 

  • Lamture JB, Beattie KL, Burke BE, Eggers MD, Ehrlich DJ, Fowler R, Hollis MA, Kosicki BB, Reich RK, Smith SR, Varma RS, Hogan ME. Direct detection of nucleic acid hybridization on the surface of a charge coupled device. Nucleic Acids Res. 1994;22(11):2121–5.

    Article  Google Scholar 

  • Lee HJ, Goodrich TT, Corn RM. SPR imaging measurements of 1-D and 2-D DNA microarrays created from microfluidic channels on gold thin films. Anal Chem. 2001;73(22):5525–31.

    Article  Google Scholar 

  • Lin J, Brown CW. Sol–gel glass as a matrix for chemical and biochemical sensing. TrAC Trends Anal Chem. 1997;16(4):200–11.

    Article  Google Scholar 

  • Liu DM, Chen IW. Encapsulation of protein molecules in transparent porous silica matrices via an aqueous colloidal sol–gel process. Acta Mater. 1999;47(18):4535–44.

    Article  Google Scholar 

  • Mann S, Burkett SL, Davis SA, Fowler CE, Mendelson NH, Sims SD, Walsh D, Whilton NT. Sol–gel synthesis of organized matter. Chem Mater. 1997;9(11):2300–10.

    Article  Google Scholar 

  • Manz A, Harrison DJ, Verpoorte EMJ, Fettinger JC, Paulus A, Ludi H, Widmer HM. Planar chips technology for miniaturization and integration of separation techniques into monitoring systems-capillary electrophoresis on a chip. J Chromatogr. 1992;593(1–2):253–8.

    Article  Google Scholar 

  • Marvik OJ, Isaksen ML, Roza L, Lindqvist BH. Photoimmunodetection: a nonradioactive labeling and detection method for DNA. Biotechniques. 1997;23(5):892–6.

    Google Scholar 

  • Mayes AG, Mosbach K. Molecularly imprinted polymers: useful materials for analytical chemistry? TrAC Trends Anal Chem. 1997;16(6):321–32.

    Article  Google Scholar 

  • Miller JM, Dunn B, Valentine JS, Zink JI. Synthesis conditions for encapsulating cytochrome c and catalase in SiO2 sol–gel materials. J Non Cryst Solids. 1996;202(3):279–89.

    Article  Google Scholar 

  • Moo-Young M. Bioreactor immobilized enzymes and cells: fundamentals and application. London: Elsevier; 1988.

    Google Scholar 

  • Okahata Y, Kobayashi T, Tanaka K. Orientation of DNA double strands in a Langmuir-Blodgett film. Langmuir. 1996;12(5):1326–30.

    Article  Google Scholar 

  • Palecek E, Fojta M. Detecting DNA hybridization and damage. Anal Chem. 2001;73(3):74A–83.

    Google Scholar 

  • Park CB, Clark DS. Sol–gel encapsulated enzyme arrays for high-throughput screening of biocatalytic activity. Biotechnol Bioeng. 2002;78(2):229–35.

    Article  Google Scholar 

  • Pope EHA. Gel encapsulated microorganisms -saccharomyces-cerevisiae-silica-gel biocomposites. J Sol-Gel Sci Technol. 1995;4(3):225–9.

    Article  Google Scholar 

  • Proudnikov D, Timofeev E, Mirzabekov A. Immobilization of DNA in polyacrylamide gel for the manufacture of DNA and DNA-oligonucleotide microchips. Anal Biochem. 1998;259(1):34–41.

    Article  Google Scholar 

  • Rasmussen SR, Larsen MR, Rasmussen SE. Covalent immobilization of DNA onto polystyrene microwells-the molecules are only bound at the 5′ end. Anal Biochem. 1991;198(1):138–42.

    Article  Google Scholar 

  • Rogers YH, Jiang-Baucom P, Huang ZJ, Bogdanov V, Anderson S, Boyce-Jacino MT. Immobilization of oligonucleotides onto a glass support via disulfide bonds: a method for preparation of DNA microarrays. Anal Biochem. 1999;266(1):23–30.

