Skip to main content

Aromatic Amines Sources, Environmental Impact and Remediation

  • Chapter
Pollutants in Buildings, Water and Living Organisms

Part of the book series: Environmental Chemistry for a Sustainable World ((ECSW,volume 7))

Abstract

Aromatic amines are widely used industrial chemicals as their major sources in the environment include several chemical industry sectors such as oil refining, synthetic polymers, dyes, adhesives, rubbers, perfume, pharmaceuticals, pesticides and explosives. They result also from diesel exhaust, combustion of wood chips and rubber and tobacco smoke. Some types of aromatic amines are generated during cooking, special grilled meat and fish, as well. The intensive use and production of these compounds explains its occurrence in the environment such as in air, water and soil, thereby creating a potential for human exposure. Since aromatic amines are potential carcinogenic and toxic agents, they constitute an important class of environmental pollutants of enormous concern, which efficient removal is a crucial task for researchers, so several methods have been investigated and applied.

In this chapter the types and general properties of aromatic amine compounds are reviewed. As aromatic amines are continuously entering the environment from various sources and have been designated as high priority pollutants, their presence in the environment must be monitored at concentration levels lower than 30 mg Lāˆ’1, compatible with the limits allowed by the regulations. Consequently, most relevant analytical methods to detect the aromatic amines composition in environmental matrices, and for monitoring their degradation, are essential and will be presented. Those include Spectroscopy, namely UV/visible and Fourier Transform Infrared Spectroscopy (FTIR); Chromatography, in particular Thin Layer (TLC), High Performance Liquid (HPLC) and Gas chromatography (GC); Capillary electrophoresis (CE); Mass spectrometry (MS) and combination of different methods including GC-MS, HPLC-MS and CE-MS. Choosing the best methods depend on their availability, costs, detection limit and sample concentration, which sometimes need to be concentrate or pretreated. However, combined methods may give more complete results based on the complementary information. The environmental impact, toxicity and carcinogenicity of many aromatic amines have been reported and are emphasized in this chapter too.

Lately, the conventional aromatic amines degradation and the alternative biodegradation processes are highlighted. Parameters affecting biodegradation, role of different electron acceptors in aerobic and anaerobic biodegradation and kinetics are discussed. Conventional processes including extraction, adsorption onto activated carbon, chemical oxidation, advanced oxidation, electrochemical techniques and irradiation suffer from drawbacks including high costs, formation of hazardous by-products and low efficiency. Biological processes, taking advantage of the naturally processes occurring in environment, have been developed and tested, proved as an economic, energy efficient and environmentally feasible alternative. Aerobic biodegradation is one of the most promising techniques for aromatic amines remediation, but has the drawback of aromatic amines autooxidation once they are exposed to oxygen, instead of their degradation. Higher costs, especially due to power consumption for aeration, can also limit its application. Anaerobic degradation technology is the novel path for treatment of a wide variety of aromatic amines, including industrial wastewater, and will be discussed. However, some are difficult to degrade under anaerobic conditions and, thus, other electron acceptors such as nitrate, iron, sulphate, manganese and carbonate have, alternatively, been tested.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acquawell JF, Wilson JD, Conner P, Bannister R (1991) An alternative hypothesis for bladder cancer among workers exposed to o-toluidine and aniline. J Nat Cancer Inst 83:1686ā€“1697. doi:10.1093/jnci/83.22.1686

    Google ScholarĀ 

  • AkyĆ¼z M, Ata S (2004) Ion-Par extraction and GC-MS determination of aliphatic and Aromatic amines in water and sediment samples. In: 4th AACD congress, 29 Septā€“3 Oct 2004, Adnan Menderes University, Kuşadası-Aydin,Turkey, Proceedings Book 341, 623ā€“628. http://www.srcosmos.gr/srcosmos/showpub.aspx?aa=5641

  • Alaejos MS, Ayala JH, Gonzalez V, Afonso AM (2008) Analytical methods applied to the determination of heterocyclic aromatic amines in foods. J Chromatogr B 862:15ā€“42. doi:10.1016/j.jchromb.2007.11.040

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Al-Johani H, Salam MA (2011) Kinetics and thermodynamic study of aniline adsorption by multi-walled carbon nanotubes from aqueous solution. J Colloid Interface Sci 360:760ā€“767. doi:10.1016/j.jcis.2011.04.097

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Aoki K, Ohtsuka K, Shinke R, Nishira H (1983) Isolation of aniline assimilation bacteria and physiological characterization of aniline biodegradation in Rhodococcus erythropolis AN13. Agric Biol Chem 47:2569ā€“2575. http://www.doi.org/10.1271/bbb1961.47.2569

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Asthana A, Bose D, Durgbanshi A, Sanghi SK, Kok WT (2000) Determination of aromatic amines in water samples by capillary electrophoresis with electrochemical and fluorescence detection. J Chromatogr A 895:197ā€“203. doi:10.1016/S0021-9673(00)00522-7, PII: S0021-9673(00)00522-7

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Aust SD, Bourquin A, Loper JC, Salanitro JR, Suk WA, Tiedjet J (1994) Biodegradation of hazardous wastes. Environ Health Perspect Suppl 102:245ā€“252

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Bachofer R, Lingens F, Schafer W (1975) Conversion of aniline into pyro-catechol by a Nocardia sp: incorporation of oxygen-18. FEBS Lett 50:288ā€“290. http://www.doi.org/10.1016/0014-5793(75)80510-2

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Barsing P, Tiwari A, Joshi T, Garg S (2011) Application of a novel bacterial consortium for mineralization of sulphonated aromatic amines. Bioresour Technol 102:765ā€“771. http://www.doi.org/10.1016/j.biortech.2010.08.098

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Bomhard EM, Herbold BA (2005) Genotoxic activities of aniline and its metabolites and their relationship to the carcinogenicity of aniline in the spleen of rats. Crit Rev Toxicol 35:783ā€“835. doi:10.1080/10408440500442384

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Bƶrnick H, Eppinger P, Grischek T, Worch E (2001) Simulation of biological degradation of aromatic amines in river bed sediments. Water Res 35:619ā€“624. http://www.doi.org/10.1016/S0043-1354(00)00314-6

    ArticleĀ  Google ScholarĀ 

  • BrĆ”s R, Ferra MIA, Pinheiro HM, GonƧalves IC (2001) Batch tests for assessing decolourisation of azo dyes by methanogenic and mixed cultures. J Biotechnol 89:155ā€“162. http://www.doi.org/10.1016/S0168-1656(01)00312-1

    ArticleĀ  Google ScholarĀ 

  • Brown MA, De Vito SC (1993) Predicting azo dye toxicity. Crit Rev Environ Sci Technol 23(3):249ā€“324. doi:10.1080/10643389309388453

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Brown D, Laboureur P (1983) The aerobic biodegradability of primary aromatic amines. Chemosphere 12:405ā€“414. http://www.doi.org/10.1016/S0045-6535(01)00074-1

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Bull RJ, Reckhow DA, Li X, Humpaged AR, Joll C, Hrudey SE (2011) Potential carcinogenic hazards of non-regulated disinfection by-products: haloquinones, halo-cyclopentene and cyclohexene derivatives, N-halamines, halonitriles, and heterocyclic amines. Toxicology 286:1ā€“19. doi:10.1016/j.tox.2011.05.004

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Carmona M, Zamarro MT, BlĆ”zquez B, Durante-RodrĆ­guez G, JuĆ”rez JF, Valderrama JA, BarragĆ”n MJL, GarcĆ­a JL, DĆ­az E (2009) Anaerobic catabolism of aromatic compounds: a genetic and genomic view. Microbiol Mol Biol Rev 73(1):71ā€“133. doi:10.1128/MMBR.00021-08

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Carvalho C, Fernandes A, Lopes A, Pinheiro H, GonƧalves I (2006) Electrochemical degradation applied to the metabolites of Acid Orange 7 anaerobic biotreatment. Chemosphere 67:1316ā€“1324

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Carvalho MC, Pereira C, Goncalves IC, Pinheiro HM, Santos AR, Lopes A, Ferra MI (2008) Assessment of the biodegradability of a monosulfonated azo dye and aromatic amines. Int Biodeterior Biodegrad 62:96ā€“103. doi:10.1016/j.ibiod.2007.12.008

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Carvalho CJ, Lizier TM, Zanoni MVB (2010) Highly ordered TiO2 nanotube arrays and photoelectrocatalytic oxidation of aromatic amine. Appl Catal Environ 99:96ā€“102. doi:10.1016/j.apcatb.2010.06.005

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Casero I, Sicilia D, Rubio S, Bendito DP (1997) Chemical degradation of aromatic amines by Fentonā€™s reagent. Water Res 31(8):1985ā€“1995. http://www.doi.org/10.1016/S0043-1354(96)00344-2

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Cavallaro A, Piangerelli V, Nerini F, Cavalli S, Reshiotto C (1995) Selective determination of aromatic amines in water samples by capillary zone electrophoresis and solid-phase extraction. J Chromatogr A 709:361ā€“366. doi:10.1016/0021-9673(95)00435-P

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Chen S, Sun D, Chung JS (2009) Simultaneous methanogenesis and denitrification of aniline wastewater by using anaerobicā€“aerobic biofilm system with recirculation. J Hazard Mater 169:575ā€“580. http://www.doi.org/10.1016/j.jhazmat.2009.03.132

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Chey WM, Adams RN (1977) Anodic differential pulse voltammetry of aromatic amines and phenols at trace levels. J Electroanal Chem 75:731ā€“738. http://www.doi.org/10.1016/S0022-0728(77)80212-X

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Chung KT (2000) Mutagenicity and carcinogenicity of aromatic amines metabolically produced from Azo Dyes. Environ Carcinog Ecotoxicol Rev C 18(l):51ā€“74. http://www.doi.org/10.1080/10590500009373515

    ArticleĀ  Google ScholarĀ 

  • Chung KT, Cerniglia CE (1992) Mutagenicity of azo dyes: structure activity relationships. Mutat Res 277:201ā€“220. http://www.doi.org/10.1016/0165-1110(92)90044-A

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Chung K-T, Murdock CA, Stevens SE, Li Y-S, Wei C-I, Huang T-S, Chou MW (1995) Mutagenicity and toxicity studies of p-phenylenediamine and its derivatives. Toxicol Lett 81(1):23ā€“32. doi:10.1016/0378-4274(95)03404-8

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Combes RD, Haveland-Smith RB (1982) A review of the genotoxicity of food, drug and cosmetic colours and other azo, triphenylmethane and xanthene dyes. Mutation Res/Rev Genetic Toxicol 98(2):101ā€“243. doi:10/1016/016511108290015X

    Google ScholarĀ 

  • Coughlin MF, Kinkle BK, Bishop PL (2002) Degradation of acid orange 7 in an aerobic biofilm. Chemosphere 46:11ā€“19. http://www.doi.org/10.1016/S0045-6535(01)00096-0

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Dados AE, Stalikas CD, Pilidis GA (2004) Determination of aromatic amines in textile after bromination, by gas chromatography coupled with electron capture detection. Chromatographia 59(5/6):335ā€“341. doi:10.1365/s10337-003-0156-x

    CASĀ  Google ScholarĀ 

  • DeBruin LS, Pawliszyn JB, Josephy PD (1999) Detection of monocyclic aromatic amines, possible mammary carcinogens, in human milk. Chem Res Toxicol 12:78ā€“82. doi:10.1021/tx980168m CCC

    ArticleĀ  CASĀ  Google ScholarĀ 

  • DĆ­az E (2004) Bacterial degradation of aromatic pollutants: a paradigm of metabolic versatility. Int Microbiol 7:173ā€“180. http://www.im.microbios.org/0703/0703173.pdf

    Google ScholarĀ 

  • Fay LB, Ali S, Gross GA (1997) Determination of heterocyclic aromatic amines in food products: automation of the sample preparation method prior to HPLC and HPLCā€“MS quantification. Mutat Res 376:29ā€“35. http://www.doi.org/10.1016/S0027-5107(97)00022-5

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Fekete A, Malik AK, Kumar A, Schmitt-Kopplin P (2010) Amines in the environment. Crit Rev Anal Chem 40:102ā€“121. doi:10.1080/10408340903517495

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Franc J, KoudelkovĆ” V (1979) Thin-layer chromatography of aromatic amines and their derivatives after reactions with 1-fluoro-2,4-dinitrobenzene. J Chromatogr A 170:89ā€“97. doi:10.1016/S0021-9673(00)84241-7

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Franciscon E, Zille A, Dias GF, Ragagnin MC, Durrant LR, Cavaco-Paulo A (2009) Biodegradation of textile azo dyes by a facultative Staphylococcus arlettae strain VN-11 using a sequential microaerophilic/aerobic process. Int Biodeter Biodegr 63:280ā€“288. doi:10.1016/j.ibiod.2008.10.003

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Franciscon E, Piubeli F, Fantinatti-Garboggini F, Menezes CR, Silva IS, Cavaco-Paulo A, Grossman MJ, Durrant LR (2010) Polymerization study of the aromatic amines generated by the biodegradation of azo dyes using the laccase enzyme. Enzyme Microb Technol 46:360ā€“365. doi:10.1016/j.enzmictec.2009.12.014

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Franciscon E, Grossman MJ, Paschoal JAR, Reyes FGR, Durrant LR (2012) Decolorization and biodegradation of reactive sulfonated azo dyes by a newly isolated Brevibacterium sp. strain VN-15. Springerplus 1(37):1ā€“10. doi:10.1186/2193-1801-1-37

    Google ScholarĀ 

  • Gan J, Skipper PL, Gago-Dominguez M, Arakawa K, Ross RK, Yu MC, Tannenbaum SR (2004) Alkylaniline-hemoglobin adducts and risk of non-smoking related bladder cancer. J Natl Cancer Inst 96(19):1425ā€“1431. doi:10.1093/jnci/djh274

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Ganesh R, Pala S, Metiu H (2007) Modification of the oxidative power of ZnO(1010) surface by substituting some surface Zn atoms with other metals. J Phys Chem C 111(24):8617ā€“8622. doi:10.1021/jp071671n

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Garrigue J-L, Ballantyne M, Kumaravel T, Lloyd M, Nohynek GJ, Kirkland D, Toutain H (2006) In vitro genotoxicity of para-phenylenediamine and its N-monoacetyl or N, N-diacetyl metabolites. Mutat Res 608:58ā€“71. doi:10.1016/j.mrgentox.2006.05.001

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Ghafoor A, Bark LS (1982) Thin layer chromatography of aromatic amines. J Chem Soc Pak 4(3):147ā€“150

    CASĀ  Google ScholarĀ 

  • Gibson J, Harwood CS (2002) Metabolic diversity in aromatic compound utilization by anaerobic microbes. Annu Rev Microbiol 56:345ā€“369. doi:10.1146/annurev.micro.56.012302.160749

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Gonzalez C, Touraud E, Spinelli S, Thomas O (2007) Organic constituents. In: Thomas O, Burgess C (eds) UV-visible spectrophotometry of water and wastewater. Elsevier Science, Amsterdam, The Netherlands, p 64. ISBN 9780080489841

    Google ScholarĀ 

  • Greaves AJ, Churchley JH, Hutchings MG, Phillips DAS, Taylor JA (2001) A chemometric approach to understanding the bioelimination of anionic, water-soluble dyes by a biomass using empirical and semi-empirical molecular descriptors. Water Res 35:1225ā€“1239. http://www.doi.org/10.1016/S0043-1354(00)00388-2

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Guo K, Chen Y (2010) Simple and rapid detection of aromatic amines using a thin layer chromatography plate. Anal Methods 2:1156ā€“1159. doi:10.1039/C0AY00316F

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Haas R, Schmidt TC, Steinbach K, Von Lƶw E (1997) Derivatization of aromatic amines for analysis in ammunition wastewater II: derivatization of methyl anilines by iodination with a Sandmeyer-like reaction. Fresenius J Anal Chem 359:497ā€“501

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Han Y, Quan X, Chen S, Zhao H, Cui C, Zhao Y (2006) Electrochemically enhanced adsorption of aniline on activated carbon fibers. Sep Purif Technol 50:365ā€“372. doi:10.1016/j.seppur.2005.12.011

  • Hecht SS (2003) Carcinogen derived biomarkers: applications in studies of human exposure to secondhand tobacco smoke. Tob Control 13:48ā€“56. doi:10.1136/tc.2002.002816

    ArticleĀ  Google ScholarĀ 

  • Hinteregger C, Loidl M, Streichsbier F (1992) Characterization of isofunctional ring cleaving enzymes in aniline and 3-chloroaniline degradation by Pseudomonas acidovorans CA28. FEMS Microbiol Lett 97:261ā€“266. http://www.doi.org/10.1016/0378-1097(92)90346-P

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Hocine O, Boufatit M, Khouider A (2004) Use of montmorillonite clays as adsorbents of hazardous pollutants. Desalination 167:141ā€“145

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Hou L, Lee HK (2003) Dynamic three-phase microextraction as a sample preparation technique prior to capillary electrophoresis. Anal Chem 75:2784ā€“2789. doi:10.1021/ac020753z

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Huang H, Sommerfeld D, Dunn BC, Lloyd CR, Eyring EM (2001) Ferrate(VI) oxidation of aniline. J Chem Soc Dalton Trans 1301ā€“1305. doi:10.1039/B008934F

  • Janghel EK, Rai JK, Rai MK, Gupta VK (2005) New analytical technique for the simultaneous determination of aromatic amines in environmental samples. J Sci Ind Res 64:594ā€“597

    CASĀ  Google ScholarĀ 

  • Jianguo C, Aimin L, Hongyan S, Zhenghao F, Chao L, Quanxing Z (2005) Equilibrium and kinetic studies on the adsorption of aniline compounds from aqueous phase onto bifunctional polymeric adsorbent with sulfonic groups. Chemosphere 61(4):502ā€“509. http://www.doi.org/10.1016/j.chemosphere.2005.03.001

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Jin Q, Hu Z, Jin Z, Qiu L, Zhong W, Pan Z (2012) Biodegradation of aniline in an alkaline environment by a novel strain of the halophilic bacterium, Dietzia natronolimnaea JQ-AN. Bioresour Technol 117:148ā€“154. http://www.doi.org/10.1016/j.biortech.2012.04.068

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Kahng HY, Kukor Jerome J, Oh KH (2000) Characterization of strain HY99, a novel microorganism capable of aerobic and anaerobic degradation of aniline. FEMS Microbiol Lett 190:215ā€“221 PII: S 0378ā€“1097 (00) 00338ā€“4

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Kalyuzhnyi S, Sklyar V, Mosolova T, Kucherenko I, Russkova J, Degtyaryova N (2000) Methanogenic biodegradation of aromatic amines. Water Sci Technol 42(5ā€“6):363ā€“370

    CASĀ  Google ScholarĀ 

  • Kataoka H (1996) Derivatization reactions for the determination of amines by gas chromatography and their applications in environmental analysis. J Chromatogr A 733:19ā€“34. SSDI 0021-9673(95)00726-1

    Google ScholarĀ 

  • Khalid A, Arshad M, Crowley DE (2009) Biodegradation potential of pure and mixed bacterial cultures for removal of 4-nitroaniline from textile dye wastewater. Water Res 43:1110ā€“1116. doi:10.1016/j.watres.2008.11.045

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Kim D, Guengerich FP (2005) Cytochrome P450 activation of arylamines and heterocyclic amines. Annu Rev Pharmacol Toxicol 45:27ā€“49. doi:10.1146/annurev.pharmtox.45.120403.100010

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Kim SI, Leem SH, Choi JS, Chung YH, Kim S, Park YM, Lee YN, Ha KS (1997) Cloning and characterization of two cat-A genes in Acinetobacter lwoffii K24. J Bacteriol 179:5226ā€“5231. http://www.jb.asm.org/content/179/16/5226

    CASĀ  Google ScholarĀ 

  • Konopka A, Knight D, Turco RF (1989) Characterization of a Pseudomonas sp. capable of aniline degradation in the presence of secondary carbon sources. Appl Environ Microbiol 55:385ā€“389. http://www.aem.asm.org/content/55/2/385

    CASĀ  Google ScholarĀ 

  • KostelnĆ­kovĆ” H, Praus P, TuricovĆ” M (2008) Adsorption of phenol and aniline by original and quaternary ammonium salts-modified montmorillonite. Acta Geodyn Geomater 5(149):83ā€“88

    Google ScholarĀ 

  • Kudlich M, Hetheridge MJ, Knackmuss HJ, Stolz A (1999) Autoxidation reactions of different aromatic o-aminohydroxynaphthalenes that are formed during the anaerobic reduction of sulfonated azo dyes. Environ Sci Tech 33:896ā€“901. doi:10.1021/es9808346

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Lewtas J (2007) Air pollution combustion emissions: characterization of causative agents and mechanisms associated with cancer, reproductive, and cardiovascular effects. Rev Mutat Res 636(1ā€“3):95ā€“133. doi:10.1016/j.mrrev.2007.08.003

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Linā€™kova YV, Dyakonova AT, Gladchenko MA, Kalyuzhnyi SV, Kotova IB, Stams A, Netrusov AI (2011) Methanogenic degradation of (Amino) aromatic compounds by anaerobic microbial communities. Appl Biochem Microbiol 47(5):507ā€“514. doi:10.1134/S0003683811050085

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Liu Z, Yang H, Huang Z, Zhou P, Liu SJ (2002) Degradation of aniline by newly isolated, extremely aniline-tolerant Delftia sp. AN3. Appl Microbiol Biotechnol 58:679ā€“682. doi:10.1007/s00253-002-0933-8

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Lizier TM, Zanoni MVB (2012) Effect of ionic liquid on the determination of aromatic amines as contaminants in hair dyes by liquid chromatography coupled to electrochemical detection. Molecules 17:7961ā€“7979. doi:10.3390/molecules17077961

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Lovley DR (2001) Bioremediation anaerobes to the rescue. Science 293:1444ā€“1446. doi:10.1126/science.1063294

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Lovley DR (2003) Cleaning up with genomics: applying molecular biology to bioremediation. Nat Rev Microbiol 1:35ā€“44. doi:10.1038/nrmicro731

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Marques MM, Mourato LL, Amorim MT, Santos MA, Melchior WB Jr, Beland FA (1997) Effect of substitution site upon the oxidation potentials of alkylanilines, the mutagenicities of N-hydroxyalkylanilines, and the conformations of alkylaniline-DNA adducts. Chem Res Toxicol 10:1266ā€“1274. doi:10.1021/tx970104w

    ArticleĀ  CASĀ  Google ScholarĀ 

  • MartĆ­nez D, Cugat MJ, Borrull F, Calull M (2000) Solid-phase extraction coupling to capillary electrophoresis with emphasis on environmental analysis. J Chromatogr A 902:65ā€“89. PII: S0021-9673(00)00839-6

    ArticleĀ  Google ScholarĀ 

  • Masomboon N, Ratanatamskul C, Lu MC (2011) Kinetics of 2,6-dimethylaniline oxidation by various Fenton processes. J Hazard Mater 192:347ā€“353. doi:10.1016/j.jhazmat.2011.05.034

    CASĀ  Google ScholarĀ 

  • McLeod MP, Eltis LD (2008) Genomic insights into the aerobic pathways for degradation of organic pollutants. In: DĆ­az E (ed) Microbial biodegradation: genomics and molecular biology. Caister Academic Press, Norfolk, pp 1ā€“23

    Google ScholarĀ 

  • Melo A, Viegas O, EƧa R, Petisca C, Pinho O, Ferreira IMPLVO (2008) Extraction, detection, and quantification of heterocyclic aromatic amines in Portuguese meat dishes by HPLC/Diode array. J Liq Chromatogr Relat Technol 31:772ā€“787. doi:10.1080/10826070701855987

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Mendes S, Pereira L, Batista C, Martins LO (2011) Molecular determinants of azo reduction activity in the strain Pseudomonas putida MET94. Appl Microbiol Biotechnol 92:393ā€“405. doi:10.1007/s00253-011-3366-4

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Mondal PK, Ahmad R, Usmani SQ (2010) Anaerobic biodegradation of triphenylmethane dyes in a hybrid UASFB reactor for wastewater remediation. Biodegradation 21:1041ā€“1047. doi:10.1007/s10532-010-9364-x

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Moradi M, Yamini Y, Esrafili A, Seidi S (2010) Application of surfactant assisted dispersive liquid-liquid microextraction for sample preparation of chlorophenols in water samples. Talanta 82:1864ā€“1869. doi:10.1016/j.talanta.2010.08.002, ISSN: 0039ā€“9140

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Moriwakia H, Harino H, Hashimoto H, Arakawa R, Ohe T, Yoshikura T (2003) Determination of aromatic amine mutagens, PBTA-1 and PBTA-2, in river water by solid-phase extraction followed by liquid chromatographyā€“tandem mass spectrometry. J Chromatogr A 995:239ā€“243. doi:10.1016/S0021-9673(03)00514-4

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Mortensen SK, Trier XT, Foverskov A, Petersen JH (2005) Specific determination of 20 primary aromatic amines in aqueous food simulants by liquid chromatographyā€“electrospray ionization-tandem mass spectrometry. J Chromatogr A 1091:40ā€“50. doi:10.1016/j.chroma.2005.07.026

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Mucha K, Kwapisz E, Kucharska U, Okruszek A (2010) Mechanism of aniline degradation by yeast strain candida methanosorbosa BP-6. Pol J Microbiol 59(4):311ā€“315

    CASĀ  Google ScholarĀ 

  • Murakumi S, Takashima A, Takemoto J, Takenaka S, Shinke R, Aoki K (1999) Cloning and sequence analysis of two catechol-degrading gene clusters from the aniline assimilating bacterium Frateuria species ANA-18. Gene 226:189ā€“198. http://www.doi.org/10.1016/S0378-1119(98)00560-5

    ArticleĀ  Google ScholarĀ 

  • MƤlzer HJ, Gerlach M, Gimbel R (1993) Effects of shock loads on bank filtration and their prediction by control filters. Water Supply 11:165ā€“177

    Google ScholarĀ 

  • Narayana B, Sunil K (2009) A spectrophotometric method for the determination of nitrite and nitrate. Eurasian J Anal Chem 4(2):204ā€“214. ISSN: 1306ā€“3057

    Google ScholarĀ 

  • Neyens E, Baeyens J (2003) A review of classic Fentonā€™s peroxidation as an advanced oxidation technique. J Hazard Mater 98(1ā€“3):33ā€“50. PII: S0304-3894(02)00282-0

    Google ScholarĀ 

  • Nohynek GJ, Antignac E, Re T, Toutain H (2010) Safety assessment of personal care products/cosmetics and their ingredients. Toxicol Appl Pharmacol 243:239ā€“259. doi:10.1016/j.taap.2009.12.001

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Oā€™Neill FJ, Brimley-Challenor KCA, Greenwood RJ, Knapp JS (2000) Bacterial growth of aniline: implications for the biotreatment of industrial wastewater. Water Res 34(18):4397ā€“4409. doi:10.1016/S0043-1354(00)00215-3

    ArticleĀ  Google ScholarĀ 

  • Oda H, Yokokawa C (1983) Adsorption of aromatic amines and o-substituted derivatives of phenol from organic solutions by activated carbons-effect of surface acidity. Carbon 21(5):485ā€“489. http://www.doi.org/10.1016/0008-6223(83)90141-0

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Oguri S (2000) Electromigration methods for amino acids, biogenic amines and aromatic amines. J Chromatogr B 747:1ā€“19. http://www.doi.org/10.1016/S0378-4347(00)00092-X

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Osterloh FE (2008) Inorganic materials as catalysts for photochemical splitting of water. Chem Mater 20:35ā€“54. doi:10.1021/cm7024203

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Oturan MA, Brillas E (2007) Electrochemical Advanced Oxidation Processes (EAOPs) for environmental applications. Port Electrochim Acta 25:1ā€“18

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Pacheco MJ, Santos V, CirĆ­aco L, Lopes A (2011) Electrochemical degradation of aromatic amines on BDD electrodes. J Hazard Mater 186(2ā€“3):1033ā€“1041. doi:10.1016/j.jhazmat.2010.11.108

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Palmiotto G, Pieraccini G, Moneti G, Dolara P (2001) Determination of the levels of aromatic amines in indoor and outdoor air in Italy. Chemosphere 433:355ā€“361, PII:S0045-6535(00)00109-0

    ArticleĀ  Google ScholarĀ 

  • Panizza M, Zolezzi M, Nicolella C (2006) Biological and electrochemical oxidation of naphthalenesulfonates. J Chem Technol Biotechnol 81:225ā€“232

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Panizza M, Brillas E, Comninellis C (2008) Application of boron-doped diamond electrodes for wastewater treatment. J Environ Eng Manag 18:139ā€“153

    CASĀ  Google ScholarĀ 

  • Parales RE, Resnick SM (2006) Aromatic ring hydroxylating dioxygenases. In: Ramos JL, Levesque RC (eds) Pseudomonas, vol 4, Molecular biology of emerging issues. Springer, New York, pp 287ā€“340

    ChapterĀ  Google ScholarĀ 

  • Parales RE, Ontl TA, Gibson DT (1997) Cloning and sequence analysis of a catechol 2,3-dioxygenase gene from the nitrobenzene degrading strain Comamonas sp. JS765. J Ind Microbiol Biotechnol 19:385ā€“391. doi:10.1038/sj.jim.2900420

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Pereira R, Pereira L, Van der Zee FP, Alves MM (2011) Fate of aniline and sulfanilic acid in UASB bioreactors under denitrifying conditions. Water Res 45:191ā€“200. doi:10.1016/j.watres.2010.08.027

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Pereira L, Pereira R, Oliveira CS, Alves MM (2013) UV/TiO2 photocatalytic degradation of xanthene dyes. Photochem Photobiol, 2013, 89:33ā€“50. doi:10.1111/j.1751-1097.2012.01208.x

  • Perez F (2001) Spectrophotometric study of industrial effluents ā€“ application in parameters estimation. PhD thesis, Universiteā€™ dā€™Aix-Marseille; II

    Google ScholarĀ 

  • Pielesz A (1999) The process of the reduction of azo dyes used in dyeing textiles on the basis of infrared spectroscopy analysis. J Mol Struct 337ā€“344. http://www.doi.org/10.1016/S0022-2860(99)00176-3

  • Pielesz A, Baranowska I, Rybak A, Włochowicz A (2002) Detection and determination of aromatic amines as products of reductive splitting from selected azo dyes. Ecotoxicol Environ Saf 53:42ā€“47. doi:10.1006/eesa.2002.2191

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Pinheiro HM, Touraud E, Thomas O (2004) Aromatic amines from azo dye reduction: status review with emphasis on direct UV spectrophotometric detection in textile industry wastewaters. Dyes Pigments 61:121ā€“139. doi:10.1016/j.dyepig.2003.10.009

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Ramalho PA, Helena CM, Cavaco-Paulo A, Teresa RM (2004) Characterization of azo reduction activity in a novel ascomycete yeast strain. Appl Environ Microbiol 70(4):2279ā€“2288. doi:10.1128/AEM.70.4.2279-2288.2004

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Ramya M, Iyappan S, Manju A, Jiffe JS (2010) Biodegradation and decolorization of acid red by acinetobacter radioresistens. J Bioremediat Biodegrad 1(105):2ā€“6. doi:10.4172/2155-6199.1000105

    Google ScholarĀ 

  • Ratiu C, Manea F, Lazau C, Grozescu I, Radavon C, Schoonman J (2010) Electrochemical oxidation of p-aminophenol from water with boron-doped diamond anodes and assisted photocatalytically by TiO2-supported zeolite. Desalination 260(1ā€“3):51ā€“56. doi:10.1016/j.desal.2010.04.068

  • Razo-Flores E (1997) Biotransformation and biodegradation of N-substituted aromatics in methanogenic granular sludge. PhD thesis, Wageningen Agriculture University, The Netherlands. http://edepot.wur.nl/199864

  • Razo-Flores E, Donlon BA, Field JA, Lettinga G (1996) Biodegradability of N-substituted aromatics and alkylphenols under methanogenic conditions using granular sludge. Water Sci Technol 33(3):47ā€“57. http://www.doi.org/10.1016/0273-1223(96)00320-4

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Razo-Flores E, Donlon B, Lettinga G, Field JA (1997a) Biotransformation and biodegradation of N-substituted aromatics in methanogenic granular sludge. FEMS Microbiol Rev 20:525ā€“538, PII S0168-6445(97)00031ā€“4

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Razo-Flores E, Luijten M, Donlon BA, Lettinga G, Field JA (1997b) Complete biodegradation of the azo dye azodisalicylate under anaerobic conditions. Environ Sci Tech 31:2098ā€“2103

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Razo-Flores E, Lettinga G, Field JA (1999) Biotransformation and biodegradation of selected nitroaromatics under anaerobic conditions. Biotechnol Prog 15:358ā€“365. doi:10.1021/bp9900413

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Rieger P-G, Meier H-M, Gerle M, Vogtb U, Groth T, Knackmuss H-J (2002) Xenobiotics in the environment: present and future strategies to obviate the problem of biological persistence. J Biotechnol 94(1):101ā€“123. doi:10.1016/S0168-1656(01)00422-9

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Robinson T, MacMullan G, Marchant R, Nigam P (2001) Remediation of dyes in textile effluents, current treatment technologies with a proposed alternative. Bioresour Technol 77:247ā€“255. http://www.doi.org/10.1016/S0960-8524(00)00080-8

    ArticleĀ  CASĀ  Google ScholarĀ 

  • SĆ”nchez L, Peral J, DomĆØnech X (1998) Aniline degradation by combined photocatalysis and ozonation. Appl Catal Environ 19:59ā€“65. PII: S0926- 3373(9 8)00058-7

    ArticleĀ  Google ScholarĀ 

  • Santos V, Diogo J, Pacheco MJ, CirĆ­aco L, MorĆ£o A, Lopes A (2010) Electrochemical degradation of sulfonated amines on SI/BDD electrodes. Chemosphere 79(6):637ā€“645. doi:10.1016/j.chemosphere.2010.02.031

  • Savelieva O, Kotova I, Roelofsen W, Stams AJM, Netrusov A (2004) Utilization of aminoaromatic acids by a methanogenic enrichment culture and by a novel Citrobacter freundii strain. Arch Microbiol 181:163ā€“170. doi:10.1007/s00203-003-0645-1

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Schmidt TC, Haas R, Von Lƶw E, Steinbach K (1998) Derivatization of aromatic amines with bromine for improved gas chromatographic determination. Chromatographia 48(5ā€“6):436ā€“442. doi:10.1007/BF02467717

  • Sentellas S, Moyano E, Puignou L, Galceran MT (2003) Determination of heterocyclic aromatic amines by capillary electrophoresis coupled to mass spectrometry using in-line preconcentration. Electrophoresis 24:3075ā€“3082. doi:10.1002/elps.200305523

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Sentellas S, Moyano E, Puignou L, Galceran MT (2004) Optimization of a clean-up procedure for the determination of heterocyclic aromatic amines in urine by field-amplified sample injectionā€“capillary electrophoresisā€“mass spectrometry. J Chromatogr A 1032:193ā€“201. doi:10.1016/j.chroma.2003.11.011

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Seymour EH, Lawrence NS, Pandurangappa M, Compton RG (2002) Indirect electrochemical detection of nitrite via diazotization of aromatic amines. Microchim Acta 140:211ā€“217. doi:10.1007/s00604-002-0915-7

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Sharma N, Jain A, Verma KK (2011) Headspace solid-phase microextraction and on-fibre derivatization of primary aromatic amines for their determination by pyrolysis to aryl isothiocyanates and gas chromatography-mass spectrometry. Anal Methods 3(4):970ā€“976. doi:10.1039/C0AY00745E

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Skarping G, Renman L, Dalene M (1983) Trace analysis of amines and isocyanates using glass capillary gas chromatography and selective detection. II Determination of aromatic amines as perfluoro fatty acid amides using nitrogen-selective detection. J Chromatogr A 270:207ā€“218

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Skipper PL, Kim MY, Sun H-LP, Wogan GN, Tannenbaum SR (2010) Monocyclic aromatic amines as potential human carcinogens: old is new again. Carcinogenesis 31(1):50ā€“58. doi:10.1093/carcin/bgp267

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Srivastava SP, Dua VK (1975) TLC separation of closely related amines. J Anal Chem 276:382

    CASĀ  Google ScholarĀ 

  • Stolz A (1999) Degradation of substituted naphthalene sulfonic acids by Sphingomonas xenophaga BN6. J Ind Microbiol Biotechnol 23:391ā€“399. doi:10.1038/sj.jim.2900725

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Sun Y, Liang L, Zhao X, Yu L, Zhana J, Shi G, Zhou T (2009) Determination of aromatic amines in water samples by capillary electrophoresis with amperometric detection. Water Res 43:41ā€“46. doi:10.1016/j.watres.2008.10.004

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Sun X-M, Sun Y, Wu L-W, Jiang C-Z, Yu X, Gao Y, Wang L-Y, Song D-Q (2012a) Determination of aromatic amines in environmental water samples. Anal Methods 4(7):2074ā€“2080. doi:10.1039/C2AY25056J

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Sun XM, Sun Y, Wu LW, Jiang CZ, Yu X, Gao Y, Wang LY, Song DQ (2012b) Development of a vortex-assisted ionic liquid microextraction method for the determination of aromatic amines in environmental water samples. Anal Methods 4:2074ā€“2080. doi:10.1039/C2AY25056J

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Szterk A, Roszko M, Małek K, Kurek M, ZbieƦ M, Waszkiewicz-Robak B (2012) Profiles and concentrations of heterocyclic aromatic amines formed in beef during various heat treatments depend on the time of ripening and muscle type. Meat Sci 92:587ā€“595. doi:10.1016/j.meatsci.2012.06.004

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Tan NCG, Prenafeta-Boldu FX, Opsteeg J, Lettinga G, Field JA (1999) Biodegradation of azo dyes in cocultures of anaerobic granular sludge with aerobic aromatic amine degrading enrichment cultures. Appl Microbiol Biotechnol 51:865ā€“871. doi:10.1007/s002530051475

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Tan NCG, Van Leeuwen A, Van Voorthuizen EM, Slenders P, Prenafeta-BoldĆŗ FX, Temmink H, Lettinga G, Field JA (2005) Fate and biodegradability of sulfonated aromatic amines. Biodegradation 16:527ā€“537

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Tannenbaum SR (1991) Bladder cancer in workers exposed in aniline. J Nat Cancer Inst 83:1507ā€“1508

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Tao Y, Liu JF, Wang T, Jiang GB (2009) Simultaneous conduction of two- and three-phase hollow-fiber-based liquid-phase microextraction for the determination of aromatic amines in environmental water samples. J Chromatogr A 1216(5):756ā€“762. doi:10.1016/j.chroma.2008.11.094

    ArticleĀ  CASĀ  Google ScholarĀ 

  • TorƤng L, Reuschenbach P, MĆ¼ller B, Nyholm N (2002) Laboratory shake flask batch tests can predict field biodegradation of aniline in the Rhine. Chemosphere 49:1257ā€“1265. http://www.doi.org/10.1016/S0045-6535(02)00605-7

    ArticleĀ  Google ScholarĀ 

  • Toribio F, Moyano E, Puignou L, Galceran MT (2002) Ion-trap tandem mass-spectrometry for the determination of heterocyclic amines in food. J Chromatogr A 948:267ā€“281. PII: S0021-9673(01)01476-5

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Torres RA, Sarria V, Torres W, Peringer P, Pulgarin C (2003) Electrochemical treatment of industrial wastewater containing 5-amino-6-methyl-2-benzimidazolone: toward an electrochemicalā€“biological coupling. Water Res 37:3118ā€“3124. doi:10.1016/S0043-1354(03)00179-9

    ArticleĀ  CASĀ  Google ScholarĀ 

  • USA National Toxicology Program (2005) 11th report on carcinogens. U.S. Department of Health and Human Services

    Google ScholarĀ 

  • Vaillancourt FH, Bolin JT, Eltis LD (2006) The ins and outs of ring-cleaving dioxygenases. Crit Rev Biochem Mol Biol 41:241ā€“267. doi:10.1080/10409230600817422

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Van der Plas SE, De Clercq PJ, Madder A (2007) Fast and easy detection of aromatic amines on solid support. Tetrahedron Lett 48:2587ā€“2589. doi:10.1016/j.tetlet.2007.02.023

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Van der Zee FP, Villaverde S (2005) Combined anaerobicā€“aerobic treatment of azo dyes ā€“ A short review of bioreactor studies. Water Res 39:1425ā€“1440. doi:10.1016/j.watres.2005.03.007

    ArticleĀ  CASĀ  Google ScholarĀ 

  • VĆ”zquez-RodrĆ­guez GA, BeltrĆ”n-HernĆ”ndez RI, Lucho-Constantino CA, Blasco JL (2008) A method for measuring the anoxic biodegradability under denitrifying conditions. Chemosphere 71:1363ā€“1368. doi:10.1016/j.chemosphere.2007.11.012

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Verma KK, Sanghi SK, Jain A (1988) Spectrophotometric determination of primary aromatic amines with 4-N methylaminophenol and 2-iodylbenzoate. Talanta 35:409ā€“411. http://www.doi.org/10.1016/0039-9140(88)80037-7

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Vytras K, Kalous J, KalaĀ“bovaĀ“ Z, Remes M (1982) Ion-selective electrodes in titrations involving azo-coupling reactions. Anal Chem Acta 141:163ā€“171

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Wang L, Barrington S, Kim JW (2007) Biodegradation of pentyl amine and aniline from petrochemical wastewater. J Environ Manage 83:191ā€“197. http://www.doi.org/10.1016/j.jenvman.2006.02.009

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Wang X, Fu L, Wei G, Hu J, Zhao X, Liu X, Li Y (2008) Determination of four aromatic amines in water samples using dispersive liquidā€“liquid microextraction combined with HPLC. J Sep Sci 31:2932ā€“2938. doi:10.1002/jssc.200800273

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Weisburger JH (1997) A perspective on the history and mutagenic, N-substituted aryle compounds in human health. Mutat Res 376:61ā€“266

    ArticleĀ  Google ScholarĀ 

  • Wilmer JL, Rosenkranz HS, Pet-Edwards J, Chankong V, Haimes YY (1984) On the carcinogenicity of aniline. Environ Mutagen 6(5):629ā€“632. doi:10.1002/em.2860060502

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Worch E, Grischek T, Bƶrnick H, Eppinger P (2002) Laboratory tests for simulating attenuation processes of aromatic amines in riverbank filtration. J Hydrol 266:259ā€“268. http://www.doi.org/10.1016/S0022-1694(02)00169-5

  • Wu YG, Hui L, Li X, Zhang YZ, Zhang WC (2007) Degradation of aniline in weihe riverbed sediments under denitrification conditions. J Environ Sci Health, Part A: Tox Hazard Subst Environ Eng 42(4):413ā€“419. doi;org/10.1080/10934520601187302

    Google ScholarĀ 

  • Yadav S, Tyagi DK, Yadav OP (2011) Equilibrium and kinetics studies on adsorption of aniline blue from aqueous solution onto rice husk carbon. Int J Chem Res 2(3):59ā€“64

    Google ScholarĀ 

  • Yang J, Tsai FP (2001) Development of a solid-phase microextraction/reflection-absorption infrared spectroscopic method for the detection of chlorinated aromatic amines in aqueous solutions. Anal Sci 17:751ā€“756

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Yang K, Wu W, Jing Q, Zhu L (2008) Aqueous adsorption of aniline, phenol, and their substitutes by multi-walled carbon nanotubes. Environ Sci Tech 42:7931ā€“7936. doi:10.1021/es801463v

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Ye S, Huang F (2007) Separation of carcinogenic aromatic amines in the dyestuff plant wastewater treatment. Desalination 206:78ā€“85. doi:10.1016/j.desal.2006.03.562

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Yemashova N, Kalyuzhnyi S (2006) Microbial conversion of selected azo dyes and their breakdown products. Water Sci Technol 53(11):163ā€“171. http://www.ukpmc.ac.uk/abstract/MED/16862786

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Yu MC, Ross RK (1998) Epidemiology of bladder cancer. In: Petrovich Z, Baert L, Brady LW (eds) Carcinoma of the bladder. Innovations in management. Springer, Berlin, pp 1ā€“13

    ChapterĀ  Google ScholarĀ 

  • Yu MC, Skipper PL, Tannenbaum SR, Chan KK, Ross RK (2002) Arylamine exposures and bladder cancer risk. Mutat Res/Fundam Mol Mech Mutagen 506ā€“507:21ā€“28. http://www.doi.org/10.1016/S0027-5107(02)00148-3

    ArticleĀ  Google ScholarĀ 

  • Zatar NA, Abu-Zuhri AZ, Abu-Shaweesh AA (1998) Spectrophotometric determination of some aromatic amines. Talanta 47:883ā€“890. http://www.doi.org/10.1016/S0039-9140(98)00177-5

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Zeng Z, Qiu W, Yang M, Wei X, Huang Z, Li F (2001) Solid-phase microextraction of monocyclic aromatic amines using novel fibers coated with crown ether. J Chromatogr A 934:51ā€“57, PII: S0021-9673(01)01303-6

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Zeyer J, Wasserfallen A, Timmis KN (1985) Microbial mineralization of ring-substituted anilines through an ortho-cleavage pathway. Appl Environ Microbiol 50(2):447ā€“453. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC239144/pdf/aem00133-0350.pdf

    CASĀ  Google ScholarĀ 

  • Zhang Q, Wang C, Bai H, Wang X, Wu T, Ma Q (2009) Determination of aromatic amines from azo dyes reduction by liquid-phase sorbent trapping and thermal desorption-gas chromatography-mass spectrometry. J Sep Sci 32(14):2434ā€“2441. doi:10.1002/jssc.200900089

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Zhang S, Li A, Cui D, Yang JX, Ma F (2011) Performance of enhanced biological SBR process for aniline treatment by mycelial pellet as biomass carrier. Bioresour Technol 102(6):4360ā€“4365. http://www.doi.org/10.1016/j.biortech.2010.12.079

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Zhao X, Suo Y (2008) Analysis of primary aromatic amines using precolumn derivatization by HPLC fluorescence detection and online MS identification. J Sep Sci 31:646ā€“658. doi:10.1002/jssc.200700400

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Zhou QX, Ye CL (2008) Ionic liquid for improved single-drop microextraction of aromatic amines in water samples. Microchim Acta 162(1ā€“2):153ā€“159. doi:10.1007/s00604-007-0857-1

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Zwirner-Baier I, Deckart K, JƤckh R, Neumann HG (2003) Biomonitoring of aromatic amines VI: determination of hemoglobin adducts after feeding aniline hydrochloride in the diet of rats for 4 weeks. Arch Toxicol 77:672ā€“677. doi:10.1007/s00204-003-0473-8

    ArticleĀ  CASĀ  Google ScholarĀ 

Download references

Acknowledgement

The authors thank the FCT exploratory EXPL/AAG-TEC/0898/2013 and Strategic Project of UID/BIO/04469/2013 unit. Acknowledgements also to the project RECI/BBB-EBI/0179/2012 (FCOMP-01-0124-FEDER-027462) and the Project ā€œBioEnv - Biotechnology and Bioengineering for a sustainable worldā€, REF. NORTE-07-0124-FEDER-000048, co-funded by the Programa Operacional Regional do Norte (ON.2 ā€“ O Novo Norte), QREN, FEDER.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luciana Pereira .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Pereira, L., Mondal, P.K., Alves, M. (2015). Aromatic Amines Sources, Environmental Impact and Remediation. In: Lichtfouse, E., Schwarzbauer, J., Robert, D. (eds) Pollutants in Buildings, Water and Living Organisms. Environmental Chemistry for a Sustainable World, vol 7. Springer, Cham. https://doi.org/10.1007/978-3-319-19276-5_7

Download citation

Publish with us

Policies and ethics