    Article  Google Scholar 

  • Schena M, Shalon D, Davis RW, Brown PO. Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science. 1995;270(5235):467–70.

    Article  Google Scholar 

  • Schena M, Shalon D, Heller R, Chai A, Brown PO, Davis RW. Parallel human genome analysis: microarray-based exression monitorung of 1000 genes. Proc Natl Acad Sci U S A. 1996;93:10614–9.

    Article  Google Scholar 

  • Steel AB, Levicky R, Herne TM, Tarlov MJ. Electrochemical quantitation of DNA immobilized on gold. Abstr Pap Am Chem. 1999; S 218:158-ANYL Part 1.

    Google Scholar 

  • Steel A, Torres M, Hartwell J, Yu Y, Ting N, Hoke G, Yang H. The Flow-Thru Chip™: a three-dimensional biochip platform. In: Schena M, editor. Microarray biochip technology. Natwick: Eaton; 2000.

    Google Scholar 

  • Storri S, Santoni T, Mascini M. A piezoelectric biosensor for DNA hybridisation detection. Anal Lett. 1998;31(11):1795–808.

    Article  Google Scholar 

  • Verpoorte E. Microfluidic chips for clinical and forensic analysis. Electrophoresis. 2002;23(5):677–712.

    Article  Google Scholar 

  • Wang J, Kawde AN. Pencil-based renewable biosensor for label-free electrochemical detection of DNA hybridization. Anal Chim Acta. 2001;431(2):219–24.

    Article  Google Scholar 

  • Wang J, Jiang M, Nilsen TW, Getts RC. Dendritic nucleic acid probes for DNA biosensors. J Am Chem Soc. 1998;120(32):8281–2.

    Article  Google Scholar 

  • Weiner S, Addadi L. Design strategies in mineralized biological materials. J Mater Chem. 1997;5:689–702.

    Article  Google Scholar 

  • Wu SG, Ellerby LM, Cohan JS, Dunn B, Elsayed MA, Valentine JS, Zink JI. Bacteriorhodopsin encapsulated in transparent sol–gel glass-a new biomaterial. Chem Mater. 1993;5(1):115–20.

    Article  Google Scholar 

  • Wulff G. Molecular imprinting in cross-linked materials with the aid of molecular template-a way towards artifical antibodies. Angew Chem Int Ed. 1995;34(17):1812–32.

    Article  Google Scholar 

  • Xia YN, Whitesides GM. Soft lithography. Angew Chem Int Ed. 1998;37(5):551–75.

    Article  Google Scholar 

  • Xia YN, Rogers JA, Paul KE, Whitesides GM. Unconventional methods for fabricating and patterning nanostructures. Chem Rev. 1999;99(7):1823–48.

    Article  Google Scholar 

  • Yershov G, Barsky V, Belgovskiy A, Kirillov E, Kreindlin E, Ivanov I, Parinov S, Guschin D, Drobishev A, Dubiley S, Mirzabekov A. DNA analysis and diagnostics on oligonucleotide microchips. Proc Natl Acad Sci U S A. 1996;93(10):4913–8.

    Article  Google Scholar 

  • Zammatteo N, Jeanmart L, Hamels S, Courtois S, Louette P, Hevesi L, Remacle J. Comparison between different strategies of covalent attachment of DNA to glass surfaces to build DNA microarrays. Anal Biochem. 2000;280(1):143–50.

    Article  Google Scholar 

Download references

Acknowledgment

The authors gratefully acknowledge the Center for Nanoscale Science, an NSF Materials Research and Engineering Center (MRSEC) at the Pennsylvania State University and also Schott Glass Technologies (Duryea, PA, USA) for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlo G. Pantano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this entry

Cite this entry

Durucan, C., Pantano, C.G. (2016). Hybrid Sol/Gels for DNA Arrays and Other Lab-on-a-Chip Applications. In: Klein, L., Aparicio, M., Jitianu, A. (eds) Handbook of Sol-Gel Science and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-19454-7_77-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-19454-7_77-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Online ISBN: 978-3-319-19454-7

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics